- 1.
Marella, T.K.; Lopez-Pacheco, I.Y.; Parra-Saldivar, R.; et al. Wealth from waste: Diatoms as tools for phycoremediation of wastewater and for obtaining value from the biomass. Sci. Total Environ. 2020, 724, 137960.
- 2.
Mann, D.G.; Vanormelingen, P. An inordinate fondness? The number, distributions, and origins of diatom species. J. Eukaryot. Microbiol. 2013, 60, 414–420.
- 3.
Mal, N.; Srivastava, K.; Sharma, Y.; et al. Facets of diatom biology and their potential applications. Biomass Convers. Bior. 2021, 12, 1959–1975.
- 4.
Jäger, R.; Heileson, J.L.; Abou Sawan, S.; et al. International society of sports nutrition position stand: Long-chain omega-3 polyunsaturated fatty acids. J. Int. Soc. Sports Nutr. 2025, 22, 2441775.
- 5.
Neumann, U.; Derwenskus, F.; Flaiz Flister, V.; et al. Fucoxanthin, a carotenoid derived from Phaeodactylum tricornutum exerts antiproliferative and antioxidant activities in vitro. Antioxidants 2019, 8, 183.
- 6.
Gille, A.; Stojnic, B.; Derwenskus, F.; et al. A lipophilic fucoxanthin-rich Phaeodactylum tricornutum extract ameliorates effects of diet-induced obesity in C57BL/6J mice. Nutrients 2019, 11, 796.
- 7.
Woo, M. N.; Jeon, S. M.; Shin, Y. C.; et al. Anti-obese property of fucoxanthin is partly mediated by altering lipid-regulating enzymes and uncoupling proteins of visceral adipose tissue in mice. Mol. Nutr. Food Res. 2009, 53, 1603–1611.
- 8.
Neumann, U.; Louis, S.; Gille, A.; et al. Anti-inflammatory effects of Phaeodactylum tricornutum extracts on human blood mononuclear cells and murine macrophages. J. Appl. Phycol. 2018, 30, 2837–2846.
- 9.
Hosokawa, M.; Kudo, M.; Maeda, H.; et al. Fucoxanthin induces apoptosis and enhances the antiproliferative effect of the PPARγ ligand, troglitazone, on colon cancer cells. Biochim. Biophys. Acta Gen. Subj. 2004, 1675, 113–119.
- 10.
Hosokawa, M.; Wanezaki, S.; Miyauchi, K.; et al. Apoptosis-inducing effect of fucoxanthin on human leukemia cell line HL-60. Food Sci. Technol. Res. 1999, 5, 243–246.
- 11.
Kim, K.-N.; Heo, S.-J.; Kang, S.-M.; et al. Fucoxanthin induces apoptosis in human leukemia HL-60 cells through a ROS-mediated Bcl-xL pathway. Toxicol. In Vitro 2010, 24, 1648–1654.
- 12.
Afonso, C.; Bragança, A. R.; Rebelo, B. A.; et al. Optimal nitrate supplementation in Phaeodactylum tricornutum culture medium increases biomass and fucoxanthin production. Foods 2022, 11, 568.
- 13.
Medarevic, D.; Losic, D.; Ibric, S. Diatoms—Nature materials with great potential for bioapplications. Hem. Ind. 2016, 70, 613–627.
- 14.
Ikusika, O.O.; Mpendulo, C.T.; Zindove, T.J.; et al. Fossil shell flour in livestock production: A Review. Animals 2019, 9, 70.
- 15.
Janani, S.; Kumar, S.S. Performance analysis of different textile effluent treatment processes involving marine diatom Odontella aurita. Environ. Technol. Innov. 2018, 11, 153–164.
- 16.
Karaman, E.S.; Wang, Z.; Di Benedetto, G.; et al. Fabrication of supercapacitors and flexible electrodes using biosilica from cultured diatoms. Mater. Today Energy 2019, 11, 166–173.
- 17.
Bandara, T.M.W.J.; Withanage, S.S.; Wijayaratne, K.B.; et al. Nano structured diatom frustules incorporated into TiO2 photoelectrodes to enhance performance of quasi-solid-state dye-sensitized solar cells. Opt. Mater. 2023, 146, 114514.
- 18.
Dolatabadi, J.E.N.; de la Guardia, M. Applications of diatoms and silica nanotechnology in biosensing, drug and gene delivery, and formation of complex metal nanostructures. TrAC-Trend Anal. Chem. 2011, 30, 1538–1548.
- 19.
Wang, Y.; Cai, J.; Jiang, Y.; et al. Preparation of biosilica structures from frustules of diatoms and their applications: Current state and perspectives. Appl. Microbiol. Biotechnol. 2013, 97, 453–460.
- 20.
