- 1.
Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256−1268.
- 2.
Ding, W.; Wang, S.; Gu, J.; et al. Selenium and human nervous system. Chin. Chem. Lett. 2023, 34, 108043.
- 3.
Gu, J.; Gu, J.; Yu, L. Selenium and Alzheimer’s disease. Chin. Chem. Lett. 2025, 36, 110727. https://doi.org/10.1016/j.cclet.2024.110727.
- 4.
Marcocci, C.; Kahaly, G.J.; Krassas, G.E.; et al. Selenium and the course of mild graves’ orbitopathy. N. Engl. J. Med. 2011, 364, 1920−1931.
- 5.
Perin, G.; Lenardão, E.J.; Jacob, R.G.; et al. Synthesis of vinyl selenides. Chem. Rev. 2009, 109, 1277–1301.
- 6.
Godoi, B.; Schumacher, R.F.; Zeni, G. Synthesis of heterocycles via electrophilic cyclization of alkynes containing heteroatom. Chem. Rev. 2011, 111, 2937–2980.
- 7.
Beletskaya, I.P.; Ananikov, V.P. Transition-metal-catalyzed C−S, C−Se, and C−Te bond formation via cross-coupling and atom-economic addition reactions. Chem. Rev. 2011, 111, 1596–1636.
- 8.
Gleiter, R.; Haberhauer, G.; Werz, D.B.; et al. From noncovalent chalcogen–chalcogen interactions to supramolecular aggregates: Experiments and calculations. Chem. Rev. 2018, 118, 2010–2041.
- 9.
Cankařová, N.; Schütznerová, E.; Krchňák, V. Traceless solid-phase organic synthesis. Chem. Rev. 2019, 119, 12089–12207.
- 10.
Beletskaya, I.P.; Ananikov, V.P. Transition-metal-catalyzed C–S, C–Se, and C–Te bond formations via cross-coupling and atom-economic addition reactions. Achievements and challenges. Chem. Rev. 2022, 122, 16110–16293.
- 11.
Hao, H.; Hutter, T.; Boyce, B.L.; et al. Review of multifunctional separators: Stabilizing the cathode and the anode for alkali (Li, Na, and K) metal–sulfur and selenium batteries. Chem. Rev. 2022, 122, 8053–8125.
- 12.
Tan, C.K.Y.; Fu, W.; Loh, K.P. Polymorphism and ferroelectricity in indium(III) selenide. Chem. Rev. 2023, 123, 8701–8717.
- 13.
Zhou, J.; Xu, X.; Wu, H.; et al. Control of the phase evolution of kesterite by tuning of the selenium partial pressure for solar cells with 13.8% certified efficiency. Nat. Energy 2023, 8, 526–535.
- 14.
Zhao, Z.; Laps, S.; Gichtin, J.S.; et al. Selenium chemistry for spatio-selective peptide and protein functionalization. Nat. Rev. Chem. 2024, 8, 211–229.
- 15.
Rao, X.-Y.; Xiang, S.-F.; Zhou, J.; et al. Recent progress and strategies of cathodes toward polysulfides shuttle restriction for lithium-sulfur batteries. Rare Met. 2024, 43, 4132–4161.
- 16.
Zeng, Z.; Wang, D.-B.; Fang, X.; et al. Review of 2D Bi2X3 (X = S, Se, Te): From preparation to photodetector. Rare Met. 2024, 43, 2349–2370.
- 17.
Xu, X.; Wang, J.; Chen, X.; et al. Iron(III)-mediated nucleophilic cascade cyclization of tertiary enamides with diselenides for the construction of 3-seleno-2-pyridones. Org. Lett. 2025, 27, 802–807.
- 18.
Shi, T.; Tian, M.; Sun, Z.; et al. Photochemical aerobic sulfonylation–cyclization–selenylation to indole-fused medium-sized N-heterocycles in 2-Me-THF. Chem. Commun. 2025, 61, 4066–4069.
- 19.
Wang, Z.; Wang, X.; Li, Q.; et al. Chemoselective electrochemical seleno-cyclization of dienes to medium-sized benzo[b]azocines. Chin. Chem. Lett. 2024, 35, 109058.
- 20.
Ji, H.-T.; Jiang, J.; He, W.-B.; et al. Electrochemical multicomponent cascade reaction for the synthesis of selenazol-2-amines with elemental selenium. J. Org. Chem. 2024, 89, 4113–4119.
- 21.
Zhang, Z.; Tan, P.; Wang, S.; et al. Visible-light-promoted selective sulfonylation and selenylation of dienes to access sulfonyl-/seleno-benzazepine derivatives. Org. Lett. 2023, 25, 4208–4213.
- 22.
Wang, X.; Meng, J.; Zhao, D.; et al. Synthesis and applications of thiosulfonates and selenosulfonates as free-radical reagents. Chin. Chem. Lett. 2023, 34, 107736.
- 23.
Ji, H.-T.; Wang, K.-L.; Ouyang, W.-T.; et al. Photoinduced, additive- and photosensitizer-free multi-component synthesis of naphthoselenazol-2-amines with air in water. Green Chem. 2023, 25, 7983–7987.
- 24.
Wang, X.; Wang, Z.; Li, Z.; et al. Trifluoromethoxylation/trifluoromethylthiolation/trifluoro- methylselenolation strategy for the construction of heterocycles. Chin. Chem. Lett. 2023, 34, 108045.
- 25.
Zhang, Z.; Wang, S.; Tan, P.; et al. K2S2O8/I2-promoted electrophilic selenylative cyclization to access seleno-benzo[b]azepines. Org. Lett. 2022, 24, 2288–2293.
- 26.
Wang, X.; Lei, J.; Guo, S.; et al. Radical selenation of C(sp3)–H bonds to asymmetric selenides and mechanistic study. Chem. Commun. 2022, 58, 1526–1529.
- 27.
