Downloads

Additional Files

Bai, X., Song, W., Guo, L., Liu, R., Cao, Y., Jin, P., Zhu, B., & Zhang, X. Improvement of Extraction Efficiency and Metabolites of Pollutants from Medium and Low Concentration Organic Polluted Soil. Science for Energy and Environment. 2024, 1(1). doi: Retrieved from https://www.sciltp.com/journals/see/article/view/334

Article

Improvement of Extraction Efficiency and Metabolites of Pollutants from Medium and Low Concentration Organic Polluted Soil

Xiaojuan Bai 1,2,*, Wei Song 2, Linlong Guo 2, Rujiao Liu 2, Yihan Cao 2, Pin Jin 2, Bowen Zhu 1,2 and Xiaoran Zhang 1,2

1 Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

2 Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-Construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

* Correspondence: baixiaojuan@bucea.edu.cn or heixia.1986@163.com

Received: 6 February 2024; Revised: 11 March 2024; Accepted: 8 April 2024; Published: 15 April 2024

 

Abstract: Industrial development has accelerated soil contamination by organic pollutants, posing a major threat to global ecosystems and human health. Natural attenuation techniques, renowned for their environmental compatibility and cost-effectiveness, have garnered widespread attention for the remediation of environmental pollution. In this work, we have successfully enhanced the natural attenuation process of organic contaminants in soil by employing biostimulation and bioaugmentation methods to remove pollutants. The results showed that the degradation rate of low molecular weight polycyclic aromatic hydrocarbons (PAHs) reached about 82.5% while medium molecular weight PAHs was about 43.72%, as well as high molecular weight PAHs was about 34.5% even after a remediation process of only 14 days. In addition, the biofortified soil was exhaustively analyzed by high-throughput sequencing, which showed that the dosing of bactericide and surfactants significantly increased the abundance of 16sRNA genes and alkane degradation-related genes. In response to the challenges of detecting and analyzing complex organic pollutants in soil, we have developed an integrated method for the extraction, purification, and detection of organic pollutants in soil, ranging from low to medium concentrations. This approach not only allows for the efficient extraction of organic pollutants from the soil but also facilitates further inference of the degradation mechanisms of these pollutants. Integrating chemical analysis and microbiological techniques, and employing Gas Chromatography-Mass Spectrometry (GC-MS) and High-Resolution Mass Spectrometry (HRMS), we precisely measured and identified organic contaminants in soil and deduced the mechanisms of degradation. These findings are significant for the development of new environmental remediation technologies and strategies, contributing to addressing soil pollution issues exacerbated by industrial activities.

Keywords:

polycyclic aromatic hydrocarbons (PAHs) total petroleum hydrocarbons (TPHs) low to moderate concentration soil remediation degradation mechanism