Chandrasekaran, S.; Sweetman, M.J.; Kant, K.; et al. Silicon diatom frustules as nanostructured photoelectrodes. Chem. Commun. 2014, 50, 10441–10444.
- 21.
Lathifah, W.; Fikri, R.; Hidayati, N.; et al. Effect of commercial NPK fertilizer on growth and biomass of Navicula sp. and Nannochloropsis sp. IOP Conf. Ser. Earth Environ. Sci. 2021, 762, 012060.
- 22.
Zhang, H.; Liu, Z.; Chen, J.; et al. Research progress on the production of bioactive substances using marine diatoms. Chin. J. Biotechnol. 2021, 41, 81–90.
- 23.
Kumaran, J.; Singh, I.S.B.; Joseph, V. Effective biomass harvesting of marine diatom Chaetoceros muelleri by chitosan-induced flocculation, preservation of biomass, and recycling of culture medium for aquaculture feed application. J. Appl. Phycol. 2021, 33, 1605–1619.
- 24.
Brennan, L.; Owende, P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 2010, 14, 557–577.
- 25.
Farid, M.S.; Shariati, A.; Badakhshan, A.; et al. Using nano-chitosan for harvesting microalga Nannochloropsis sp. Bioresour. Technol. 2013, 131, 555–559.
- 26.
Bayu, A.; Rachman, A.; Noerdjito, D.; et al. High-value chemicals from marine diatoms: A biorefinery approach. IOP Conf. Ser. Earth Environ. Sci. 2020, 460, 012012.
- 27.
Armbrust, E.V. The life of diatoms in the world’s oceans. Nature 2009, 459, 185–192.
- 28.
Bedoshvili, Y.D.; Likhoshway, Y.V. Cellular Mechanisms of Diatom Valve Morphogenesis. In Diatoms: Fundamentals and Applications; Wiley: Hoboken, NJ, USA, 2019; pp. 99–114.
- 29.
Anderson, M.W.; Holmes, S.M.; Hanif, N.; et al. Hierarchical pore structures through diatom zeolitization. Angew. Chem. 2000, 39, 2707–2710.
- 30.
B-Béres, V.; Stenger-Kovács, C.; Buczkó, K.; et al. Ecosystem services provided by freshwater and marine diatoms. Hydrobiologia 2022, 850, 2707–2733.
- 31.
Cvjetinovic, J.; Luchkin, S. Y.; Statnik, E. S.; et al. Revealing the static and dynamic nanomechanical properties of diatom frustules-Nature's glass lace. Sci. Rep. 2023, 13, 5518.
- 32.
Jeffryes, C.; Gutu, T.; Jiao, J.; et al. Metabolic insertion of nanostructured TiO2 into the patterned biosilica of the diatom Pinnularia sp. by a two-stage bioreactor cultivation process. Acs Nano 2008, 2, 2103–2112.
- 33.
Davidovich, N.A.; Davidovich, O.I.; Podunai, Y.A.; et al. Reproductive properties of diatoms significant for their cultivation and biotechnology. Russ. J. Plant Physiol. 2015, 62, 153–160.
- 34.
Falciatore, A.; Bowler, C. Revealing the molecular secrets of marine diatoms. Annu. Rev. Plant. Biol. 2002, 53, 109–130.
- 35.
Guo, B.; Liu, B.; Yang, B.; et al. Screening of diatom strains and characterization of Cyclotella cryptica as a potential fucoxanthin producer. Mar. Drugs 2016, 14, 125.
- 36.
Iwasaki, K. Algal Bioproducts: Investigating the Effect of Light Quality on Metabolite Production by Photosynthetic Diatoms. Ph.D. Thesis, University of Technology Sydney, Sydney, NSW, Australia, 2019.
- 37.
Mus, F.; Toussaint, J.P.; Cooksey, K.E.; et al. Physiological and molecular analysis of carbon source supplementation and pH stress-induced lipid accumulation in the marine diatom Phaeodactylum tricornutum. Appl. Microbiol. Biotechnol. 2013, 97, 3625–3642.
- 38.
Yi, Z.; Su, Y.; Cherek, P.; et al. Combined artificial high-silicate medium and LED illumination promote carotenoid accumulation in the marine diatom Phaeodactylum tricornutum. Microb. Cell Fact. 2019, 18, 209.
- 39.
Lee, A.H.; Shin, H.Y.; Park, J.H.; et al. Fucoxanthin from microalgae Phaeodactylum tricornutum inhibits pro-inflammatory cytokines by regulating both NF-κB and NLRP3 inflammasome activation. Sci. Rep. 2021, 11, 543.
- 40.
Foo, S.C.; Yusoff, F.M.; Ismail, M.; et al. Production of fucoxanthin-rich fraction (FxRF) from a diatom, Chaetoceros calcitrans (Paulsen) Takano 1968. Algal Res. 2015, 12, 26–32.
