- 1.
Abazari, R.; Sanati, S.; Fan, W.K.; et al. Design and engineering of MOF/LDH hybrid nanocomposites and LDHs derived from MOF templates for electrochemical energy conversion/storage and environmental remediation: Mechanism and future perspectives. Coord. Chem. Rev. 2025, 523, 216256. https://doi.org/10.1016/j.ccr.2024.216256.
- 2.
Liu, J.; Fu, G.; Liao, Y.; et al. Electrochemical conversion of small organic molecules to value-added chemicals and hydrogen/electricity without CO2 emission: Electrocatalysts, devices and mechanisms. eScience 2025, 5, 100267. https://doi.org/10.1016/j.esci.2024.100267.
- 3.
Chen, L.; Yu, C.; Dong, J.; et al. Seawater electrolysis for fuels and chemicals production: Fundamentals, achievements, and perspectives. Chem. Soc. Rev. 2024, 53, 7455–7488. https://doi.org/10.1039/D3CS00822C.
- 4.
Bi, H.; Liu, J.; Wang, L.; et al. Selective contact self-assembled molecules for high-performance perovskite solar cells. eScience 2025, 5, 100329. https://doi.org/10.1016/j.esci.2024.100329.
- 5.
Su, Y.; Yuan, G.; Hu, J.; et al. Thiosalicylic-Acid-Mediated Coordination Structure of Nickel Center via Thermodynamic Modulation for Aqueous Ni–Zn Batteries. Adv. Mater. 2024, 36, 2406094. https://doi.org/10.1002/adma.202406094.
- 6.
Yang, S.; Li, Y.; Kang, F.; et al. Recent Progress in Organic Cocrystal-Based Superlattices and Their Optoelectronic Applications. Adv. Funct. Mater. 2025, 2504976. https://doi.org/10.1002/adfm.202504976.
- 7.
Cheema, S.S.; Shanker, N.; Hsu, S.-L.; et al. Giant energy storage and power density negative capacitance superlattices. Nature 2024, 629, 803–809. https://doi.org/10.1038/s41586-024-07365-5.
- 8.
Lv, J.; Xie, J.; Mohamed, A.G.A.; et al. Photoelectrochemical energy storage materials: Design principles and functional devices towards direct solar to electrochemical energy storage. Chem. Soc. Rev. 2022, 51, 1511–1528. https://doi.org/10.1039/D1CS00859E.
- 9.
Kment, Š.; Bakandritsos, A.; Tantis, I.; et al. Single Atom Catalysts Based on Earth-Abundant Metals for Energy-Related Applications. Chem. Rev. 2024, 124, 11767–11847. https://doi.org/10.1021/acs.chemrev.4c00155.
- 10.
Schweidler, S.; Brezesinski, T.; Breitung, B. Entropy-assisted epitaxial coating. Nat. Energy 2024, 9, 240–241. https://doi.org/10.1038/s41560-024-01468-z.
- 11.
Ju, Z.; Zheng, T.; Zhang, B.; et al. Interfacial chemistry in multivalent aqueous batteries: Fundamentals, challenges, and advances. Chem. Soc. Rev. 2024, 53, 8980–9028. https://doi.org/10.1039/D4CS00474D.
- 12.
Zhang, W.; Li, Y.; Zhang, C.; et al. Synchronous Regulation of Hydrophobic Molecular Architecture and Interface Engineering for Robust WORM-Type Memristor. Adv. Funct. Mater. 2024, 34, 2404625. https://doi.org/10.1002/adfm.202404625.
- 13.
Zhang, G.; Feng, W.; Du, G.; et al. Thermodynamically-Driven Phase Engineering and Reconstruction Deduction of Medium-Entropy Prussian Blue Analogue Nanocrystals. Adv. Mater. 2025, 2503814. https://doi.org/10.1002/adma.202503814.
- 14.
Xu, X.; Zhang, Z.; Zhang, Z.; et al. Metalion-bonded two-dimensional framework non-Van der Waals sandwich heterojunctions for fast mass transfer in flexible in-plane micro-supercapacitors. eScience 2025, in press. https://doi.org/10.1016/j.esci.2025.100404.
- 15.
Giri, A.; Park, G.; Jeong, U. Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and Applications. Chem. Rev. 2023, 123, 3329–3442. https://doi.org/10.1021/acs.chemrev.2c00455.
- 16.
Zhang, P.; Zhang, W.; Wang, Z.; et al. High-voltage, low-temperature supercapacitors enabled by localized “water-in- pyrrolidinium chloride” electrolyte. eScience 2023, 3, 100184. https://doi.org/10.1016/j.esci.2023.100184.
- 17.
Seenivasan, S.; Adhikari, S.; Sivagurunathan, A.T.; et al. Supercapatteries: Unlocking the potential of battery- supercapacitor fusion. Energy Environ. Sci. 2025, 18, 1054–1095. https://doi.org/10.1039/D4EE04348K.
- 18.
Pandey, D.; Kumar, K.S.; Thomas, J. Supercapacitor electrode energetics and mechanism of operation: Uncovering the voltage window. Prog. Mater Sci. 2024, 141, 101219. https://doi.org/10.1016/j.pmatsci.2023.101219.
- 19.
Jing, C.; Tao, S.; Fu, B.; et al. Layered double hydroxide-based nanomaterials for supercapacitors and batteries: Strategies and mechanisms. Prog. Mater Sci. 2025, 150, 101410. https://doi.org/10.1016/j.pmatsci.2024.101410.
- 20.
Xu, J.; Yuan, X.; Zhao, Y.; et al. One-step hydrothermal synthesis of few-layered metallic phase MoS2 for high- performance supercapacitors. Prog. Nat. Sci.-Mater. 2024, 34, 429–436. https://doi.org/10.1016/j.pnsc.2024.04.011.
- 21.
Dong, W.; Xie, M.; Zhao, S.; et al. Materials design and preparation for high energy density and high power density electrochemical supercapacitors. Mater. Sci. Eng. R Rep. 2023, 152, 100713. https://doi.org/10.1016/j.mser.2022.100713.
- 22.
Zheng, W.; Yang, L.; Zhang, P.; et al. Mass loading and self-discharge challenges for MXene-based aqueous supercapacitors. Energy Storage Mater. 2023, 63, 103037. https://doi.org/10.1016/j.ensm.2023.103037.
- 23.
Haque, M.; Li, Q.; Rigato, C.; et al. Identification of self-discharge mechanisms of ionic liquid electrolyte based supercapacitor under high-temperature operation. J. Power Sources 2021, 485, 229328. https://doi.org/10.1016/j.jpowsour.2020.229328.
- 24.
Ramulu, B.; Shaik, J.A.; Mule, A.R.; et al. Improved rate capability and energy density of high-mass hybrid supercapacitor realized through long-term cycling stability testing and selective electrode design. Mater. Sci. Eng. R Rep. 2024, 160, 100820. https://doi.org/10.1016/j.mser.2024.100820.
- 25.
Flores-Diaz, N.; De Rossi, F.; Das, A.; et al. Progress of Photocapacitors. Chem. Rev. 2023, 123, 9327–9355. https://doi.org/10.1021/acs.chemrev.2c00773.
- 26.
Zhou, S.; Shekhah, O.; Ramírez, A.; et al. Asymmetric pore windows in MOF membranes for natural gas valorization. Nature 2022, 606, 706–712. https://doi.org/10.1038/s41586-022-04763-5.
- 27.
Navalón, S.; Dhakshinamoorthy, A.; Álvaro, M.; et al. Metal–Organic Frameworks as Photocatalysts for Solar-Driven Overall Water Splitting. Chem. Rev. 2023, 123, 445–490. https://doi.org/10.1021/acs.chemrev.2c00460.
- 28.
Gong, W.; Chen, Z.; Dong, J.; et al. Chiral Metal–Organic Frameworks. Chem. Rev. 2022, 122, 9078–9144. https://doi.org/10.1021/acs.chemrev.1c00740.
- 29.
Chen, T.; Deng, Z.; Lu, W.; et al. Pillar-Supported 2D Layered MOFs with Abundant Active-Site Distributions for High- Performance Alkaline Supercapacitors. Inorg. Chem. 2024, 63, 18699–18709. https://doi.org/10.1021/acs.inorgchem.4c02479.
- 30.