References

  1. Kwon, J.-H.; Ji, M.-K.; Kumar, R.; Islam, M.M.; Khan, M.A.; Park, Y.-K.; Yadav, K.K.; Vaziri, R.; Hwang, J.-H.; Lee, W.H.; et al. Recent advancement in enhanced soil flushing for remediation of petroleum hydrocarbon-contaminated soil: A state-of-the-art review. Rev. Environ. Sci. Bio/Technol. 2023, 22, 679–714. https://doi.org/10.1007/s11157-023-09657-0.
  2. Wu, Z.; Chen, Y.; Yang, Z.; Liu, Y.; Zhu, Y.; Tong, Z.; An, R. Spatial distribution of lead concentration in peri-urban soil: Threshold and interaction effects of environmental variables. Geoderma 2023, 429, 116193. https://doi.org/10.1016/j.geoderma.2022.116193.
  3. Cheng, M.; Zeng, G.; Huang, D.; Lai, C.; Xu, P.; Zhang, C.; Liu, Y. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review. Chem. Eng. J. 2016, 284, 582–598. https://doi.org/10.1016/j.cej.2015.09.001.
  4. Aravind Kumar, J.; Krithiga, T.; Sathish, S.; Renita, A.A.; Prabu, D.; Lokesh, S.; Geetha, R.; Namasivayam, S.K.R.; Sillanpaa, M. Persistent organic pollutants in water resources: Fate, occurrence, characterization and risk analysis. Sci. Total Environ. 2022, 831, 154808. https://doi.org/10.1016/j.scitotenv.2022.154808.
  5. Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. https://doi.org/10.1016/j.envpol.2007.06.012.
  6. Kumar, L.; Chugh, M.; Kumar, S.; Kumar, K.; Sharma, J.; Bharadvaja, N. Remediation of petrorefinery wastewater contaminants: A review on physicochemical and bioremediation strategies. Process Saf. Environ. Prot. 2022, 159, 362–375. https://doi.org/10.1016/j.psep.2022.01.009.
  7. Zhang, H.; Ma, D.; Qiu, R.; Tang, Y.; Du, C. Non-thermal plasma technology for organic contaminated soil remediation: A review. Chem. Eng. J. 2017, 313, 157–170. https://doi.org/10.1016/j.cej.2016.12.067.
  8. Paria, S. Surfactant-enhanced remediation of organic contaminated soil and water. Adv. Colloid Interface Sci. 2008, 138, 24–58. https://doi.org/10.1016/j.cis.2007.11.001.
  9. Varjani, S.; Upasani, V.N. Influence of abiotic factors, natural attenuation, bioaugmentation and nutrient supplementation on bioremediation of petroleum crude contaminated agricultural soil. J. Environ. Manage. 2019, 245, 358–366. https://doi.org/10.1016/j.jenvman.2019.05.070.
  10. Terzaghi, E.; Vergani, L.; Mapelli, F.; Borin, S.; Raspa, G.; Zanardini, E.; Morosini, C.; Anelli, S.; Nastasio, P.; Sale, V.M.; et al. New Data Set of Polychlorinated Dibenzo-p-dioxin and Dibenzofuran Half-Lives: Natural Attenuation and Rhizoremediation Using Several Common Plant Species in a Weathered Contaminated Soil. Environ. Sci. Technol. 2020, 54, 10000–10011. https://doi.org/10.1021/acs.est.0c01857.
  11. Lopes, P.R.M.; Cruz, V.H.; de Menezes, A.B.; Gadanhoto, B.P.; de Almeida Moreira, B.R.; Mendes, C.R.; Mazzeo, D.E.C.; Dilarri, G.; Montagnolli, R.N. Microbial bioremediation of pesticides in agricultural soils: An integrative review on natural attenuation, bioaugmentation and biostimulation. Rev. Environ. Sci. Bio/Technol. 2022, 21, 851–876. https://doi.org/10.1007/s11157-022-09637-w.
  12. Varjani, S.; Upasani, V.N.; Pandey, A. Bioremediation of oily sludge polluted soil employing a novel strain of Pseudomonas aeruginosa and phytotoxicity of petroleum hydrocarbons for seed germination. Sci. Total Environ. 2020, 737, 139766. https://doi.org/10.1016/j.scitotenv.2020.139766.
  13. Mu, J.; Chen, Y.; Song, Z.; Liu, M.; Zhu, B.; Tao, H.; Bao, M.; Chen, Q. Effect of terminal electron acceptors on the anaerobic biodegradation of PAHs in marine sediments. J. Hazard. Mater. 2022, 438, 129569. https://doi.org/10.1016/j.jhazmat.2022.129569.
  14. Patel, A.K.; Singhania, R.R.; Albarico, F.; Pandey, A.; Chen, C.W.; Dong, C.D. Organic wastes bioremediation and its changing prospects. Sci. Total Environ. 2022, 824, 153889. https://doi.org/10.1016/j.scitotenv.2022.153889.