- 41.
Lin, C.-H.; Chang, Y.-F.; Prasetya, S.J.; et al. An integrated process for enhanced production and purification of fucoxanthin and sulfated polysaccharides in diatom Hyalosynedra toxoneides cultures. J. Taiwan. Inst. Chem. Eng. 2024, 155, 105308.
- 42.
Li, Y.; Liu, L.; Sun, P.; et al. Fucoxanthinol from the diatom Nitzschia Laevis ameliorates neuroinflammatory responses inlipopolysaccharide-stimulated BV-2 microglia. Mar. Drugs 2020, 18, 116.
- 43.
Marella, T.K.; Parine, N.R.; Tiwari, A. Potential of diatom consortium developed by nutrient enrichment for biodiesel production and simultaneous nutrient removal from waste water. Saudi J. Biol. Sci. 2018, 25, 704–709.
- 44.
Marella, T.K.; Datta, A.; Patil, M.D.; et al. Biodiesel production through algal cultivation in urban wastewater using algal floway. Bioresour. Technol. 2019, 280, 222–228.
- 45.
Pezzolesi, L.; Pichierri, S.; Samorì, C.; et al. PUFAs and PUAs production in three benthic diatoms from the northern Adriatic Sea. Phytochemistry 2017, 142, 85–91.
- 46.
Pekkoh, J.; Phinyo, K.; Thurakit, T.; et al. Lipid Profile, antioxidant and antihypertensive activity, and computational molecular docking of diatom fatty acids as ACE inhibitors. Antioxidants 2022, 11, 186.
- 47.
Rodolfi, L.; Biondi, N.; Guccione, A.; et al. Oil and eicosapentaenoic acid production by the diatom Phaeodactylum tricornutum cultivated outdoors in Green Wall Panel (GWP®) reactors. Biotechnol. Bioeng. 2017, 114, 2204–2210.
- 48.
Zhao, P.; Zang, Z.; Xie, X.; et al. The influence of different flocculants on the physiological activity and fucoxanthin production of Phaeodactylum tricornutum. Process Biochem. 2014, 49, 681–687.
- 49.
Świderska-Kołacz, G.; Jefimow, M.; Klusek, J.; et al. Influence of algae supplementation on the concentration of Glutathione and the activity of glutathione enzymes in the mice liver and kidney. Nutrients 2021, 13, 1996.
- 50.
Govindan, N.; Maniam, G.P.; Yusoff, M.M.; et al. Statistical optimization of lipid production by the diatom Gyrosigma sp. grown in industrial wastewater. J. Appl. Phycol. 2020, 32, 375–387.
- 51.
Kusaikin, M.; Ermakova, S.; Shevchenko, N.; et al. Structural characteristics and antitumor activity of a new chrysolaminaran from the diatom alga Synedra acus. Chem. Nat. Compd. 2010, 46, 1–4.
- 52.
Gao, B.; Chen, A.; Zhang, W.; et al. Co-production of lipids, eicosapentaenoic acid, fucoxanthin, and chrysolaminarin by Phaeodactylum tricornutum cultured in a flat-plate photobioreactor under varying nitrogen conditions. J. Ocean. Univ. China 2017, 16, 916–924.
- 53.
Stiefvatter, L.; Neumann, U.; Rings, A.; et al. The microalgae Phaeodactylum tricornutum is well suited as a food with positive effects on the intestinal microbiota and the generation of SCFA: Results from a pre-clinical study. Nutrients 2022, 14, 2504.
- 54.
Figueroa, F.A.; Abdala-Díaz, R.; Hernández, V.; et al. Invasive diatom Didymosphenia geminata as a source of polysaccharides with antioxidant and immunomodulatory effects on macrophage cell lines. J. Appl. Phycol. 2019, 32, 93–102.
- 55.
Guzman, S.; Gato, A.; Lamela, M.; et al. Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother. Res. 2003, 17, 665–670.
- 56.
Lee, J.B.; Hayashi, K.; Hirata, M.; et al. Antiviral sulfated polysaccharide from Navicula directa, a diatom collected from deep-sea water in Toyama Bay. Biol. Pharm. Bull. 2006, 29, 2135–2139.
- 57.
Lakshmegowda, S.B.; Rajesh, S.K.; Kandikattu, H.K.; et al. In vitro and in vivo studies on hexane fraction of Nitzschia palea, a freshwater diatom for oxidative damage protective and anti-inflammatory response. Rev. Bras. Farmacogn. 2020, 30, 189–201.
- 58.