Xu, D.; Pan, C. Glass formation, structure, relaxation, and property of metal-organic framework (MOF) glasses: A review. Prog. Nat. Sci.-Mater. 2025, 35, 98–121. https://doi.org/10.1016/j.pnsc.2024.12.006.
- 31.
Yaghi, O.M.; Li, H.L. Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channel. J. Am. Chem. Soc. 1995, 117, 10401–10402. https://doi.org/10.1021/ja00146a033.
- 32.
Li, H.; Eddaoudi, M.; O’Keeffe, M.; et al. Design and synthesis of an exceptionally stable and highly porous metal- organic framework. Nature 1999, 402, 276–279. https://doi.org/10.1038/46248.
- 33.
Song, A.-M.; Yang, M.-J.; Wu, Z.; et al. Rational Designed Metal–Organic Framework with Nanocavity Traps for Selectively Recognizing and Separating of Radioactive Thorium in Rare Earth Wastewater. Adv. Funct. Mater. 2024, 34, 2406932. https://doi.org/10.1002/adfm.202406932.
- 34.
Lamaire, A.; Wieme, J.; Vandenhaute, S.; et al. Water motifs in zirconium metal-organic frameworks induced by nanoconfinement and hydrophilic adsorption sites. Nat. Commun. 2024, 15, 9997. https://doi.org/10.1038/s41467-024-54358-z.
- 35.
Hu, L.; Wu, W.; Hu, M.; et al. Double-walled Al-based MOF with large microporous specific surface area for trace benzene adsorption. Nat. Commun. 2024, 15, 3204. https://doi.org/10.1038/s41467-024-47612-x.
- 36.
Wang, Y.; Liu, Z.; Li, J.; et al. Polyaniline-on-MOF protects the MOF structure during carbonization for the construction of a portable sensor to detect tert-butylhydroquinone. Nano Energy 2025, 135, 110655. https://doi.org/10.1016/j.nanoen.2025.110655.
- 37.
Xiang, Y.; Wei, S.; Wang, T.; et al. Transformation of metal-organic frameworks (MOFs) under different factors. Coord. Chem. Rev. 2025, 523, 216263. https://doi.org/10.1016/j.ccr.2024.216263.
- 38.
Song, M.; Zhang, Q.; Luo, G.; et al. Coordination structure engineering of single atoms derived from MOFs for Electrocatalysis. Coord. Chem. Rev. 2025, 523, 216281. https://doi.org/10.1016/j.ccr.2024.216281.
- 39.
Song, G.; Shi, Y.; Jiang, S.; et al. Recent Progress in MOF-Derived Porous Materials as Electrodes for High-Performance Lithium-Ion Batteries. Adv. Funct. Mater. 2023, 33, 2303121. https://doi.org/10.1002/adfm.202303121.
- 40.
Øien-Ødegaard, S.; Shearer, G.C.; Wragg, D.S.; et al. Pitfalls in metal–organic framework crystallography: Towards more accurate crystal structures. Chem. Soc. Rev. 2017, 46, 4867–4876. https://doi.org/10.1039/C6CS00533K.
- 41.
Luo, Y.; Bag, S.; Zaremba, O.; et al. MOF Synthesis Prediction Enabled by Automatic Data Mining and Machine Learning. Angew. Chem. Int. Ed. 2022, 61, e202200242. https://doi.org/10.1002/anie.202200242.
- 42.
Hong, T.; Lee, C.; Bak, Y.; et al. On-Demand Tunable Electrical Conductance Anisotropy in a MOF-Polymer Composite. Small 2024, 20, 2309469. https://doi.org/10.1002/smll.202309469.
- 43.
Zhang, H.; Zhang, Q.; Zeng, X. Construction of multiple heterogeneous interfaces and oxygen evolution reaction of hollow CoFe bimetallic phosphides derived from MOF template. Prog. Nat. Sci.-Mater. 2024, 34, 913–920. https://doi.org/10.1016/j.pnsc.2024.09.001.
- 44.
Gao, J.; Hu, Y.; Wang, Y.; et al. MOF Structure Engineering to Synthesize Co-N-C Catalyst with Richer Accessible Active Sites for Enhanced Oxygen Reduction. Small 2021, 17, 2104684. https://doi.org/10.1002/smll.202104684.
- 45.
Kim, M.; Yi, J.; Park, S.-H.; et al. Heterogenization of Molecular Electrocatalytic Active Sites through Reticular Chemistry. Adv. Mater. 2023, 35, 2203791. https://doi.org/10.1002/adma.202203791.
- 46.
Zhang, S.; Gao, H.; Xu, X.; et al. MOF-derived CoN/N-C@SiO2 yolk-shell nanoreactor with dual active sites for highly efficient catalytic advanced oxidation processes. Chem. Eng. J. 2020, 381, 122670. https://doi.org/10.1016/j.cej.2019.122670.
- 47.
Li, Y.; Guo, Q.; Ding, Z.; et al. MOFs-Based Materials for Solid-State Hydrogen Storage: Strategies and Perspectives. Chem. Eng. J. 2024, 485, 149665. https://doi.org/10.1016/j.cej.2024.149665.
- 48.
Kim, W.-T.; Lee, W.-G.; An, H.-E.; et al. Machine learning-assisted design of metal–organic frameworks for hydrogen storage: A high-throughput screening and experimental approach. Chem. Eng. J. 2025, 507, 160766. https://doi.org/10.1016/j.cej.2025.160766.
- 49.
Yang, Z.; Wang, Y.; Lin, X.; et al. Vanadium induces Ni-Co MOF formation from a NiCo LDH to catalytically enhance the MgH2 hydrogen storage performance. J. Magnes. Alloys 2025, in press. https://doi.org/10.1016/j.jma.2025.01.012.
- 50.
Kim, D.W.; Jung, M.; Shin, D.Y.; et al. Fine-tuned MOF-74 type variants with open metal sites for high volumetric hydrogen storage at near-ambient temperature. Chem. Eng. J. 2024, 489, 151500. https://doi.org/10.1016/j.cej.2024.151500.
- 51.
Jin, S. How to Effectively Utilize MOFs for Electrocatalysis. ACS Energy Lett. 2019, 4, 1443–1445. https://doi.org/10.1021/acsenergylett.9b01134.
- 52.
Li, X.; Zhu, Q.-L. MOF-based materials for photo- and electrocatalytic CO2 reduction. EnergyChem 2020, 2, 100033. https://doi.org/10.1016/j.enchem.2020.100033.
- 53.
Mamaghani, A.H.; Liu, J.W.; Zhang, Z.; et al. Promises of MOF-Based and MOF-Derived Materials for Electrocatalytic CO2 Reduction. Adv. Energy Mater. 2024, 14, 2402278. https://doi.org/10.1002/aenm.202402278.
- 54.
Chauhan, N.P.S.; Perumal, P.; Chundawat, N.S.; et al. Achiral and chiral metal-organic frameworks (MOFs) as an efficient catalyst for organic synthesis. Coord. Chem. Rev. 2025, 533, 216536. https://doi.org/10.1016/j.ccr.2025.216536.
- 55.
Sun, N.; Shah, S.S.A.; Lin, Z.; et al. MOF-Based Electrocatalysts: An Overview from the Perspective of Structural Design. Chem. Rev. 2025, 125, 2703–2792. https://doi.org/10.1021/acs.chemrev.4c00664.
- 56.
Jin, R.; Li, R.; Ma, M.-L.; et al. Beyond Tradition: A MOF-On-MOF Cascade Z-Scheme Heterostructure for Augmented CO2 Photoreduction. Small 2025, 2409759. https://doi.org/10.1002/smll.202409759.
- 57.
Li, C.; Yan, H.; Yang, H.; et al. Recent advances and future perspectives of metal-organic frameworks as efficient electrocatalysts for CO2 reduction. Sci. China Mater. 2025, 68, 21–38. https://doi.org/10.1007/s40843-024-3165-6.
- 58.
Zhang, G.; Li, Y.; Du, G.; et al. Spiral-Concave Prussian Blue Crystals with Rich Steps: Growth Mechanism and Coordination Regulation. Angew. Chem. Int. Ed. 2025, 64, e202414650. https://doi.org/10.1002/anie.202414650.
- 59.
Ding, M.; Liu, W.; Gref, R. Nanoscale MOFs: From synthesis to drug delivery and theranostics applications. Adv. Drug Deliver. Rev. 2022, 190, 114496. https://doi.org/10.1016/j.addr.2022.114496.
- 60.