  15. Samaei, M.R.; Mortazavi, S.B.; Bakhshi, B.; Jafari, A.J.; Shamsedini, N.; Mehrazmay, H.; Ansarizadeh, M. Investigating the effects of combined bio-enhancement and bio-stimulation on the cleaning of hexadecane-contaminated soils. J. Environ. Chem. Eng. 2022, 10, 106914. https://doi.org/10.1016/j.jece.2021.106914.
  16. Ng, Y.J.; Lim, H.R.; Khoo, K.S.; Chew, K.W.; Chan, D.J.C.; Bilal, M.; Munawaroh, H.S.H.; Show, P.L. Recent advances of biosurfactant for waste and pollution bioremediation: Substitutions of petroleum-based surfactants. Environ. Res. 2022, 212, 113126. https://doi.org/10.1016/j.envres.2022.113126.
  17. Moldes, A.B.; Paradelo, R.; Rubinos, D.; Devesa-Rey, R.; Cruz, J.M.; Barral, M.T. Ex situ treatment of hydrocarbon-contaminated soil using biosurfactants from Lactobacillus pentosus. J. Agric. Food Chem. 2011, 59, 9443–9447. https://doi.org/10.1021/jf201807r.
  18. Zhao, H.P.; Wang, L.; Ren, J.R.; Li, Z.; Li, M.; Gao, H.W. Isolation and characterization of phenanthrene-degrading strains Sphingomonas sp. ZP1 and Tistrella sp. ZP5. J. Hazard. Mater. 2008, 152, 1293–1300. https://doi.org/10.1016/j.jhazmat.2007.08.008.
  19. Hamidi, Y.; Ataei, S.A.; Sarrafi, A. A simple, fast and low-cost method for the efficient separation of hydrocarbons from oily sludge. J. Hazard. Mater. 2021, 413, 125328. https://doi.org/10.1016/j.jhazmat.2021.125328.
  20. Parera, J.; Santos, F.J.; Galceran, M.T. Microwave-assisted extraction versus Soxhlet extraction for the analysis of short-chain chlorinated alkanes in sediments. J. Chromatogr. A 2004, 1046, 19–26. https://doi.org/10.1016/j.chroma.2004.06.064.
  21. Schmidt, F.; Koch, B.P.; Witt, M.; Hinrichs, K.-U. Extending the analytical window for water-soluble organic matter in sediments by aqueous Soxhlet extraction. Geochim. Cosmochim. Acta 2014, 141, 83–96. https://doi.org/10.1016/j.gca.2014.06.009.
  22. Kunene, P.N.; Mahlambi, P.N. Optimization and application of ultrasonic extraction and Soxhlet extraction followed by solid phase extraction for the determination of triazine pesticides in soil and sediment. J. Environ. Chem. Eng. 2020, 8, 103665. https://doi.org/10.1016/j.jece.2020.103665.
  23. Barcobonilla, N.; Vidal, J.; Garridofrenich, A.; Romerogonzalez, R. Comparison of ultrasonic and pressurized liquid extraction for the analysis of polycyclic aromatic compounds in soil samples by gas chromatography coupled to tandem mass spectrometry. Talanta 2009, 78, 156–164. https://doi.org/10.1016/j.talanta.2008.10.048.
  24. Temerdashev, Z.A.; Musorina, T.N.; Chervonnaya, T.A. Determination of Polycyclic Aromatic Hydrocarbons in Soil and Bottom Sediments by Gas Chromatography–Mass Spectrometry Using Dispersive Liquid–Liquid Microextraction. J. Anal. Chem. 2020, 75, 1000–1010. https://doi.org/10.1134/s1061934820080158.
  25. Li, J.; Song, X.; Hu, G.; Thring, R.W. Ultrasonic desorption of petroleum hydrocarbons from crude oil contaminated soils. J. Environ. Sci. Health Part A 2013, 48, 1378–1389. https://doi.org/10.1080/10934529.2013.781885.
  26. Wu, G.; Li, X.; Coulon, F.; Li, H.; Lian, J.; Sui, H. Recycling of solvent used in a solvent extraction of petroleum hydrocarbons contaminated soil. J. Hazard. Mater. 2011, 186, 533–539. https://doi.org/10.1016/j.jhazmat.2010.11.041.
  27. Ji, R.; Wu, Y.; Bian, Y.; Song, Y.; Sun, Q.; Jiang, X.; Zhang, L.; Han, J.; Cheng, H. Nitrogen-doped porous biochar derived from marine algae for efficient solid-phase microextraction of chlorobenzenes from aqueous solution. J. Hazard. Mater. 2021, 407, 124785. https://doi.org/10.1016/j.jhazmat.2020.124785.