Wu, Y.; Chen, J.-Y.; Ning, J.; et al. Electrochemical multicomponent synthesis of 4-selanylpyrazoles under catalyst- and chemical-oxidant-free conditions. Green Chem. 2021, 23, 3950–3954.
- 28.
Sun, K.; Wang, X.; Li, C.; et al. Recent advances in tandem selenocyclization and tellurocyclization with alkenes and alkynes. Org. Chem. Front. 2020, 7, 3100–3119.
- 29.
Ge, Y.; Kong, J.; Yang, C.; et al. Design and synthesis of 1,2-bis(4-(benzyloxy)phenyl)diselane: A scavenger for residual copper. Chin. J. Org. Chem. 2020, 40, 1760–1765.
- 30.
Cao, H.; Liu, M.; Qian, R.; et al. A cost-effective shortcut to prepare organoselenium catalysts via decarboxylative coupling of phenylacetic acid with elemental selenium. Appl. Organomet. Chem. 2019, 33, e4599.
- 31.
Liu, M.; Li, Y.; Yu, L.; et al. Visible light-promoted, iodine-catalyzed selenoalkoxylation of olefins with diselenides and alcohols in the presence of hydrogen peroxide/air oxidant: An efficient access to α-alkoxyl selenides. Sci. China Chem. 2018, 61, 294–299.
- 32.
Yong, D.; Yuan, G.; Liu, Y.; et al. Progress in selenium catalyzed oxidation of cyclohexene to produce 1,2-cyclohexanediol. Chin. J. Org. Chem. 2025, in press. https://doi.org/10.6023/cjoc202501008.
- 33.
Yuan, G.; Zhang, X.; Yu, L. Polymer-supported selenium affording opportunities in catalyst design. J. Org. Chem. 2025, 90, 3117−3122.
- 34.
Xiao, X.; Guan, C.; Xu, J.; et al. Selenium-catalyzed selective reactions of carbonyl derivatives: State-of-the-art and future challenges. Green Chem. 2021, 23, 4647−4655.
- 35.
Cao, H.; Qian, R.; Yu, L.Selenium-catalyzed oxidation of alkenes: Insight into the mechanisms and developing trend. Catal. Sci. Technol. 2020, 10, 3113−3121.
- 36.
Singh, F.V.; Wirth, T. Selenium reagents as catalysts. Catal. Sci. Technol. 2019, 9, 1073−1091.
- 37.
Shao, L.; Li, Y.; Lu, J.; et al. Recent progress in selenium-catalyzed organic reactions. Org. Chem. Front. 2019, 6, 2999−3041.
- 38.
Guo, R.; Liao, L.; Zhao, X. Electrophilic selenium catalysis with electrophilic N-F reagents as the oxidants. Molecules 2017, 22, 835.
- 39.
Freudendahl, D.M.; Santoro, S.; Shahzad, S.A.; et al. Angew.Green chemistry with selenium reagents: Development of efficient catalytic reactions. Angew. Chem. Int. Ed. 2009, 48, 8409−8411.
- 40.
Sharpless, K.B.; Young, M.W. Olefin synthesis. Rate enhancement of the elimination of alkyl aryl selenoxides by electron-withdrawing substituents. J. Org. Chem. 1975, 40, 947−949.
- 41.
Grieco, P.A.; Yokoyama, Y.; Gilman, S.; et al. Organoselenium chemistry. Epoxidation of olefins with benzeneseleninic acid and hydrogen peroxide (“benzeneperoxyseleninic acid”). J. Org. Chem. 1977, 42, 2034−2036.
- 42.
Hori, T.; Sharpless, K.B. Synthetic applications of arylselenenic and arylseleninic acids. Conversion of olefins to allylic alcohols and epoxides. J. Org. Chem. 1978, 43, 1689−1697.
- 43.
Tiecco, M.; Testaferri, L.; Tingoli, M.; Bartoli, D. Selenium-catalyzed conversion of methyl ketones into α-keto acetals. The J. Org. Chem. 1990, 55 (15), 4523-4528.
- 44.
Taylor, R.T.; Flood, L.A. Polystyrene-bound phenylseleninic acid: Catalytic oxidations of olefins, ketones, and aromatic systems. J. Org. Chem. 1983, 48, 5160−5164.
- 45.
Betzemeier, B.; Lhermitte, F.; Knochel, P. A selenium catalyzed epoxidation in perfluorinated solvents with hydrogen Peroxide. Synlett 1999, 4, 489−491.
- 46.
ten Brink, G.-J.; Fernandes, B.C.M.; van Vliet, M.C.A.; et al. Selenium catalysed oxidations with aqueous hydrogen peroxide. Part I: Epoxidation reactions in homogeneous solution. J. Chem. Soc. Perkin Trans. 2001, 1, 224–228.
- 47.
Yu, L.; Bai, Z.; Zhang, X.; et al. Organoselenium-catalyzed selectivity-switchable oxidation of β-ionone. Catal. Sci. Technol. 2016, 6, 1804−1809.
- 48.
Yu, L.; Chen, F.; Ding, Y. Organoselenium-catalyzed oxidative ring expansion of methylenecyclopropanes with hydrogen peroxide. ChemCatChem 2016, 8, 1033–1037.
- 49.
Santoro, S.; Santi, C.; Sabatini, M.; et al. Eco-friendly olefin dihydroxylation catalyzed by diphenyl diselenide. Adv. Synth. Catal. 2008, 350, 2881−2884.
- 50.
Santi, C.; Tiecco, M.; Testaferri, L.; et al. Diastereo and enantioselective synthesis of 1,2-diols promoted by electrophilic selenium reagents. Phosphorus Sulfur Silicon 2008, 183, 956−960.
- 51.
Santi, C.; Lorenzo, R.D.; Tidei, C.; et al. Stereoselective selenium catalyzed dihydroxylation and hydroxymethoxylation of alkenes. Tetrahedron 2012, 68, 10530−10535.