Lázaro, I.A.; Wells, C.J.R.; Forgan, R.S. Multivariate Modulation of the Zr MOF UiO-66 for Defect-Controlled Combination Anticancer Drug Delivery. Angew. Chem. Int. Ed. 2020, 59, 5211–5217. https://doi.org/10.1002/anie.201915848.
- 61.
Cedrún-Morales, M.; Ceballos, M.; Soprano, E.; et al. Light-Responsive Nanoantennas Integrated into Nanoscale Metal– Organic Frameworks for Photothermal Drug Delivery. Small Sci. 2024, 4, 2400088. https://doi.org/10.1002/smsc.202400088.
- 62.
Wu, M.X.; Yang, Y.W. Metal–Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy. Adv. Mater. 2017, 29, 1606134. https://doi.org/10.1002/adma.201606134.
- 63.
Yu, Q.; Zhang, Q.; Wu, Z.; et al. Inhalable Metal–Organic Frameworks: A Promising Delivery Platform for Pulmonary Diseases Treatment. ACS Nano 2025, 19, 3037–3053. https://doi.org/10.1021/acsnano.4c16873.
- 64.
Park, C.; Woo, J.; Jeon, M.; et al. Dual-MOF-Layered Films via Solution Shearing Approach: A Versatile Platform for Tunable Chemiresistive Sensors. ACS Nano 2025, 19, 11230–11240. https://doi.org/10.1021/acsnano.4c18848.
- 65.
Wang, M.; Zhang, H.; Yan, S.; et al. Fabrication of MOF-based Nanozyme sensor arrays and their application in disease diagnosis. Coord. Chem. Rev. 2025, 532, 216506. https://doi.org/10.1016/j.ccr.2025.216506.
- 66.
Jang, W.; Yoo, H.; Shin, D.; et al. Colorimetric identification of colorless acid vapors using a metal-organic framework- based sensor. Nat. Commun. 2025, 16, 385. https://doi.org/10.1038/s41467-024-55774-x.
- 67.
Mohanty, B.; Kumari, S.; Yadav, P.; et al. Metal-organic frameworks (MOFs) and MOF composites based biosensors. Coord. Chem. Rev. 2024, 519, 216102. https://doi.org/10.1016/j.ccr.2024.216102.
- 68.
Zhang, D.; Wang, W.; Li, S.; et al. Design strategies and energy storage mechanisms of MOF-based aqueous zinc ion battery cathode materials. Energy Storage Mater. 2024, 69, 103436. https://doi.org/10.1016/j.ensm.2024.103436.
- 69.
Zhou, W.; Tang, Y.; Zhang, X.; et al. MOF derived metal oxide composites and their applications in energy storage. Coord. Chem. Rev. 2023, 477, 214949. https://doi.org/10.1016/j.ccr.2022.214949.
- 70.
Polyukhov, D.M.; Kudriavykh, N.A.; Gromilov, S.A.; et al. Efficient MOF-Catalyzed Ortho–Para Hydrogen Conversion for Practical Liquefaction and Energy Storage. ACS Energy Lett. 2022, 7, 4336–4341. https://doi.org/10.1021/acsenergylett.2c02149.
- 71.
Du, R.; Wu, Y.F.; Yang, Y.C.; et al. Porosity Engineering of MOF-Based Materials for Electrochemical Energy Storage. Adv. Energy Mater. 2021, 11, 2100154. https://doi.org/10.1002/aenm.202100154.
- 72.
Cao, W.; Chen, Z.; Chen, J.; et al. Applications of MOF derivatives based on heterogeneous element doping in the field of electrochemical energy storage. Mater. Today 2024, 77, 118–141. https://doi.org/10.1016/j.mattod.2024.06.006.
- 73.
Ji, B.; Li, W.; Zhang, F.; et al. MOF-Derived Transition Metal Phosphides for Supercapacitors. Small 2025, 21, 2409273. https://doi.org/10.1002/smll.202409273.
- 74.
Wang, Y.; Liu, J.; Cao, H.; et al. Facile synthesis of porous high-entropy perovskite nanoparticles through MOF gel method for solid-state supercapacitor application. Chem. Eng. J. 2025, 509, 161246. https://doi.org/10.1016/j.cej.2025.161246.
- 75.
Cheng, H.; Li, J.; Meng, T.; et al. Advances in Mn-Based MOFs and Their Derivatives for High-Performance Supercapacitor. Small 2024, 20, 2308804. https://doi.org/10.1002/smll.202308804.
- 76.
Niu, L.; Wu, T.; Chen, M.; et al. Conductive Metal–Organic Frameworks for Supercapacitors. Adv. Mater. 2022, 34, 2200999. https://doi.org/10.1002/adma.202200999.
- 77.
Li, H.; Liu, Y.; Zhu, X.; et al. Exploring new fields of supercapacitors by regulating metal ions in MOFs. Energy Storage Mater. 2024, 73, 103859. https://doi.org/10.1016/j.ensm.2024.103859.
- 78.
Cui, S.; Gu, Y.; Tang, Y.; et al. Vacancy engineering regulating specific capacitance of supercapacitors in MOF-on-MOF derived CoSe2 quantum dots embedded in carbon and CoSe2 hollow cages. Chem. Eng. J. 2025, 512, 162326. https://doi.org/10.1016/j.cej.2025.162326.
- 79.
Yanfei, Z.; Qian, L.; Guangxun, Z.; et al. Recent advances in the type, synthesis and electrochemical application of defective metal-organic frameworks. Energy Mater. 2023, 3, 300022. https://doi.org/10.20517/energymater.2023.06.
- 80.
Li, S.; Han, W.; An, Q.-F.; et al. Defect Engineering of MOF-Based Membrane for Gas Separation. Adv. Funct. Mater. 2023, 33, 2303447. https://doi.org/10.1002/adfm.202303447.
- 81.
Ren, J.; Ledwaba, M.; Musyoka, N.M.; et al. Structural defects in metal–organic frameworks (MOFs): Formation, detection and control towards practices of interests. Coord. Chem. Rev. 2017, 349, 169–197. https://doi.org/10.1016/j.ccr.2017.08.017.
- 82.
Dai, S.; Simms, C.; Patriarche, G.; et al. Highly defective ultra-small tetravalent MOF nanocrystals. Nat. Commun. 2024, 15, 3434. https://doi.org/10.1038/s41467-024-47426-x.
- 83.
Sk, S.; Islam, H.; Abraham, B.M.; et al. Defects in MOFs for Photocatalytic Water Reduction to Hydrogen Generation: From Fundamental Understanding to State-of-Art Materials. Small Methods 2024, 2401689. https://doi.org/10.1002/smtd.202401689.
- 84.
Zhang, C.; Han, C.; Sholl, D.S.; et al. Computational Characterization of Defects in Metal–Organic Frameworks: Spontaneous and Water-Induced Point Defects in ZIF-8. J. Phys. Chem. Lett. 2016, 7, 459–464. https://doi.org/10.1021/acs.jpclett.5b02683.
- 85.
Park, H.; Kim, S.; Jung, B.; et al. Defect Engineering into Metal–Organic Frameworks for the Rapid and Sequential Installation of Functionalities. Inorg. Chem. 2018, 57, 1040–1047. https://doi.org/10.1021/acs.inorgchem.7b02391.
- 86.
An, H.; Tian, W.; Lu, X.; et al. Boosting the CO2 adsorption performance by defect-rich hierarchical porous Mg-MOF-74. Chem. Eng. J. 2023, 469, 144052. https://doi.org/10.1016/j.cej.2023.144052.
- 87.
Chen, T.; Xu, H.; Li, S.; et al. Tailoring the Electrochemical Responses of MOF-74 via Dual-Defect Engineering for Superior Energy Storage. Adv. Mater. 2024, 36, 2402234. https://doi.org/10.1002/adma.202402234.
- 88.
Gu, Y.; Anjali, B.A.; Yoon, S.; et al. Defect-engineered MOF-801 for cycloaddition of CO2 with epoxides. J. Mater. Chem. A 2022, 10, 10051–10061. https://doi.org/10.1039/D2TA00503D.
- 89.
Liang, S.; Xiao, X.; Bai, L.; et al. Conferring Ti-Based MOFs with Defects for Enhanced Sonodynamic Cancer Therapy. Adv. Mater. 2021, 33, 2100333. https://doi.org/10.1002/adma.202100333.
- 90.