  28. Ghiasvand, A.R.; Pirdadeh-Beiranvand, M. Cooling/heating-assisted headspace solid-phase microextraction of polycyclic aromatic hydrocarbons from contaminated soils. Anal. Chim. Acta 2015, 900, 56–66. https://doi.org/10.1016/j.aca.2015.10.016.
  29. Liao, X.; Zhao, D.; Yan, X.; Huling, S.G. Identification of persulfate oxidation products of polycyclic aromatic hydrocarbon during remediation of contaminated soil. J. Hazard. Mater. 2014, 276, 26–34. https://doi.org/10.1016/j.jhazmat.2014.05.018.
  30. Xu, J.; Deng, X.; Cui, Y.; Kong, F. Impact of chemical oxidation on indigenous bacteria and mobilization of nutrients and subsequent bioremediation of crude oil-contaminated soil. J. Hazard. Mater. 2016, 320, 160–168. https://doi.org/10.1016/j.jhazmat.2016.08.028.
  31. Andreu, V.; Picó, Y. Pressurized liquid extraction of organic contaminants in environmental and food samples. TrAC Trends Anal. Chem. 2019, 118, 709–721. https://doi.org/10.1016/j.trac.2019.06.038.
  32. Yang, Y.; Hofmann, T. Aqueous accelerated solvent extraction of native polycyclic aromatic hydrocarbons (PAHs) from carbonaceous river floodplain soils. Environ. Pollut. 2009, 157, 2604–2609. https://doi.org/10.1016/j.envpol.2009.05.020.
  33. Yin, H.; Tan, Q.; Chen, Y.; Lv, G.; Hou, X. Polycyclic aromatic hydrocarbons (PAHs) pollution recorded in annual rings of gingko (Gingko biloba L.): Determination of PAHs by GC/MS after accelerated solvent extraction. Microchem. J. 2011, 97, 138–143. https://doi.org/10.1016/j.microc.2010.08.008.
  34. Humbert, K.; Debret, M.; Morin, C.; Cosme, J.; Portet-Koltalo, F. Direct thermal desorption-gas chromatography-tandem mass spectrometry versus microwave assisted extraction and GC-MS for the simultaneous analysis of polyaromatic hydrocarbons (PAHs, PCBs) from sediments. Talanta 2022, 250, 123735. https://doi.org/10.1016/j.talanta.2022.123735.
  35. Sanchez-Prado, L.; Garcia-Jares, C.; Dagnac, T.; Llompart, M. Microwave-assisted extraction of emerging pollutants in environmental and biological samples before chromatographic determination. TrAC Trends Anal. Chem. 2015, 71, 119–143. https://doi.org/10.1016/j.trac.2015.03.014.
  36. Humbert, K.; Debret, M.; Morin, C.; Cosme, J.; Portet-Koltalo, F. Direct thermal desorption-gas chromatography-tandem mass spectrometry versus microwave assisted extraction and GC-MS for the simultaneous analysis of polyaromatic hydrocarbons (PAHs, PCBs) from sediments. Talanta 2022, 250, 123735. https://doi.org/10.1016/j.talanta.2022.123735.
  37. Gallo, M.; Ferrara, L.; Naviglio, D. Application of Ultrasound in Food Science and Technology: A Perspective. Foods 2018, 7, 164.https://doi.org/10.3390/foods7100164.
  38. Zhang, H.; Zhao, J.; Shang, H.; Guo, Y.; Chen, S. Extraction, purification, hypoglycemic and antioxidant activities of red clover (Trifolium pratense L.) polysaccharides. Int. J. Biol. Macromol. 2020, 148, 750–760. https://doi.org/10.1016/j.ijbiomac.2020.01.194
  39. Karmakar, B.; Saha, S.P.; Chakraborty, R.; Roy, S. Optimization of starch extraction from Amorphophallus paeoniifolius corms using response surface methodology (RSM) and artificial neural network (ANN) for improving yield with tenable chemical attributes. Int. J. Biol. Macromol. 2023, 237, 124183. https://doi.org/10.1016/j.ijbiomac.2023.124183
  40. Wang, X.; Liu, X.; Shi, N.; Zhang, Z.; Chen, Y.; Yan, M.; Li, Y. Response surface methodology optimization and HPLC-ESI-QTOF-MS/MS analysis on ultrasonic-assisted extraction of phenolic compounds from okra (Abelmoschus esculentus) and their antioxidant activity. Food Chem. 2023, 405, 134966. https://doi.org/10.1016/j.foodchem.2022.134966
  41. Chapman, J.; Truong, V.K.; Elbourne, A.; Gangadoo, S.; Cheeseman, S.; Rajapaksha, P.; Latham, K.; Crawford, R.J.; Cozzolino, D. Combining Chemometrics and Sensors: Toward New Applications in Monitoring and Environmental Analysis. Chem. Rev. 2020, 120, 6048–6069. https://doi.org/10.1021/acs.chemrev.9b00616.