- 52.
Drake, M.D.; Bright, F.V.; Detty, M.R. Dendrimeric organochalcogen catalysts for the activation of hydrogen peroxide: Origins of the “dendrimer effect” with catalysts terminating in phenylseleno groups. J. Am. Chem. Soc. 2003, 125, 12558−12566.
- 53.
Wu, T.; Zhang, P.; Jiang, T.; et al. Enhancing the selective hydrogenation of benzene to cyclohexene over Ru/TiO2 catalyst in the presence of a very small amount of ZnO. Sci. China Chem. 2015, 58, 93–100.
- 54.
Chen, Y.; Zhou, H.; Yu, L. Progress on non-petroleum-based synthesis of adiponitrile. Chin. Sci. Bull. 2024, 69, 370–380.
- 55.
Yu, L.; Wang, J.; Chen, T.; et al. Access to cyclohexane-1,2-diol through the diphenyldiselenide catalyzed oxidation of cyclohexene by hydrogen peroxide. Chin. J. Org. Chem. 2013, 33, 1096−1099.
- 56.
Yu, L.; Wang, J.; Chen, T.; et al. Recyclable 1,2-bis[3,5-bis(trifluoromethyl)phenyl]diselane-catalyzed oxidation of cyclohexene with H2O2: A practical access to trans-1,2-cyclohexanediol. Appl. Organomet. Chem. 2014, 28, 652–656.
- 57.
Carrera, I.; Brovetto, M.C.; Seoane, G. A selenium-catalyzed iodohydrin formation from alkenes. Tetrahedron Lett. 2006, 47, 7849−7852.
- 58.
Mellegaard, S.R.; Tunge, J. A selenium-catalyzed halolactonization: Nucleophilic activation of electrophilic halogenating reagents. J. Org. Chem. 2004, 69, 8979−8981.
- 59.
Francavilla, C.; Drake, M.D.; Bright, F.V.; et al. Dendrimeric organochalcogen catalysts for the activation of hydrogen peroxide: Improved catalytic activity through statistical effects and cooperativity in successive generations. J. Am. Chem. Soc. 2001, 123, 57−67.
- 60.
Drake, M.D.; Bateman, M.A.; Detty, M.R. Substituent effects in arylseleninic acid-catalyzed bromination of organic substrates with sodium bromide and hydrogen peroxide. Organmetallics 2003, 22, 4158−4162.
- 61.
Goodman, M.A.; Detty, M.R. Selenoxides as catalysts for the activation of hydrogen peroxide. Bromination of organic substrates with sodium bromide and hydrogen peroxide. Organometallics 2004, 23, 3016−3020.
- 62.
Bennett, S.M.; Tang, Y.; McMaster, D.; et al. A xerogel-Sequestered selenoxide catalyst for brominations with hydrogen peroxide and sodium bromide in an aqueous environment. J. Org. Chem. 2008, 73, 6849–6852.
- 63.
Tay, D.W.; Tsoi, I.T.; Er, J.C.; et al. Lewis basic selenium catalyzed chloroamidation of olefins using nitriles as the nucleophiles. Org. Lett. 2013, 15, 1310−1313.
- 64.
Jiang, Q.; Liang, Y.; Zhang, Y.; et al. Chalcogenide-catalyzed intermolecular electrophilic thio- and halofunctionalization of gem-difluoroalkenes: Construction of diverse difluoroalkyl sulfides and halides. Org. Lett. 2020, 22, 7581–7587.
- 65.
Luo, J.; Zhu, Z.; Liu, Y.; et al. Diaryl selenide catalyzed vicinal trifluoromethylthioamination of alkenes. Org. Lett. 2015, 17, 3620–3623.
- 66.
Zhu, Z.; Luo, J.; Zhao, X. Combination of lewis basic Selenium catalysis and redox selenium chemistry: Synthesis of trifluoromethylthiolated tertiary alcohols with alkenes. Org. Lett. 2017, 19, 4940–4943.
- 67.
Xu, J.; Zhang, Y.; Qin, T.; et al. Catalytic regio and enantioselective oxytrifluoromethylthiolation of aliphatic internal alkenes by neighboring group assistance. Org. Lett. 2018, 20, 6384–6388.
- 68.
Jiang, Q.; Li, H.; Zhao, X. Catalytic electrophilic thiocarbocyclization of allenes. Org. Lett. 2021, 23, 8777–8782.
- 69.
Guo, R.; Huang, J.; Huang, H.; et al. Organoselenium-catalyzed synthesis of oxygen and nitrogen-containing heterocycles. Org. Lett. 2016, 18, 504–507.
- 70.
Luo, J.; Liu, Y.; Zhao, X. Chiral selenide-catalyzed enantioselective construction of saturated trifluoromethylthiolated azaheterocycles. Org. Lett. 2017, 19, 3434–3437.
- 71.
Wei, W.; Liao, L.; Qin, T.; et al. Access to saturated thiocyano-containing azaheterocycles via selenide-catalyzed regio- and stereoselective thiocyanoaminocyclization of alkenes. Org. Lett. 2019, 21, 7846–7850.
- 72.
Chen, F.; Tan, C.K.; Yeung, Y.-Y. C2-symmetric cyclic selenium-catalyzed enantioselective bromoaminocyclization. J. Am. Chem. Soc. 2013, 135, 1232−1235.
- 73.
Cresswell, A.J.; Eey, S.T.-C.; Denmark, S. Catalytic, stereospecific syn-dichlorination of alkenes. Nat. Chem. 2015, 7, 146−152.
- 74.
Yu, L.; Cao, K.; Deng, X.; et al. Method for Synthesizing Adiponitrile. Chinese Patent No. CN108530318, 2018.
- 75.
Urgoitia, G.; SanMartin, R.; Herrero, M.T.; et al. Aerobic cleavage of alkenes and alkynes into carbonyl and carboxyl compounds. ACS Catal. 2017, 7, 3050−3060.