Wu, J.; Dai, Q.; Zhang, H.; et al. A defect-free MOF composite membrane prepared via in-situ binder-controlled restrained second-growth method for energy storage device. Energy Storage Mater. 2021, 35, 687–694. https://doi.org/10.1016/j.ensm.2020.11.040.
- 91.
Lu, Y.; Zhou, R.; Wang, N.; et al. Engineer Nanoscale Defects into Selective Channels: MOF-Enhanced Li+ Separation by Porous Layered Double Hydroxide Membrane. Nano-Micro Lett. 2023, 15, 147. https://doi.org/10.1007/s40820-023-01101-w.
- 92.
Sepehrmansourie, H.; Alamgholiloo, H.; Noroozi Pesyan, N.; et al. A MOF-on-MOF strategy to construct double Z- scheme heterojunction for high-performance photocatalytic degradation. Appl. Catal. B-Environ. 2023, 321, 122082. https://doi.org/10.1016/j.apcatb.2022.122082.
- 93.
Guan, Y.; Liu, T.; Wu, Y.; et al. Modulating the electronic structure of Ru using a self-reconstructed MOF-NiFeOOH heterointerface for improved electrocatalytic water splitting. J. Mater. Chem. A 2024, 12, 17404–17412. https://doi.org/10.1039/D4TA02569E.
- 94.
Wang, Y.; Haidry, A.A.; Liu, Y.; et al. Enhanced electromagnetic wave absorption using bimetallic MOFs-derived TiO2/Co/C heterostructures. Carbon 2024, 216, 118497. https://doi.org/10.1016/j.carbon.2023.118497.
- 95.
Li, K.; Liu, Z.-T.; Liu, Z.-W.; et al. Fast Photo- and Moisture-Driven Bidirectional Actuation of a Shape-Programmable MOF Loading Composite. Chem. Eng. J. 2025, 506, 159503. https://doi.org/10.1016/j.cej.2025.159503.
- 96.
Wang, K.; Chen, C.; Li, Y.; et al. Insight into Electrochemical Performance of Nitrogen-Doped Carbon/NiCo-Alloy Active Nanocomposites. Small 2023, 19, 2300054. https://doi.org/10.1002/smll.202300054.
- 97.
Deng, Z.; Wang, L.; Chen, T.; et al. Stable metal-organic frameworks with Zr6 clusters for alkaline battery-supercapacitor devices. J. Solid State Chem. 2024, 340, 125009. https://doi.org/10.1016/j.jssc.2024.125009.
- 98.
Wang, Y.; Lu, W.; Wang, L.; et al. Vanadate-based Fe-MOFs as promising negative electrode for hybrid supercapacitor device. Nanotechnology 2024, 35, 205402. https://doi.org/10.1088/1361-6528/ad1d12.
- 99.
Yu, X.; Hu, Y.; Luan, X.; et al. Microwave-assisted construction of MXene/MOF aerogel via N-metal bonds for efficient photodegradation of vapor acetone under high humidity. Chem. Eng. J. 2023, 476, 146878. https://doi.org/10.1016/j.cej.2023.146878.
- 100.
Chen, Q.; Xue, Z.; Wei, F.; et al. Microwave-assisted rapid controllable synthesis of hexagonal prismatic CoNi-MOF-74 and its derivative for efficient oxygen evolution reaction. Int. J. Hydrogen Energy 2024, 51, 1327–1336. https://doi.org/10.1016/j.ijhydene.2023.11.081.
- 101.
Yahia, M.; Lozano, L.A.; Zamaro, J.M.; et al. Microwave-assisted synthesis of metal–organic frameworks UiO-66 and MOF-808 for enhanced CO2/CH4 separation in PIM-1 mixed matrix membranes. Sep. Purif. Technol. 2024, 330, 125558. https://doi.org/10.1016/j.seppur.2023.125558.
- 102.
Fan, J.; Wu, W.; Lu, Z.; et al. Rapid synthesis strategy of ultrathin UiO-66 separation membranes: Ultrasonic-assisted nucleation followed with microwave-assisted growth. J. Membr. Sci. 2022, 664, 121085. https://doi.org/10.1016/j.memsci.2022.121085.
- 103.
Li, Q.; Liu, Y.; Niu, S.; et al. Microwave-assisted rapid synthesis and activation of ultrathin trimetal–organic framework nanosheets for efficient electrocatalytic oxygen evolution. J. Colloid Interface Sci. 2021, 603, 148–156. https://doi.org/10.1016/j.jcis.2021.06.102.
- 104.
Wen, M.; Sun, N.; Jiao, L.; et al. Microwave-Assisted Rapid Synthesis of MOF-Based Single-Atom Ni Catalyst for CO2 Electroreduction at Ampere-Level Current. Angew. Chem. Int. Ed. 2024, 63, e202318338. https://doi.org/10.1002/anie.202318338.
- 105.
Asghar, A.; Iqbal, N.; Noor, T.; et al. Efficient electrochemical synthesis of a manganese-based metal–organic framework for H2 and CO2 uptake. Green Chem. 2021, 23, 1220–1227. https://doi.org/10.1039/D0GC03292A.
- 106.
Wu, W.; Decker, G.E.; Weaver, A.E.; et al. Facile and Rapid Room-Temperature Electrosynthesis and Controlled Surface Growth of Fe-MIL-101 and Fe-MIL-101-NH2. ACS Cent. Sci. 2021, 7, 1427–1433. https://doi.org/10.1021/acscentsci.1c00686.
- 107.
Pei, Z.; Guo, Y.; Luan, D.; et al. Regulating the Local Reaction Microenvironment at Chromium Metal–Organic Frameworks for Efficient H2O2 Electrosynthesis in Neutral Electrolytes. Adv. Mater. 2025, 37, 2500274. https://doi.org/10.1002/adma.202500274.
- 108.
Tang, D.; Yang, X.; Wang, B.; et al. One-Step Electrochemical Growth of 2D/3D Zn(II)-MOF Hybrid Nanocomposites on an Electrode and Utilization of a PtNPs@2D MOF Nanocatalyst for Electrochemical Immunoassay. ACSAppl. Mater. Inter. 2021, 13, 46225–46232. https://doi.org/10.1021/acsami.1c09095.
- 109.
Wei, H.; Qin, F. Electrochemical Synthesis and Conductivity Fine Tuning of the 2D Iron-Quinoid Metal–Organic Framework. ACSAppl. Mater. Inter. 2025, 17, 2010–2017. https://doi.org/10.1021/acsami.4c17699.
- 110.
Cliffe, M.J.; Hill, J.A.; Murray, C.A.; et al. Defect-dependent colossal negative thermal expansion in UiO-66(Hf) metal- organic framework. Phys. Chem. Chem. Phys. 2015, 17, 11586–11592. https://doi.org/10.1039/c5cp01307k.
- 111.
Ren, J.W.; Rogers, D.E.C.; Segakweng, T.; et al. Thermal treatment induced transition from Zn3(OH)2(BDC)2 (MOF- 69c) to Zn4O(BDC)3(MOF-5). Int. J. Mater. Res. 2014, 105, 89–93. https://doi.org/10.3139/146.110994.
- 112.
Borges, D.D.; Devautour-Vinot, S.; Jobic, H.; et al. Proton Transport in a Highly Conductive Porous Zirconium-Based Metal-Organic Framework: Molecular Insight. Angew. Chem. Int. Ed. 2016, 55, 3919–3924. https://doi.org/10.1002/anie.201510855.
- 113.
Zhang, Y.; Liu, J.J.; Zhang, L.; et al. Particle shape characterisation and classification using automated microscopy and shape descriptors in batch manufacture of particulate solids. Particuology 2016, 24, 61–68. https://doi.org/10.1016/j.partic.2014.12.012.
- 114.
Wu, D.; Yan, W.; Xu, H et al. Defect engineering of Mn-based MOFs with rod-shaped building units by organic linker fragmentation. Inorg. Chim. Acta 2017, 460, 93–98. https://doi.org/10.1016/j.ica.2016.07.022.
- 115.
Wang, X.; Zhang, X.; Zhao, Y.; et al. Accelerated Multi-step Sulfur Redox Reactions in Lithium-Sulfur Batteries Enabled by Dual Defects in Metal-Organic Framework-based Catalysts. Angew. Chem. Int. Ed. 2023, 62, e202306901. https://doi.org/10.1002/anie.202306901.
- 116.