  42. dos Santos, P.N.A.; Conrado, T.M.; Neubauer, A.L.; dos Santos, L.C.; Krause, E.B. Caramão, Optimization of Energized Dispersive Guided extraction (EDGE) of antioxidants from Eugenia uniflora L. (Pitanga) leaves using response surface methodology. Microchem. J. 2023, 187, 108411. https://doi.org/10.1016/j.microc.2023.108411.
  43. Luo, X.; Gong, H.; He, Z.; Zhang, P.; He, L. Recent advances in applications of power ultrasound for petroleum industry. Ultrason. Sonochem. 2021, 70, 105337. https://doi.org/10.1016/j.ultsonch.2020.105337.
  44. Rao, M.V.; Sengar, A.S.; Sunil, C.K.; Rawson, A. Ultrasonication—A green technology extraction technique for spices: A review. Trends Food Sci. Technol. 2021, 116, 975–991. https://doi.org/10.1016/j.tifs.2021.09.006.
  45. Hafidi, M.; Amir, S.; Jouraiphy, A.; Winterton, P.; El Gharous, M.; Merlina, G.; Revel, J.C. Fate of polycyclic aromatic hydrocarbons during composting of activated sewage sludge with green waste. Bioresour. Technol. 2008, 99, 8819–8823. https://doi.org/10.1016/j.biortech.2008.04.044.
  46. Liu, T.; Li, W.; Li, L.; Peng, X.; Kuang, T. Effect of dynamic oscillation shear flow intensity on the mechanical and morphological properties of high-density polyethylene: An integrated experimental and molecular dynamics simulation study. Polym. Test. 2019, 80, 106122. https://doi.org/10.1016/j.polymertesting.2019.106122.
  47. Chen, G.; Xu, R.; Zhang, C.; Lv, Y. Responses of MSCs to 3D Scaffold Matrix Mechanical Properties under Oscillatory Perfusion Culture. ACS Appl. Mater. Interfaces 2017, 9, 1207–1218. https://doi.org/10.1021/acsami.6b10745.
  48. Deng, Y.; Wang, W.; Zhao, S.; Yang, X.; Xu, W.; Guo, M.; Xu, E.; Ding, T.; Ye, X.; Liu, D. Ultrasound-assisted extraction of lipids as food components: Mechanism, solvent, feedstock, quality evaluation and coupled technologies—A review. Trends Food Sci. Technol. 2022, 122, 83–96. https://doi.org/10.1016/j.tifs.2022.01.034.
  49. Avvaru, B.; Venkateswaran, N.; Uppara, P.; Iyengar, S.B.; Katti, S.S. Current knowledge and potential applications of cavitation technologies for the petroleum industry. Ultrason. Sonochem. 2018, 42, 493–507. https://doi.org/10.1016/j.ultsonch.2017.12.010.
  50. Khadhraoui, B.; Ummat, V.; Tiwari, B.K.; Fabiano-Tixier, A.S.; Chemat, F. Review of ultrasound combinations with hybrid and innovative techniques for extraction and processing of food and natural products. Ultrason. Sonochem. 2021, 76, 105625. https://doi.org/10.1016/j.ultsonch.2021.105625.
  51. Jha, A.K.; Sit, N. Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends Food Sci. Technol. 2022, 119, 579–591. https://doi.org/10.1016/j.tifs.2021.11.019.
  52. Wang, J.; Yang, Z.; Zhou, X.; Waigi, M.G.; Gudda, F.O.; Odinga, E.S.; Mosa, A.; Ling, W. Nitrogen addition enhanced the polycyclic aromatic hydrocarbons dissipation through increasing the abundance of related degrading genes in the soils. J. Hazard. Mater. 2022, 435, 129034. https://doi.org/10.1016/j.jhazmat.2022.129034.
  53. Teng, Y.; Luo, Y.; Ping, L.; Zou, D.; Li, Z.; Christie, P. Effects of soil amendment with different carbon sources and other factors on the bioremediation of an aged PAH-contaminated soil. Biodegradation 2010, 21, 167–178. https://doi.org/10.1007/s10532-009-9291-x.
  54. Badr, T.; Hanna, K.; de Brauer, C. Enhanced solubilization and removal of naphthalene and phenanthrene by cyclodextrins from two contaminated soils. J. Hazard. Mater. 2004, 112, 215–223. https://doi.org/10.1016/j.jhazmat.2004.04.017.
  55. Yao, Y.; Huang, G.H.; An, C.J.; Cheng, G.H.; Wei, J. Effects of freeze-thawing cycles on desorption behaviors of PAH-contaminated soil in the presence of a biosurfactant: A case study in western Canada. Environ. Sci. Process. Impacts 2017, 19, 874–882. https://doi.org/10.1039/c7em00084g.