- 76.
Lin, R.; Chen, F.; Jiao, N. Metal-free, NHPI catalyzed oxidative cleavage of C–C double bond using molecular oxygen as oxidant. Org. Lett. 2012, 14, 4158−4161.
- 77.
Gonzalez-de-Castro, A.; Xiao, J. Green and efficient: Iron-catalyzed selective oxidation of olefins to carbonyls with O2. J. Am. Chem. Soc. 2015, 137, 8206−8218.
- 78.
Yu, L.; Huang, Y.; Bai, Z.; et al. The aerobic oxidation and C=C bond cleavage of styrenes catalyzed by cerium(IV) ammonium nitrate (CAN). J. Chin. Chem. Soc. 2015, 62, 479−482.
- 79.
Wise, D.E.; Gogarnoiu, E.S.; Duke, A.D.; et al. Photoinduced Oxygen transfer using nitroarenes for the anaerobic cleavage of alkenes. J. Am. Chem. Soc. 2022, 144, 15437−15442.
- 80.
Ruffoni, A.; Hampton, C.; Simonetti, M.; et al. Photoexcited nitroarenes for the oxidative cleavage of alkenes. Nature 2022, 610, 81−86.
- 81.
Chen, Y.; Chen, C.; Liu, Y.; et al. Probing the effect of nitrate anion in CAN: An additional opportunity to reduce the catalyst loading for aerobic oxidations. Chin. Chem. Lett. 2023, 34, 108489.
- 82.
Xiao, X.; Chen, Y.; Chen, F.-L.; et al. Selective oxidation of tertiary alcohols to ketones via synergistic catalysis of (NH4)2Ce(NO3)6 and trifluoroacetic acid with oxygen. cMat 2025, 2, e35.
- 83.
Wang, T.; Jing, X.; Chen, C.; et al. Organoselenium-catalyzed oxidative C═C bond cleavage: A relatively green oxidation of alkenes into carbonyl compounds with hydrogen peroxide. J. Org. Chem. 2017, 82, 9342−9349.
- 84.
Li, X.; Hua, H.; Liu, Y.; et al. Iron-promoted catalytic activity of selenium endowing the aerobic oxidative cracking reaction of alkenes. Org. Lett. 2023, 25, 6720−6724.
- 85.
Tiecco, M.; Testaferri, L.; Tingoli, M.; et al. Selenium-catalyzed conversion of methyl ketones into alpha-keto acetals. J. Org. Chem. 1990, 55, 4523−4528.
- 86.
Chen, C.; Cao, Z.; Zhang, X.; et al. Synergistic catalysis of Se and Cu for the activation of α-H of methyl ketones with molecular oxygen/alcohol to produce α-keto acetals. Chin. J. Chem. 2020, 38, 1045−1051.
- 87.
Cao, Z.; Deng, X.; Chen, C.; et al. Synergetic catalysis of Se and Cu allowing diethoxylation of halomethylene ketones using O2 as the mild oxidant. React. Chem. Eng. 2021, 6, 454–458.
- 88.
Wang, C.; Tunge, J. Selenocatalytic α-halogenation. Chem. Commun. 2004, 24, 2694–2695.
- 89.
Syper, L.; Mlochowski, J. Benzeneperoxyseleninic acids-synthesis and properties. Tetrahedron 1987, 43, 207–213.
- 90.
Syper, L. Reaction of α,β-unsaturated aldehydes with hydrogen peroxide catalysed by benzeneseleninic acids and their precursors. Tetrahedron 1987, 43, 2853–2871.
- 91.
Syper, L. Reactions of 2,5-furandicarbaldehyde with stabilized phosphonium ylides. Applications to the synthesis of 5-vinyl-2-furaldehyde and 2,5-divinylfuran derivatives. Synthesis 1989, 1989, 167–172.
- 92.
ten Brink, G.-J.; Vis, J.-M.; Arends, I.W.C.E.; et al. Selenium-catalyzed oxidations with aqueous hydrogen peroxide. Baeyer−Villiger reactions in homogeneous solution1. J. Org. Chem. 2001, 66, 2429–2433.
- 93.
ten Brink, G.-J.; Vis, J.M.; Arends, I.W.C.E.; et al. Selenium catalysed oxidations with aqueous hydrogen peroxide. Part 3: Oxidation of carbonyl compounds under mono/bi/triphasic conditions. Tetrahedron 2002, 58, 3977–3983.
- 94.
Ichikawa, H.; Usami, Y.; Arimoto, M. Synthesis of novel organoselenium as catalyst for Baeyer–Villiger oxidation with 30% H2O2. Tetrahedron Lett. 2005, 46, 8665–8668.
- 95.
Miyake, Y.; Nishibayashi, Y.; Uemura, S. Asymmetric Baeyer–Villiger oxidation of cyclic ketones using chiral organoselenium catalysts. Bull. Chem. Soc. Jpn. 2002, 75, 2233–2237.
- 96.
Goodman, M.A.; Detty, M.R. Selenoxides as catalysts for epoxidation and Baeyer-Villiger oxidation with hydrogen peroxide. Synlett 2006, 7, 1100–1104.
- 97.
Zhang, X.; Ye, J.; Yu, L.; et al. Organoselenium-catalyzed Baeyer–Villiger Oxidation of α,β-Unsaturated Ketones by Hydrogen Peroxide to Access Vinyl Esters. Adv. Synth. Catal. 2015, 357, 955–960.
- 98.
Yu, L.; Ye, J.; Zhang, X.; et al. Recyclable (PhSe)2-catalyzed selective oxidation of isatin by H2O2: A practical and waste-free access to isatoic anhydride under mild and neutral conditions. Catal. Sci. Technol. 2015, 5, 4830–4838.
- 99.
Giurg, M.; Mlochowski, J. Oxidative Ring Contraction of Cycloalkanones: A facile method for synthesis of medium ring cycloalkanecarboxylic acids. Synth. Commun. 1999, 29, 2281–2291.