Wang, Z.-D.; Zang, Y.; Liu, Z.-J.; et al. Opening catalytic sites in the copper-triazoles framework via defect chemistry for switching on the proton reduction. Appl. Catal. B-Environ. 2021, 288, 119941. https://doi.org/10.1016/j.apcatb.2021.119941.
- 117.
Salman, M.; Qin, H.; Zou, Y.; et al. In-situ decoration of NiCo-thiophene based metal-organic framework on nickel foam as an efficient electrocatalyst for oxygen evolution reaction. J. Power Sources 2025, 629, 235942. https://doi.org/10.1016/j.jpowsour.2024.235942.
- 118.
Li, W.-Q.; Li, Y.-M.; Hou, N.; et al. Hydroxyl-induced structural defects in metal-organic frameworks for improved photocatalytic decontamination: Accelerated exciton dissociation and hydrogen bonding interaction. J. Hazard. Mater. 2025, 487, 137149. https://doi.org/10.1016/j.jhazmat.2025.137149.
- 119.
Dong, Y.; Jin, Z.; Peng, H.; et al. Size Effect and Interfacial Synergy Enhancement of 2D Ultrathin CoxZn1-x-MOF/rGO for Boosting Lithium–Sulfur Battery Performance. Small 2025, 21, 2412186. https://doi.org/10.1002/smll.202412186.
- 120.
Liu, P.; Lyu, J.; Bai, P. Synthesis of mixed matrix membrane utilizing robust defective MOF for size-selective adsorption of dyes. Sep. Purif. Technol. 2025, 354, 128672. https://doi.org/10.1016/j.seppur.2024.128672.
- 121.
Liu, Z.; Zhao, H.; Hua, B.; et al. Ionic Liquid-Functionalized Defective MOFs for Membrane-Based CO2 Separation: A Dual Optimization Approach for Interface and Transport. ACS Appl. Mater. Inter. 2025, 17, 6867–6877. https://doi.org/10.1021/acsami.4c16340.
- 122.
Hou, X.; Wang, J.; Mousavi, B.; et al. Strategies for induced defects in metal–organic frameworks for enhancing adsorption and catalytic performance. Dalton Trans. 2022, 51, 8133–8159. https://doi.org/10.1039/D2DT01030E.
- 123.
Chang, Y.-N.; Shen, C.-H.; Huang, C.-W.; et al. Defective Metal–Organic Framework Nanocrystals as Signal Amplifiers for Electrochemical Dopamine Sensing. ACS Appl. Nano Mater. 2023, 6, 3675–3684. https://doi.org/10.1021/acsanm.2c05402.
- 124.
Cheng, W.; Ren, X.; Wang, X.; et al. Improving the Photoactivity of Porphyrin-Based Metal–Organic Frameworks via Constructing [Ce–O] Active Site and Vacancy. Inorg. Chem. 2024, 63, 14050–14061. https://doi.org/10.1021/acs.inorgchem.4c01836.
- 125.
Baumann, A.E.; Burns, D.A.; Díaz, J.C.; et al. Lithiated Defect Sites in Zr Metal–Organic Framework for Enhanced Sulfur Utilization in Li–S Batteries. ACS Appl. Mater. Inter. 2019, 11, 2159–2167. https://doi.org/10.1021/acsami.8b19034.
- 126.
Chen, T.; Bian, S.; Yang, X.; et al. A hollow urchin-like metal–organic framework with Ni–O-cluster SBUs as a promising electrode for an alkaline battery–supercapacitor device. Inorg. Chem. Front. 2023, 10, 2380–2386. https://doi.org/10.1039/D3QI00123G.
- 127.
Xu, Z.; Lv, B.; Shi, X.; et al. Chemical transformation of hollow coordination polymer particles to Co3O4 nanostructures and their pseudo-capacitive behaviors. Inorg. Chim. Acta 2015, 427, 266–272. https://doi.org/10.1016/j.ica.2015.01.008.
- 128.
Li, M.; Wang, J.; Wang, F.; et al. Construction of internal and external defect electrode materials based on hollow manganese-cobalt-nickel sulfide nanotube arrays. Appl. Surf. Sci. 2021, 568, 150900. https://doi.org/10.1016/j.apsusc.2021.150900.
- 129.
Wang, K.-B.; Xun, Q.; Zhang, Q. Recent progress in metal-organic frameworks as active materials for supercapacitors. EnergyChem 2020, 2, 100025. https://doi.org/10.1016/j.enchem.2019.100025.
- 130.
Wang, K.; Bi, R.; Huang, M.; et al. Porous Cobalt Metal–Organic Frameworks as Active Elements in Battery– Supercapacitor Hybrid Devices. Inorg. Chem. 2020, 59, 6808–6814. https://doi.org/10.1021/acs.inorgchem.0c00060.
- 131.
Li, J.; Zhao, L.; Liu, P. Facile electrodepositing coral-/urchin-like polyaniline on carbon cloth in salty media as electrode for high-performance flexible supercapacitors. Prog. Nat. Sci-Mater. 2023, 33, 668–673. https://doi.org/10.1016/j.pnsc.2023.11.012.
- 132.
Wang, L.; Fu, R.; Qi, X.; et al. Deashing Strategy on Biomass Carbon for Achieving High-Performance Full- Supercapacitor Electrodes. ACS Appl. Mater. Interfaces 2024, 16, 52663–52673. https://doi.org/10.1021/acsami.4c11778.
- 133.
Wang, K.; Shi, X.; Zhang, Z.; et al. Size-dependent capacitance of NiO nanoparticles synthesized from Ni-based coordination polymer precursors with different crystallinity. J. Alloys Compd. 2015, 632, 361–367. https://doi.org/10.1016/j.jallcom.2015.01.252.
- 134.
Liu, L.; Tian, Q.; Yao, W.; et al. All-printed ultraflexible and stretchable asymmetric in-plane solid-state supercapacitors (ASCs) for wearable electronics. J. Power Sources 2018, 397, 59–67. https://doi.org/10.1016/j.jpowsour.2018.07.013.
- 135.
Deng, T.; Lu, Y.; Zhang, W.; et al. Inverted Design for High-Performance Supercapacitor Via Co(OH)2-Derived Highly Oriented MOF Electrodes. Adv. Energy Mater. 2018, 8, 1702294. https://doi.org/10.1002/aenm.201702294.
- 136.
Fawad Khan, M.; Ali Marwat, M.; Abdullah; Shaheen Shah, S.; et al. Novel MoS2-sputtered NiCoMg MOFs for high- performance hybrid supercapacitor applications. Sep. Purif. Technol. 2023, 310, 123101. https://doi.org/10.1016/j.seppur.2023.123101.
- 137.
Dennyson Savariraj, A.; Justin Raj, C.; Kale, A.M.; et al. Road Map for In Situ Grown Binder-Free MOFs and Their Derivatives as Freestanding Electrodes for Supercapacitors. Small 2023, 19, 2207713. https://doi.org/10.1002/smll.202207713.
- 138.
Wulan Septiani, N.L.; Wustoni, S.; Failamani, F.; et al. Revealing the effect of cobalt content and ligand exchange in the bimetallic Ni–Co MOF for stable supercapacitors with high energy density. J. Power Sources 2024, 603, 234423. https://doi.org/10.1016/j.jpowsour.2024.234423.
- 139.
Hong, Y.; Chen, T.; Wang, K.; et al. Supercapacitive study for electrode materials around the framework-collapse point of a Ni-based coordination polymer. CrystEngComm 2023, 25, 122–129. https://doi.org/10.1039/D2CE01236G.
- 140.
Kang, L.; Zhang, M.; Zhang, J.; et al. Dual-defect surface engineering of bimetallic sulfide nanotubes towards flexible asymmetric solid-state supercapacitors. J. Mater. Chem. A 2020, 8, 24053–24064. https://doi.org/10.1039/D0TA08979F.
- 141.
Darabi, R.; Karimi-Maleh, H. Hierarchical copper-1,3,5 benzenetricarboxylic acid-MOF-derived with nitrogen-doped graphene nanoribbons as a novel assembly nanocomposite for asymmetric supercapacitors. Adv. Compos. Hybrid Mater. 2023, 6, 114. https://doi.org/10.1007/s42114-023-00696-3.
- 142.
Feng, W.; Liu, C.; Liu, Z.; et al. In-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high- performance supercapacitor. Chin. Chem. Lett. 2024, 35, 109552. https://doi.org/10.1016/j.cclet.2024.109552.