  56. Lin, W.; Liu, S.; Tong, L.; Zhang, Y.; Yang, J.; Liu, W.; Guo, C.; Xie, Y.; Lu, G.; Dang, Z. Effects of rhamnolipids on the cell surface characteristics of Sphingomonas sp. GY2B and the biodegradation of phenanthrene. RSC Adv. 2017, 7, 24321–24330. https://doi.org/10.1039/c7ra02576a.
  57. Johann, S.; Seiler, T.B.; Tiso, T.; Bluhm, K.; Blank, L.M.; Hollert, H. Mechanism-specific and whole-organism ecotoxicity of mono-rhamnolipids. Sci. Total Environ. 2016, 548–549, 155–163. https://doi.org/10.1016/j.scitotenv.2016.01.066.
  58. Techer, D.; Laval-Gilly, P.; Henry, S.; Bennasroune, A.; Formanek, P.; Martinez-Chois, C.; D’Innocenzo, M.; Muanda, F.; Dicko, A.; Rejsek, K.; et al. Contribution of Miscanthus x giganteus root exudates to the biostimulation of PAH degradation: An in vitro study. Sci. Total Environ. 2011, 409, 4489–4495. https://doi.org/10.1016/j.scitotenv.2011.06.049.
  59. Xiang, L.; Harindintwali, J.D.; Wang, F.; Redmile-Gordon, M.; Chang, S.X.; Fu, Y.; He, C.; Muhoza, B.; Brahushi, F.; Bolan, N.; et al. Integrating Biochar, Bacteria, and Plants for Sustainable Remediation of Soils Contaminated with Organic Pollutants. Environ. Sci. Technol. 2022, 56, 16546–16566. https://doi.org/10.1021/acs.est.2c02976.
  60. Chen, Y.; Zhao, Z.; Peng, Y.; Li, J.; Xiao, L.; Yang, L. Performance of a full-scale modified anaerobic/anoxic/oxic process: High-throughput sequence analysis of its microbial structures and their community functions. Bioresour. Technol. 2016, 220, 225–232. https://doi.org/10.1016/j.biortech.2016.07.095.
  61. Yang, S.; Zhao, L.; Chang, X.; Pan, Z.; Zhou, B.; Sun, Y.; Li, X.; Weng, L.; Li, Y. Removal of chlortetracycline and antibiotic resistance genes in soil by earthworms (epigeic Eisenia fetida and endogeic Metaphire guillelmi). Sci. Total Environ. 2021, 781, 146679. https://doi.org/10.1016/j.scitotenv.2021.146679.
  62. Li, J.; Luo, C.; Song, M.; Dai, Q.; Jiang, L.; Zhang, D.; Zhang, G. Biodegradation of Phenanthrene in Polycyclic Aromatic Hydrocarbon-Contaminated Wastewater Revealed by Coupling Cultivation-Dependent and -Independent Approaches. Environ. Sci. Technol. 2017, 51, 3391–3401. https://doi.org/10.1021/acs.est.6b04366.
  63. Wang, C.; Huang, Y.; Zhang, Z.; Hao, H.; Wang, H. Absence of the nahG-like gene caused the syntrophic interaction between Marinobacter and other microbes in PAH-degrading process. J. Hazard. Mater. 2020, 384, 121387. https://doi.org/10.1016/j.jhazmat.2019.121387.
  64. Cui, Z.; Xu, G.; Gao, W.; Li, Q.; Yang, B.; Yang, G.; Zheng, L. Isolation and characterization of Cycloclasticus strains from Yellow Sea sediments and biodegradation of pyrene and fluoranthene by their syntrophic association with Marinobacter strains. Int. Biodeterior. Biodegrad. 2014, 91, 45–51. https://doi.org/10.1016/j.ibiod.2014.03.005.
  65. Shi, J.; Jiang, J.; Chen, Q.; Wang, L.; Nian, K.; Long, T. Production of higher toxic intermediates of organic pollutants during chemical oxidation processes: A review. Arabian J. Chem. 2023, 16, 104856. https://doi.org/10.1016/j.arabjc.2023.104856.
  66. Ma, L.; Cai, Q.; Ong, S.L.; Yang, Z.; Zhao, W.; Duan, J.; Hu, J. Photonic efficiency optimization-oriented dependence model of characteristic coupling spectrum on catalytic absorbance in photocatalytic degradation of tetracycline hydrochloride. Chem. Eng. J. 2023, 451, 138623. https://doi.org/10.1016/j.cej.2022.138623.
  67. Tian, H.; Peng, S.; Zhao, L.; Chen, Y.; Cui, K. Simultaneous adsorption of Cd(II) and degradation of OTC by activated biochar with ferrate: Efficiency and mechanism. J. Hazard. Mater. 2023, 447, 130711. https://doi.org/10.1016/j.jhazmat.2022.130711.