- 100.
Cao, H.; Chen, T.; Yang, C.; et al. Diphenyl diselenide catalyzed oxidative degradation of benzoin to benzoic acid. Synlett 2019, 30, 1683–1687.
- 101.
Yu, L.; Li, H.; Zhang, X.; et al. Organoselenium-catalyzed mild dehydration of aldoximes: An unexpected practical method for organonitrile synthesis. Org. Lett. 2014, 16, 1346−1349.
- 102.
Zhang, D.; Huang, Y.; Zhang, E.; et al. Pd/Mn bimetallic relay catalysis for aerobic aldoxime dehydration to nitriles. Adv. Synth. Catal. 2018, 360, 784–790.
- 103.
Zhang, X.; Sun, J.; Ding, Y.; et al. Dehydration of aldoximes using PhSe(O)OH as the pre-catalyst in air. Org. Lett. 2015, 17, 5840−5842.
- 104.
Jing, X.; Wang, T.; Ding, Y.; et al. A scalable production of anisonitrile through organoselenium-catalyzed dehydration of anisaldoxime under solventless conditions. Appl. Catal. A-Gen. 2017, 541, 107−111.
- 105.
Corey, E.J.; Hopkins, P.B.; Kim, S.; et al. Total synthesis of erythromycins. 5. Total synthesis of erythronolide A. J. Am. Chem. Soc. 1979, 101, 7131−7134.
- 106.
Royals, E.E.; Horne, S.E., Jr. Conversion of d-Limonene to l-Carvone1. J. Am. Chem. Soc. 1951, 73, 5856–5857.
- 107.
Asutay, O.; Hamarat, N.; Uludag, N.; et al. Selective oxidative deoximation with anhydrous Ce(IV) sulfate. Tetrahedron Lett. 2015, 56, 3902–3904.
- 108.
Lee, S.K.; Choi, M.G.; Chang, S.-K. Signaling of chloramine: A fluorescent probe for trichloroisocyanuric acid based on deoximation of a coumarin oxime. Tetrahedron Lett. 2014, 55, 7047–7050.
- 109.
Bhosale, S.; Sonune, D.P.; Prasad, U.V.; et al. Inverse kinetic isotope effect in Magtrieve™ mediated oxidation or deoximation of benzaldoxime: Mechanistic implication. Tetrahedron Lett. 2012, 53, 1794–1797.
- 110.
Lin, M.-H.; Lin, L.-Z.; Chuang, T.-H.; et al. One-pot sequential deoximation and allylation reactions of aldoximes in aqueous solution. Tetrahedron 2012, 68, 2630–2635.
- 111.
Lin, M.-H.; Liu, H.-J.; Chang, C.-Y.; et al. SnCl2/TiCl3-mediated deoximation of oximes in an aqueous solvent. Molecules 2012, 17, 2464–2473.
- 112.
Zheng, Y.; Wu, A.; Ke, Y.; et al. Recent advances on deoximation: From stoichiometric reaction to catalytic reaction. Chin. Chem. Lett. 2019, 30, 937–941.
- 113.
Deng, X.; Qian, R.; Zhou, H.; et al. Organotellurium-catalyzed oxidative deoximation reactions using visible-light as the precise driving energy. Chin. Chem. Lett. 2021, 32, 1029–1032.
- 114.
Li, H.; Jing, X.; Shi, Y.; et al. Autocatalytic deoximation reactions driven by visible light. React. Chem. Eng. 2021, 6, 119–124.
- 115.
Wang, F.; Chen, T.; Shi, Y.; et al. AIBN-Initiated oxidative deoximation reaction: A metal-free and environmentally-friendly protocol. Asian J. Org. Chem. 2021, 10, 614–618.
- 116.
Wang, F.; Yang, C.; Shi, Y.; et al. PhSe(O)OH/NHPI-catalyzed oxidative deoximation reaction using air as oxidant. Mol. Catal. 2021, 514, 111849.
- 117.
Li, W.; Wang, F.; Shi, Y.; et al. Polyaniline-supported tungsten-catalyzed oxidative deoximation reaction with high catalyst turnover number. Chin. Chem. Lett. 2023, 34, 107505.
- 118.
Wang, F.; Qian, R.; Yu, L. Photocatalytic aerobic oxidative deoximation reaction with degradable rhodamine B. React. Chem. Eng. 2023, 8, 849–854.
- 119.
Zhang, Y.; Li, W.; Hu, Z.; et al. Mo@PANI-catalyzed oxidative deoximation reaction. Chin. Chem. Lett. 2024, 35, 108938.
- 120.
Jing, X.; Yuan, D.; Yu, L. Green and practical oxidative deoximation of oximes to ketones or aldehydes with hydrogen peroxide/air by organoselenium catalysis. Adv. Synth. Catal. 2017, 359, 1194–1201.
- 121.
Pradhan, P.K.; Dey, S.; Jaisankar, P.; et al. Fe-HCl: An efficient reagent for deprotection of oximes as well as selective oxidative hydrolysis of nitroalkenes and nitroalkanes to ketones. Synth. Commun. 2005, 35, 913–922.
- 122.
Chen, C.; Cao, Y.; Wu, X.; et al. Energy saving and environment-friendly element-transfer reactions with industrial application potential. Chin. Chem. Lett. 2020, 31, 1078–1082.
- 123.
Yu, L. Element Transfer Reactions; Guangming Daily Press: Beijing, China, 2021.
- 124.
Cao, H.; Xiao, X.; Zhang, X.; et al. Element transfer reaction theory: Scientific connotation and its applications in chemical industry. Chin. Chem. Lett. 2025, in press. https://doi.org/10.1016/j.cclet.2025.110924.
- 125.