- 143.
Sun, Z.; Wang, Y.; Yang, L.; et al. RGO-Induced Flower-like Ni-MOF In Situ Self-Assembled Electrodes for High- Performance Hybrid Supercapacitors. ACS Appl. Mater. Inter. 2024, 16, 584–593. https://doi.org/10.1021/acsami.3c14046.
- 144.
Feng, C.; An, Q.; Zhang, Q.; et al. Unleashing the potential of Ru/FeCo-MOF in water splitting and supercapacitors through Morphology and electronic structure control. Int. J. Hydrogen Energy 2024, 55, 189–198. https://doi.org/10.1016/j.ijhydene.2023.11.134.
- 145.
Muthu, D.; Dharman, R.K.; Muthu, S.E.; et al. Recent developments in metal-organic framework-derived transition metal oxide@carbon nanostructure and carbon nanostructure for supercapacitor applications. J. Energy Storage 2025, 119, 116365. https://doi.org/10.1016/j.est.2025.116365.
- 146.
Wang, J.; Li, S.; Fu, N.; et al. MOF-derived carbon-coated NiS/NiS2 yolk-shell spheres as a satisfactory positive electrode material for hybrid supercapacitors. Adv. Compos. Hybrid Mater. 2025, 8, 190. https://doi.org/10.1007/s42114-025-01257-6.
- 147.
Wang, K.; Cao, X.; Wang, S.; et al. Interpenetrated and Polythreaded CoII-Organic Frameworks as a Supercapacitor Electrode Material with Ultrahigh Capacity and Excellent Energy Delivery Efficiency. ACSAppl. Mater. Interfaces 2018, 10, 9104–9115. https://doi.org/10.1021/acsami.7b16141.
- 148.
Helal, A.; Yamani, Z.H.; Cordova, K.E.; et al. Multivariate metal-organic frameworks. Natl. Sci. Rev. 2017, 4, 296–298. https://doi.org/10.1093/nsr/nwx013.
- 149.
Dong, W.; Liu, Z.; Sun, H.; et al. Ultrathin defect-rich nanosheets of NiFe-MOF with high specific capacitance and stability for supercapacitor. Mater. Today Chem. 2024, 36, 101938. https://doi.org/10.1016/j.mtchem.2024.101938.
- 150.
Patil, S.A.; Katkar, P.K.; Kaseem, M.; et al. Cu@Fe-Redox Capacitive-Based Metal-Organic Framework Film for a High- Performance Supercapacitor Electrode. Nanomaterials 2023, 13, 1587. https://doi.org/10.3390/nano13101587.
- 151.
Wang, H.; Liang, M.; Miao, Z. Engineering accordion-like Fe-doped NiS2 enabling high-performance aqueous supercapacitors and Zn-Ni batteries. Chem. Eng. J. 2023, 470, 144148. https://doi.org/10.1016/j.cej.2023.144148.
- 152.
Bu, R.; Wang, Y.; Zhao, Y.; et al. “One-for-two” strategy: The construction of high performance positive and negative electrode materials via one Co-based metal organic framework precursor for boosted hybrid supercapacitor energy density. J. Power Sources 2022, 541, 231689. https://doi.org/10.1016/j.jpowsour.2022.231689.
- 153.
Ren, H.; Guo, H.; Hao, Y.; et al. Defect-regulated MnS@Ni0.654Co0.155Se1.234S0.101 structures: A novel approach to unlock energy storage potential in supercapacitors. J. Colloid Interface Sci. 2025, 683, 746–758. https://doi.org/ 10.1016/j.jcis.2024.12.225.
- 154.
Cao, Y.; Tian, Z.; Xiang, C.; et al. Se-doped cobalt-nickel sulfide hollow nanospheres with heterostructure and engineered defects as high-performance electrode for supercapacitors. J. Energy Storage 2024, 100, 113755. https://doi.org/10.1016/j.est.2024.113755.
- 155.
Cui, S.; Tang, Y.; Cui, W.; et al. Simultaneously Improving Energy Storage and Oxygen Evolution Reaction by Causing Regional Defects in MOF-on-MOF Derived Hollow Se-Doped CoP-Fe2P Heterojunctions. ACSAppl. Mater. Inter. 2024, 16, 42230–42241. https://doi.org/10.1021/acsami.4c08244.
- 156.
Nwaji, N.; Gwak, J.; Goddati, M.; et al. Defect-Engineered Fe3C@NiCo2S4 Nanospike Derived from Metal–Organic Frameworks as an Advanced Electrode Material for Hybrid Supercapacitors. ACSAppl. Mater. Inter. 2023, 15, 34779–34788. https://doi.org/10.1021/acsami.3c04635.
- 157.
Mei, H.; Mei, Y.; Zhang, S.; et al. Bimetallic-MOF Derived Accordion-like Ternary Composite for High-Performance Supercapacitors. Inorg. Chem. 2018, 57, 10953–10960. https://doi.org/10.1021/acs.inorgchem.8b01574.
- 158.
Liu, S.; Kang, L.; Zhang, J.; et al. Structural engineering and surface modification of MOF-derived cobalt-based hybrid nanosheets for flexible solid-state supercapacitors. Energy Storage Mater. 2020, 32, 167–177. https://doi.org/10.1016/j.ensm.2020.07.017.
- 159.
Sun, J.; Xue, H.; Zhang, Y.; et al. Unraveling the Synergistic Effect of Heteroatomic Substitution and Vacancy Engineering in CoFe2O4 for Superior Electrocatalysis Performance. Nano Lett. 2022, 22, 3503–3511. https://doi.org/10.1021/acs.nanolett.1c04425.
- 160.
Xu, J.; Ge, L.; Zhou, Y.; et al. Insights into N, P, S multi-doped Mo2C/C composites as highly efficient hydrogen evolution reaction catalysts. Nanoscale Adv. 2020, 2, 3334–3340. https://doi.org/10.1039/D0NA00335B.
- 161.
Xu, Z.; Teng, R.; Xu, L.; et al. Assembly of Amorphizing Porous Bimetallic Metal-Organic Frameworks Spheres with Zn-O-Fe Cluster and Coordination Deficiency via Ligand Competition for Efficient Electro-Fenton Catalysis. Adv. Funct. Mater. 2024, 34, 2401248. https://doi.org/10.1002/adfm.202401248.
- 162.
Shearer, G.C.; Chavan, S.; Bordiga, S.; et al. Defect Engineering: Tuning the Porosity and Composition of the Metal– Organic Framework UiO-66 via Modulated Synthesis. Chem. Mater. 2016, 28, 3749–3761. https://doi.org/10.1021/acs.chemmater.6b00602.
- 163.
Yue, M.L.; Yu, C.Y.; Duan, H.H.; et al. Six Isomorphous Window-Beam MOFs: Explore the Effects o f Metal Ions on MOF-Derived Carbon for Supercapacitors. Chem. Eur. J. 2018, 24, 16160–16169. https://doi.org/10.1002/chem.201803554.
- 164.
Zhang, H.; Yang, Y.; Deng, Y.; et al. Construction of 2D MOF nanosheets with missing-linker defects for enhanced supercapacitor performance. J. Alloys Compd. 2024, 999, 175049. https://doi.org/10.1016/j.jallcom.2024.175049.
- 165.
Lin, S.; Guo, X.; Cai, W.; et al. Binder-Free Defective Bimetallic Metal-Organic Framework Nanostructures with Lattice Distortion as Hybrid Supercapacitor Electrodes. ACS Appl. Nano Mater. 2024, 7, 1078–1088. https://doi.org/10.1021/acsanm.3c05037.
- 166.
Ferhi, N.; Desalegn Assresahegn, B.; Ardila-Suarez, C.; et al. Defective Metal–Organic Framework-808@Polyaniline Composite Materials for High Capacitance Retention Supercapacitor Electrodes. ACS Appl. Energy Mater. 2022, 5, 1235–1243. https://doi.org/10.1021/acsaem.1c03649.
- 167.
Wang, J.; Deng, S.-Q.; Zhao, T.-T.; et al. A Mn(ii)–MOF with inherent missing metal-ion defects based on an imidazole- tetrazole tripodal ligand and its application in supercapacitors. Dalton Trans. 2020, 49, 12150–12155. https://doi.org/10.1039/D0DT01666G.
- 168.