Chen, C.; Zhang, X.; Cao, H.; et al. Iron-enabled utilization of air as the terminal oxidant leading to aerobic oxidative deoximation by organoselenium catalysis. Adv. Synth. Catal. 2019, 361, 603–610.
- 126.
Crich, D.; Zou, Y. Catalytic allylic oxidation with a recyclable, fluorous seleninic acid. Org. Lett. 2004, 6, 775–777.
- 127.
Crich, D.; Zou, Y. Catalytic oxidation adjacent to carbonyl groups and at benzylic positions with a fluorous seleninic acid in the presence of iodoxybenzene. J. Org. Chem. 2005, 70, 3309–3311.
- 128.
Niyomura, O.; Cox, M.; Wirth, T. Electrochemical generation and catalytic use of selenium electrophiles. Synlett 2006, 2, 251–254.
- 129.
Browne, D.M.; Niyomura, O.; Wirth, T. Catalytic use of selenium electrophiles in cyclizations. Org. Lett. 2007, 9, 3169–3171.
- 130.
Singh, F.V.; Wirth, T. Selenium-catalyzed regioselective cyclization of unsaturated carboxylic acids using hypervalent Iodine oxidants. Org. Lett. 2011, 13, 6504–6507.
- 131.
Tunge, J.A.; Mellegaard, S.R. Selective selenocatalytic allylic chlorination. Org. Lett. 2004, 6, 1205–1207.
- 132.
Mellegaard-Waetzig, S.R.; Wang, C.; Tunge, J.A. Selenium-catalyzed oxidative halogenation. Tetrahedron 2006, 62, 7191–7198.
- 133.
Barrero, A.F.; del Moral, J.F.Q.; Herrador, M.M.; et al. Solid-phase selenium-catalyzed selective allylic chlorination of polyprenoids: Facile syntheses of biologically active terpenoids. Org. Chem. 2006, 71, 5811–5814.
- 134.
Guo, R.; Huang, J.; Zhao, X. Organoselenium-catalyzed oxidative allylic fluorination with electrophilic N–F reagent. ACS Catal. 2018, 8, 926–930.
- 135.
Trenner, J.; Depken, C.; Weber, T.; et al. Cover picture: Champagne and fireworks: Angewandte chemie celebrates Its birthday. Chem. Int. Ed. 2013, 52, 1–6.
- 136.
Deng, Z.; Wei, J.; Liao, L.; et al. Organoselenium-catalyzed, hydroxy-controlled regio- and stereoselective amination of terminal alkenes: Efficient synthesis of 3-amino allylic alcohols. Org. Lett. 2015, 17, 1834−1837.
- 137.
Wei, W.; Zhao, X. Organoselenium-catalyzed cross-dehydrogenative coupling of alkenes and azlactones. Org. Lett. 2022, 24, 1780−1785.
- 138.
Liao, L.; Zhang, H.; Zhao, X. Selenium-π-acid catalyzed oxidative functionalization of alkynes: Facile access to ynones and multisubstituted oxazoles. ACS Catal. 2018, 8, 6745–6750.
- 139.
Zhang, Y.; Liang, Y.; Zhao, X. Chiral selenide-catalyzed, highly regio- and enantioselective intermolecular thioarylation of alkenes with phenols. ACS Catal. 2021, 11, 3755–3761.
- 140.
Kuwajima, I.; Shimizu, M.; Urabe, H. Oxidation of alcohols with tert-butyl hydroperoxide and diaryl diselenide. J. Org. Chem. 1982, 47, 837–842.
- 141.
Ehara, H.; Noguchi, M.; Sayama, S.; et al. Bis[2-(2-pyridyl)phenyl] diselenide, a more effective catalyst for oxidation of alcohols to carbonyl compounds. J. Chem. Soc. Perkin Trans. 2000, 1, 1429–1431.
- 142.
van der Toorn, J.C.; Kemperman, G.; Sheldon, R.A.; et al. Diphenyldiselenide-catalyzed selective oxidation of activated alcohols with tert-butyl hydroperoxide: New mechanistic insights. J. Org. Chem. 2009, 74, 3085–3089.
- 143.
Wang, F.; Xu, L.; Sun, C.; et al. Investigation on preparation of p-benzoquinone through the organoselenium-catalyzed selective oxidation of phenol. Chin. J. Org. Chem. 2017, 37, 2115–2118.
- 144.
Murahashi, S.-I.; Shiota, T. Selenium dioxide catalyzed oxidation of secondary amines with hydrogen peroxide. Simple synthesis of nitrones from secondary amines. Tetrahedron Lett. 1987, 28, 2383–2386.
- 145.
Zhao, D.; Johansson, M.; Bäckvall, J.-E. Enantioselective synthesis of 3,3-disubstituted piperidine derivatives by enolate dialkylation of phenylglycinol-derived oxazolopiperidone lactams. J. Org. Chem. 2007, 72, 4431–4436.
- 146.
Said, S.B.; Skarżewski, J.; Mĭochowski, J. Efficient conversion of nitriles to amides with basic hydrogen peroxide in dimethyl sulfoxide. Synthesis 1989, 1989, 223–224.
- 147.
Gao, G.; Han, J.; Yu, L.; et al. Organoselenium-catalyzed polymerization of aniline with hydrogen peroxide as oxidant. Synlett 2019, 30, 1703–1707.
- 148.
Zhou, Y.; Liu, X.; Wang, Z.; et al. A novel PANI/SEBS film/fiber large deformation conductive elastomer with rapid recovery of resistance. Mater. Lett. 2022, 308, 131205.
- 149.
Zeng, Z.; Chen, Y.; Zhu, X.; et al. Polyaniline-supported nano metal-catalyzed coupling reactions: Opportunities and challenges. Chin. Chem. Lett. 2023, 34, 107728.
- 150.
Zhang, Y.; Sun, H.; Chen, Y.; et al. Polyaniline-supported tungsten-catalyzed α-H alkylation reaction of ketone with alcohol. Org. Lett. 2023, 25, 7928−7932.
- 151.
Sun, H.; Shi, Y.; Fu, W.; et al. Polyaniline-supported tungsten-catalyzed green and selective oxidation of alcohols. ChemistrySelect 2021, 6, 7599−7603.
- 152.
Chen, Y.; Jing, X.; Yu, L. Polyaniline-supported copper-catalyzed buchwald-hartwig couplings of pyrimidin-2-amines. Chin. J. Org. Chem. 2020, 40, 2570−2574.
- 153.
Yu, L.; Han, Z.; Ding, Y. Gram-scale preparation of Pd@PANI: A practical catalyst reagent for copper-free and ligand-free sonogashira couplings. Org. Process Res. Dev. 2016, 20, 2124−2129.
- 154.
Li, H.-F.; Yu, K.-W.; Jing, X.-B.; et al. Design and preparation of highly crystalline K-intercalated W@PCN: An efficient material for aniline elimination. Rare Met. 2024, 43, 1337–1342.
- 155.
Zhu, Z.-D.; Han, Y.-Z.; Jing, X.-B. An unexpected approach to enhance specific surface area and mesopore amount of polyaniline by Zn doping. Rare Met. 2024, 43, 4585–4594.
- 156.
Zhang, Y.; Sun, H.; Yang, Y.; et al. Tungsten-doping promoted catalytic activity of polyaniline-supported palladium for the Suzuki–Miyaura coupling reaction. Catal. Sci. Technol. 2023, 13, 3791–3795.
- 157.
Chen, Y.; Yu, L.; Zhou, H. Fluorine-enhanced catalytic activity of polyaniline-supported copper nanoparticles in buchwald–hartwig couplings of pyrimidin-2-amines. J. Phys. Chem. C 2022, 126, 17084–17092.
- 158.
Liu, Y.; Tang, D.; Cao, K.; et al. Probing the support effect at the molecular level in the polyaniline-supported palladium nanoparticle-catalyzed Ullmann reaction of aryl iodides. J. Catal. 2018, 360, 250−260.
- 159.
Meng, X.; Zhang, Y.; Zhou, H.; et al. Polyaniline-supported zinc oxide nanocomposite-catalyzed condensation of lactic acid to lactide with high yield and optical purity. ACS Sustain. Chem. Eng. 2022, 10, 7658−7663.
- 160.
Mlochowski, J.; Giurg, M.; Kubicz, E.; et al. Benzisoselenazol-3(2H)-ones and bis(2-carbamoyl)phenyl diselenides as new catalysts for hydrogen peroxide oxidation of organic compounds. Synth. Commun. 1996, 26, 291−300.
- 161.
Wójtowicz, H.; Soroko, G.; Młochowski, J. New recoverable organoselenium catalyst for hydroperoxide oxidation of organic substrates. Synth. Commun. 2008, 38, 2000−2010.
- 162.
Zhang, X.; Zhou, R.; Qi, Z.; et al. PhSe(O)OH/Al(NO3)3-catalyzed selectivity controllable oxidation of sulphide owing to the synergistic effect of Se, Al3+and nitrate. React. Chem. Eng. 2022, 7, 1990–1996.
- 163.
Wang, Y.; Yu, L.; Zhu, B.; et al. Design and preparation of a polymer resin-supported organoselenium catalyst with industrial potentia. J. Mater. Chem. A 2016, 4, 10828–10833.
- 164.
Jing, X.; Chen, C.; Deng, X.; et al. Design and preparation of poly-selenides: Easily fabricated and efficient organoselenium materials for heavy metal removing and recycling. Appl. Organomet. Chem. 2018, 32, e4332.
- 165.
Yu, L.; Cao, H.; Zhang, X.; et al. Concise synthesis of polyselenides: Efficient catalysts for the oxidative cracking reaction of alkenes allowing the utilization of O2 as a partial oxidant under mild conditions. Sustain. Energ. Fuels 2020, 4, 730–736.
- 166.
Huang, J.; Qian, R.; Wang, S.; et al. Polyselenide-catalyzed cyclohexene oxidation to produce 1,2-cyclohexanediol. Chin. J. Org. Chem. 2021, 41, 1639–1645.
- 167.
Xu, Q.; Xiao, X.; Zhou, R.; et al. Concise selenization of polystyrene via the FeCl3-catalyzed reaction with (PhSe)2. Mater. Lett. 2022, 319, 132247.
- 168.
Yang, Y.; Fan, X.; Cao, H.; et al. Fabrication of Se/C using carbohydrates as biomass starting materials: An efficient catalyst for regiospecific epoxidation of β-ionone with ultrahigh turnover numbers. Catal. Sci. Technol. 2018, 8, 5017–5023.
- 169.
Li, P.; Qi, Z.; Yu, L.; et al. Highly crystalline K-intercalated Se/C: An easily accessible mesoporous material catalyzing the epoxidation of β-ionone. Catal. Sci. Technol. 2022, 12, 2241–2247.
- 170.
Cao, H.; Li, P.; Jing, X.; et al. Selective epoxidation of β-Ionone catalyzed by iron-doped Se/C. Chin. J. Org. Chem. 2022, 42, 3890–3895.
- 171.
Chu, S.; Cao, H.; Chen, T.; et al. Selenium-doped carbon: An unexpected efficient solid acid catalyst for Beckmann rearrangement of ethyl 2-(2-aminothiazole-4-yl)-2-hydroxyiminoacetate. Catal. Commun. 2019, 129, 105730.
- 172.
Zhou, W.; Li, P.; Liu, J.; et al. Kilogram-scale production of selenized glucose. Ind. Eng. Chem. Res. 2020, 59, 10763−10767.
- 173.
Cao, H.; Yang, Y.; Chen, X.; et al. Synthesis of selenium-doped carbon from glucose: An efficient antibacterial material against Xcc. Chin. Chem. Lett. 2020, 31, 1887−1889.