Salehi Rozveh, Z.; Pooriraj, M.; Rad, M.; et al. Synergistic effect of metal node engineering and mixed-linker-architected on the energy storage activities of pillar-layered Cu2(L)2(DABCO) metal-organic frameworks. Mater. Chem. Phys. 2022, 292, 126761. https://doi.org/10.1016/j.matchemphys.2022.126761.
- 169.
Zhong, W.; Zhao, R.; Zhu, Y.; et al. Vacancy Engineering on MnSe Cathode Enables High-Rate and Stable Zinc-Ion Storage. Adv. Funct. Mater. 2024, 35, 2419720. https://doi.org/10.1002/adfm.202419720.
- 170.
Sun, M.; Guo, W.; Wang, J.; et al. Microenvironment Reconstitution-Induced Collaborative Oxyanions-Vacancies Engineering for Enhanced High-Mass-Loading Energy Storage. Adv. Funct. Mater. 2024, 34, 2405116. https://doi.org/10.1002/adfm.202405116.
- 171.
Shi, W.; Meng, Z.; Xu, Z.; et al. Controllable vacancy strategy mediated by organic ligands of nickel fluoride alkoxides for high-performance aqueous energy storage. J. Mater. Chem. A 2023, 11, 1369–1379. https://doi.org/10.1039/D2TA08004D.
- 172.
Zhang, N.; Yin, L.; Chen, L.; et al. Size- and crystallinity-dependent oxygen vacancy engineering to modulate Fe active sites for enhanced reversible nitrogen fixation in Lithium-nitrogen batteries. Energy Storage Mater. 2025, 76, 104171. https://doi.org/10.1016/j.ensm.2025.104171.
- 173.
Zhang, D.; Gao, H.; Li, J.; et al. Plasma-enhanced vacancy engineering for sustainable high-performance recycled silicon in lithium-ion batteries. Energy Storage Mater. 2025, 77, 104231. https://doi.org/10.1016/j.ensm.2025.104231.
- 174.
Cheng, C.; Zhuo, Z.; Xia, X.; et al. Stabilized Oxygen Vacancy Chemistry toward High-Performance Layered Oxide Cathodes for Sodium-Ion Batteries. ACS Nano 2024, 18, 35052–35065. https://doi.org/10.1021/acsnano.4c14724.
- 175.
Zhu, F.; Sun, L.; Liu, Y.; et al. Dual-defect site regulation on MOF-derived P-Co3O4@NC@Ov-NiMnLDH carbon arrays for high-performance supercapacitors. J. Mater. Chem. A 2022, 10, 21021–21030. https://doi.org/10.1039/D2TA05146J.
- 176.
Wei, J.; Hu, F.; Lv, C.; et al. A surface defect strategy of NiCo-layered double hydroxide decorated MXene layers for durable solid-state supercapacitors. Mater. Chem. Front. 2024, 8, 3231–3241. https://doi.org/10.1039/D4QM00481G.
- 177.
Chettiannan, B.; Mathan, S.; Arumugam, G.; et al. Attaining high energy density using metal-organic framework-derived NiO/Co3O4/NiCo2O4 as an electrode in asymmetric hybrid supercapacitor. J. Energy Storage 2024, 77, 110008. https://doi.org/10.1016/j.est.2023.110008.
- 178.
Guo, X.; Liu, Y.; Feng, L.; et al. Zn-substituted Co3O4 crystal anchored on porous carbon nanofibers for high performance supercapacitors. Surf. Interf. 2024, 53, 105048. https://doi.org/10.1016/j.surfin.2024.105048.
- 179.
Xu, D.; Xue, Z.; Han, L.; et al. Interface engineered Zn/Co-S@CeO2 heterostructured nanosheet arrays as efficient electrodes for supercapacitors. J. Alloys Compd. 2023, 946, 169399. https://doi.org/10.1016/j.jallcom.2023.169399.
- 180.
Chen, C.; Zhang, H.; Yan, R.; et al. Defect engineering induced nanostructure changes of NiMo-layered double hydroxides/MOF heterostructure on battery type charge storage. J. Power Sources 2025, 639, 236685. https://doi.org/ 10.1016/j.jpowsour.2025.236685.
- 181.
Mofokeng, T.P.; Ipadeola, A.K.; Tetana, Z.N.; et al. Defect-Engineered Nanostructured Ni/MOF-Derived Carbons for an Efficient Aqueous Battery-Type Energy Storage Device. ACS Omega 2020, 5, 20461–20472. https://doi.org/10.1021/acsomega.0c02563.
- 182.
Yang, S.; Qian, L.; Ping, Y.; et al. Electrochemical performance ofBi2O3 supercapacitors improved by surface vacancy defects. Ceram. Int. 2021, 47, 8290–8299. https://doi.org/10.1016/j.ceramint.2020.11.190.
- 183.
Wei, G.; Zhou, Z.; Zhao, X.; et al. Ultrathin Metal–Organic Framework Nanosheet-Derived Ultrathin Co3O4 Nanomeshes with Robust Oxygen-Evolving Performance and Asymmetric Supercapacitors. ACSAppl. Mater. Inter. 2018, 10, 23721–23730. https://doi.org/10.1021/acsami.8b04026.
- 184.
Wang, G.; Jin, Z. Oxygen-vacancy-rich cobalt–aluminium hydrotalcite structures served as high-performance supercapacitor cathode. J. Mater. Chem. C 2021, 9, 620–632. https://doi.org/10.1039/D0TC03640D.
- 185.
Wei, J.; Hu, F.; Pan, Y.; et al. Design strategy for metal–organic framework assembled on modifications of MXene layers for advanced supercapacitor electrodes. Chem. Eng. J. 2024, 481, 148793. https://doi.org/10.1016/j.cej.2024.148793.
- 186.
Li, T.; Hu, Y.; Zhang, J.; et al. Doping effect and oxygen vacancy engineering in nickel-manganese layered double hydroxides for high-performance supercapacitors. Nano Energy 2024, 126, 109690. https://doi.org/10.1016/j.nanoen.2024.109690.
- 187.
Tang, Y.Q.; Shen, H.M.; Cheng, J.Q et al. Fabrication of Oxygen-Vacancy Abundant NiMn-Layered Double Hydroxides for Ultrahigh Capacity Supercapacitors. Adv. Funct. Mater. 2020, 30, 1908223. https://doi.org/10.1002/adfm.201908223.
- 188.
Chen, X.; Zhang, Z.; Zhou, S.; et al. In-situ growth transformation and oxygen vacancy synergistic modulation of the electronic structure of NiCo-LDH enables high-performance hybrid supercapacitors. Appl. Energy 2024, 371, 123670. https://doi.org/10.1016/j.apenergy.2024.123670.
- 189.
Zhi, Z.; Wang, J.; Zhou, J.; et al. Oxygen vacancies are generated in the inner layer of the core-shell structure by in-situ electrochemical activation to promote electrochemical energy storage. J. Energy Storage 2024, 100, 113528. https://doi.org/10.1016/j.est.2024.113528.
- 190.
Chen, K.; Yuan, X.; Tian, Z.; et al. A facile approach for generating ordered oxygen vacancies in metal oxides. Nat. Mater. 2025, 24, 835–842. https://doi.org/10.1038/s41563-025-02171-4.
- 191.
Guo, J.; Zhao, H.; Yang, Z.; et al. Bimetallic Sulfides with Vacancy Modulation Exhibit Enhanced Electrochemical Performance. Adv. Funct. Mater. 2024, 34, 2315714. https://doi.org/10.1002/adfm.202315714.
- 192.
Wang, X.; Zhou, R.; Zhang, C et al. Plasma-induced on-surface sulfur vacancies in NiCo2S4 enhance the energy storage performance of supercapatteries. J. Mater. Chem. A 2020, 8, 9278–9291. https://doi.org/10.1039/D0TA01991G.
- 193.
Wang, Q.; Qu, Z.; Chen, S.; et al. Metal organic framework derived P-doping CoS@C with sulfide defect to boost high- performance asymmetric supercapacitors. J. Colloid Interface Sci. 2022, 624, 385–393. https://doi.org/10.1016/j.jcis.2022.03.053.
- 194.
Nwaji, N.; Kang, H.; Goddati, M.; et al. Sulphur vacancy induced Co3S4@CoMo2S4 nanocomposites as a functional electrode for high performance supercapacitors. J. Mater. Chem. A 2023, 11, 3640–3652. https://doi.org/10.1039/D2TA08820G.
- 195.
Chen, Y.; Guo, H.; Yang, F.; et al. Metal-organic frameworks (MOFs) derived hollow microspheres with rich sulfur vacancies for hybrid supercapacitors. Electrochim. Acta 2022, 434, 141319. https://doi.org/10.1016/j.electacta.2022.141319.
- 196.
Huang, C.; Gao, A.; Yi, F.; et al. Metal organic framework derived hollow NiS@C with S-vacancies to boost high- performance supercapacitors. Chem. Eng. J. 2021, 419, 129643. https://doi.org/10.1016/j.cej.2021.129643.
- 197.
Lai, K.; Sun, Y.; Li, N.; et al. Photocatalytic CO2-to-CH4 Conversion with Ultrahigh Selectivity of 95.93% on S-Vacancy Modulated Spatial In2S3/In2O3 Heterojunction. Adv. Funct. Mater. 2024, 34, 2409031. https://doi.org/10.1002/adfm.202409031.
- 198.
Hirano, T.; Nakade, K.; Li, S.; et al. Chemical etching of a semiconductor surface assisted by single sheets of reduced graphene oxide. Carbon 2018, 127, 681–687. https://doi.org/10.1016/j.carbon.2017.11.053.
- 199.
Wei, Y.; Zhu, L.; Jia, L.; et al. Study on the Influence of Etchant Composition and Etching Process on the Precision of Stainless-Steel Microchannel and Etching Mechanism. Adv. Eng. Mater. 2024, 26, 2301731. https://doi.org/10.1002/adem.202301731.
- 200.
Sahoo, G.S.; Tripathy, S.P.; Joshi, D.S.; et al. Microwave induced chemical etching of CR-39 with KOH etchant: Comparison with chemical etching. Nucl. Instrum. Meth. A 2019, 935, 143–147. https://doi.org/10.1016/j.nima.2019.05.010.
- 201.
Zhu, A.-X.; Dou, A.-N.; Fang, X.-D.; et al. Retracted Article: Chemical etching of a cobalt-based metal-organic framework for enhancing the electrocatalytic oxygen evolution reaction. J. Mater. Chem. A 2017. https://doi.org/10.1039/C7TA02103H.
- 202.
Feng, Y.; Yao, J. Tailoring the structure and function of metal organic framework by chemical etching for diverse applications. Coord. Chem. Rev. 2022, 470, 214699. https://doi.org/10.1016/j.ccr.2022.214699.
- 203.
Xu, G.; He, Q.; Huang, K.; et al. Hierarchically Ultrasmall Hf-Based MOF: Mesopore Adjustment and Reconstruction by Recycle Using Acid Etching Strategy. Chem. Eng. J. 2023, 455, 140632. https://doi.org/10.1016/j.cej.2022.140632.
- 204.
Doan, H.V.; Sartbaeva, A.; Eloi, J.-C.; et al. Defective hierarchical porous copper-based metal-organic frameworks synthesised via facile acid etching strategy. Sci. Rep. 2019, 9, 10887. https://doi.org/10.1038/s41598-019-47314-1.
- 205.
Gao, W.; Chen, D.; Quan, H.; et al. Fabrication of Hierarchical Porous Metal–Organic Framework Electrode for Aqueous Asymmetric Supercapacitor. ACS Sustain. Chem. Eng. 2017, 5, 4144–4153. https://doi.org/10.1021/acssuschemeng.7b00112.
- 206.
Xiong, W.; Zhao, L.; Ouyang, J.; et al. Surface-modified composites of metal–organic framework and wood-derived carbon for high-performance supercapacitors. J. Colloid Interface Sci. 2025, 679, 243–252. https://doi.org/10.1016/j.jcis.2024.09.247.
- 207.
Dong, H.; Li, L.; Li, C. Controlled alkali etching of MOFs with secondary building units for low-concentration CO2 capture. Chem. Sci. 2023, 14, 8507–8513. https://doi.org/10.1039/D3SC03213B.
- 208.
Li, L.; Yi, J.-D.; Fang, Z.-B.; et al. Creating Giant Secondary Building Layers via Alkali-Etching Exfoliation for Precise Synthesis of Metal–Organic Frameworks. Chem. Mater. 2019, 31, 7584–7589. https://doi.org/10.1021/acs.chemmater.9b02375.
- 209.
Lu, Z.; Zhu, W.; Lei, X.; et al. High pseudocapacitive cobalt carbonate hydroxide films derived from CoAl layered double hydroxides. Nanoscale 2012, 4, 3640–3643. https://doi.org/10.1039/C2NR30617D.
- 210.
Yue, P.; Zhang, Y.; Wu, X. Defective ZnCoNiP nanosheets derived from metal-organic-frameworks as electrodes for high-performance supercapacitors. J. Energy Storage 2023, 58, 106320. https://doi.org/10.1016/j.est.2022.106320.
- 211.
Hassan, H.; Umar, E.; Iqbal, M.W.; et al. Effect of electrolyte optimization on nitrogen-doped MXene (Ti3C2Tx) coupled with Cu–BTC MOF for a supercapattery and the hydrogen evolution reaction. New J. Chem. 2024, 48, 6277–6295. https://doi.org/10.1039/D3NJ05510H.
- 212.
Huang, Q.; Hu, L.; Chen, X.; et al. Metal–Organic Framework-Derived N-Doped Carbon with Controllable Mesopore Sizes for Low-Pt Fuel Cells. Adv. Funct. Mater. 2023, 33, 2302582. https://doi.org/10.1002/adfm.202302582.
- 213.
Feng, L.; Yuan, S.; Zhang, L.-L.; et al. Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Metal–Organic Frameworks. J. Am. Chem. Soc. 2018, 140, 2363–2372. https://doi.org/10.1021/jacs.7b12916.
- 214.
Chen, J.S.; Sun, X.Y.; Kong, W.Q.; et al. N-doped bimetallic sulfides hollow spheres derived from MOF as battery-type electrode for asymmetric supercapacitors. J. Energy Storage 2023, 73, 109164. https://doi.org/10.1016/j.est.2023.109164.
- 215.
Aashi; Rani, R.; Alagar, S.; Sharma, J.; et al. Laser-Induced Crafting of Modulated Structural Defects in MOF-Based Supercapacitor for Energy Storage Application. ACS Mater. Lett. 2024, 6, 1769–1778. https://doi.org/10.1021/acsmaterialslett.4c00206.
- 216.
Cao, X.; Cui, L.; Liu, B.; et al. Reverse synthesis of star anise-like cobalt doped Cu-MOF/Cu2+1O hybrid materials based on a Cu(OH)2 precursor for high performance supercapacitors. J. Mater. Chem. A 2019, 7, 3815–3827. https://doi.org/10.1039/C8TA11396C.
- 217.
Zheng, K.; Tan, H.; Wang, L.H.; et al. Vertically Oriented Cu2+1O@Cu-MOFs Hybrid Clusters for High-Performance Electrochemical Capacitors. Adv. Mater. Interfaces 2021, 8, 2002145. https://doi.org/10.1002/admi.202002145.
- 218.
Gao, J.; Zhuang, Z.; Zhou, X.; et al. Reversible Mn2+/Mn4+ and Mn4+/Mn6+ double-electron redoxes in heterostructure MnS2/MnSe2@HCMs boost high energy storage for hybrid supercapacitors. Chem. Eng. J. 2024, 485, 149520. https://doi.org/10.1016/j.cej.2024.149520.
- 219.
Wu, Y.-F.; Kuo, T.-R.; Lin, L.-Y.; et al. Investigating energy storage ability of MIL101-(Fe) derivatives prepared using successive carbonization and oxidation for supercapacitors. J. Energy Storage 2022, 55, 105420. https://doi.org/10.1016/j.est.2022.105420.
- 220.
Su, Y.-Z.; Lin, T.-C.; Tsai, C.-S.; et al. Growth of Metal–Organic Framework within Macroporous PEDOT:PSS Aerogels Prepared by Directional Freezing for Supercapacitors. ACS Appl. Energy Mater. 2025, 8, 122–133. https://doi.org/10.1021/acsaem.4c02153.
- 221.
Li, J.; Pan, D.; Xu, P.; et al. Rational design of porous nest-like basic Co-Ni carbonates on carbon cloth with optimized electrode process for efficient electrochemical energy storage. Nano Energy 2024, 128, 109954. https://doi.org/10.1016/j.nanoen.2024.109954.