- 174.
Mao, X.; Li, P.; Li, T.; et al. Inhibition of mycotoxin deoxynivalenol generation by using selenized glucose. Chin. Chem. Lett. 2020, 31, 3276−3278.
- 175.
Xiao, X.; Shao, Z.; Yu, L. A perspective of the engineering applications of carbon-based selenium-containing materials. Chin. Chem. Lett. 2021, 32, 2933−2938.
- 176.
Wang, Q.; Li, P.; Li, T.; et al. Methylselenized glucose: Improvement of the stability of glucose-supported selenium via the end-capping strategy. Ind. Eng. Chem. Res. 2021, 60, 8659−8663.
- 177.
Cao, H.; Ma, R.; Chu, S.; et al. Synergistic effect of T80/B30 vesicles and T80/PN320 mixed micelles with Se/C on nasal mucosal immunity. Chin. Chem. Lett. 2021, 32, 2761−2764.
- 178.
Liu, M.; Zhang, X.; Chu, S.; et al. Selenization of cotton products with NaHSe endowing the antibacterial activities. Chin. Chem. Lett. 2022, 33, 205−208.
- 179.
Xian, L.; Li, Q.; Li, T.; et al. Methylselenized glucose: An efficient organoselenium fertilizer enhancing the selenium content in wheat grains. Chin. Chem. Lett. 2023, 34, 107878.
- 180.
Li, J.; Shi, Q.; Xue, Y.; et al. The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chin. Chem. Lett. 2024, 35, 109239.
- 181.
Chen, X.; Zhuang, S.; Yan, W.; et al. Synthesis, antibacterial evaluation, and safety assessment of Se@PLA as a potent bactericide against Xanthomonas oryzae pv. Oryzae. Chin. Chem. Lett. 2024, 35, 109635.
- 182.
Liu, M.; Liu, Y.; Cai, Y.-T.; et al. Self-Produced O2 CNs-based nanocarriers of DNA hydrophobization strategy triggers photodynamic and mitochondrial-derived ferroptosis for hepatocellular carcinoma combined treatment. Adv. Healthcare Mater. 2024, 13, 2402110.
- 183.
Zhu, Z.; Sun, S.; Jing, X. Carbon-based selenium: An easily fabricated environmental material for removing lead from the electrolytic wastewater. Chem. Paper 2022, 76, 401–408.
- 184.
Li, P.; Cao, K.; Jing, X.; et al. Catalytic epoxidation of β-ionone with molecular oxygen using selenium-doped silica materials. New J. Chem. 2021, 45, 17241–17246.
- 185.
Zeng, Y.; Chen, T.; Zhang, X.; et al. Mesoporous Mn-Se/Al2O3: A recyclable and reusable catalyst for selective oxidation of alcohols. Appl. Organomet. Chem. 2022, 36, e6658.
- 186.
Li, X.; Zhou, H.; Qian, R.; et al. A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chin. Chem. Lett. 2025, 36, 110036.
- 187.
Zhou, W.; Xiao, X.; Liu, Y.; et al. Magnetic Se/Fe/PCN-catalyzed oxidative cracking alkenes in O2. Chin. J. Org. Chem. 2022, 42, 1849–1855.
- 188.
Liu, C.; Mao, J.; Zhang, X.; et al. Selenium-doped Fe2O3-catalyzed oxidative scission of c double bond c bond. Catal. Commun. 2020, 133, 105828.
- 189.
Yong, D.; Zuo, T.; Qian, R.; et al. A facile selenization of ZrO2 endowing it with catalytic activity for oxidative alkene degradation. New J. Chem. 2024, 48, 19530–19535.
- 190.
Yong, D.; Tian, J.; Yang, R.; et al. Se/ZrO2-catalyzed oxidation of phenol. Chin. J. Org. Chem. 2024, 44, 1343–1347.
- 191.
Yong, D.; Zuo, T.; Wu, Q.; et al. CSe/ZrO2-catalyzed oxidative polymerization of anilinehin. J. Org. Chem. 2024, 44, 3392–3398.
- 192.
Liu, F.; Zhan, J.; Sun, Y.; et al. Silver selenide as the novel catalytic material for alcohol oxidation. Chin. J. Org. Chem. 2021, 41, 2099–2104.
- 193.
Zhang, X.; Zuo, T.; Yu, L. Ag/Se-catalyzed selective epoxidation of β-ionone with molecular oxygen. ChemistrySelect 2022, 7, e202203514.
- 194.
Zhu, Z.; Sun, S.; Tang, S.; et al. Easily fabricated Fe/Se soft magnetic material for catalytic phenol oxidation. Mol. Catal. 2021, 515, 111923.
- 195.
Hou, W.; Xu, H. Incorporating selenium into heterocycles and natural products─from chemical properties to pharmacological activities. J. Med. Chem. 2022, 65, 4436−4456.
- 196.
Cao, K.; Deng, X.; Chen, T.; et al. A facile approach to constructing Pd@PCN–Se nano-composite catalysts for selective alcohol oxidation reactions. J. Mater. Chem. A, 2019, 7, 10918–10923.
- 197.
Zhu, Z.; Wang, W.; Zeng, L.; et al. Selenium-directed synthesis of Pd nanoparticles on mesoporous silica-coated Fe3O4: An efficient magnetic catalyst for oxidative alkene cracking. Catal. Commun. 2020, 142, 106031.
- 198.
Liu, J.; Cai, Y.; Xiao, C.; et al. Synthesis of LiPF6 using CaF2 as the fluorinating agent directly: An advanced industrial production process fully harmonious to the environments. Ind. Eng. Chem. Res. 2019, 58, 20491−20494.
- 199.
Liu, J.; Cai, Y.; Pang, H.; et al. Chloro-free synthesis of LiPF6 using the fluorine-oxygen exchange technique. Chin. Chem. Lett. 2022, 33, 4061–4063.