Sabia, A.; Clavero, E.; Pancaldi, S.; et al. Effect of different CO2 concentrations on biomass, pigment content, and lipid production of the marine diatom Thalassiosira pseudonana. Appl. Microbiol. Biotechnol. 2018, 102, 1945–1954.
- 59.
Chen, G.Q.; Jiang, Y.; Chen, F. Salt-induced alterations in lipid composition of diatom Nitzschia Laevis (Bacillariophyceae) under heterotrophic culture condition. J. Phycol. 2008, 44, 1309–1314.
- 60.
Cheng, J.; Feng, J.; Ge, T.; et al. Pyrolytic characteristics of biodiesel prepared from lipids accumulated in diatom cells with growth regulation. J. Biosci. Bioeng. 2015, 120, 161–166.
- 61.
Lin, Q.; Zhuo, W.H.; Wang, X.W.; et al. Effects of fundamental nutrient stresses on the lipid accumulation profiles in two diatom species Thalassiosira weissflogii and Chaetoceros muelleri. Bioprocess Biosyst. Eng. 2018, 41, 1213–1224.
- 62.
Svenning, J.B.; Dalheim, L.; Vasskog, T.; et al. Lipid yield from the diatom Porosira glacialis is determined by solvent choice and number of extractions, independent of cell disruption. Sci. Rep. 2020, 10, 22229.
- 63.
Sabharwal, T.; Sathasivan, K.; Mehdy, M.C. Defense related decadienal elicits membrane lipid remodeling in the diatom Phaeodactylum tricornutum. PLoS ONE 2017, 12, e0178761.
- 64.
Shishlyannikov, S.M.; Klimenkov, I.V.; Bedoshvili, Y.D.; et al. Effect of mixotrophic growth on the ultrastructure and fatty acid composition of the diatom Synedra acus from Lake Baikal. J. Biol. Res. Thessalon. 2014, 21, 15.
- 65.
Artamonova, E.Y.; Svenning, J.B.; Vasskog, T.; et al. Analysis of phospholipids and neutral lipids in three common northern cold water diatoms: Coscinodiscus concinnus, Porosira glacialis, and Chaetoceros socialis, by ultra-high performance liquid chromatography-mass spectrometry. J. Appl. Phycol. 2017, 29, 1241–1249.
- 66.
Scholz, B.; Liebezeit, G. Biochemical characterisation and fatty acid profiles of 25 benthic marine diatoms isolated from the Solthörn tidal flat (southern North Sea). J. Appl. Phycol. 2012, 25, 453–465.
- 67.
Dalheim, L.; Svenning, J.B.; Eilertsen, H.C.; et al. Stability of lipids during wet storage of the marine diatom Porosira glacialis under semi-preserved conditions at 4 and 20 °C. J. Appl. Phycol. 2020, 33, 385–395.
- 68.
Govindan, N.; Maniam, G.; Ab. Rahim, M.; et al. Production of renewable lipids by the diatom Amphora copulata. Fermentation 2021, 7, 37.
- 69.
Cointet, E.; Séverin, E.; Couzinet-Mossion, A.; et al. Assessment of the lipid production potential of six benthic diatom species grown in airlift photobioreactors. J. Appl. Phycol. 2021, 33, 2093–2103.
- 70.
Palanisamy, K.M.; Paramasivam, P.; Maniam, G.P.; et al. Production of lipids by Chaetoceros affinis in media based on palm oil mill effluent. J. Biotechnol. 2021, 327, 86–96.
- 71.
Zhukova, N.; Aizdaicher, N. Lipid and fatty acid composition during vegetative and resting stages of the marine diatom Chaetoceros salsugineus. Bot. Mar. 2001, 44, 287–293.
- 72.
Liang, Y.; Mai, K. Effect of growth phase on the fatty acid compositions of four species of marine diatoms. J. Ocean. Univ. China 2005, 4, 157–162.
- 73.
Yang, Y.H.; Du, L.; Hosokawa, M.; et al. Fatty acid and lipid class composition of the microalga Phaeodactylum tricornutum. J. Oleo Sci. 2017, 66, 363–368.
- 74.
Chen, Y.-C. The biomass and total lipid content and composition of twelve species of marine diatoms cultured under various environments. Food Chem. 2012, 131, 211–219.
- 75.
Saranya, G.; Ramachandra, T.V. Scope for biodiesel and bioactive compounds production in the diatom Nitzschia punctata. Fuel 2021, 300, 120985.
- 76.
Krishnan, A.; Anandan, R.; Joseph, A. Culture medium and growth phase modulate the fatty acid composition of the diatom Nitzschia palea (Kutzing) W. Smith-Potential source for live feed and biodiesel. Fish. Technol. 2020, 57, 28–35.
- 77.
Bouzidi, N.; Zili, F.; García-Maroto, F.; et al. Impact of temperature and growth phases on lipid composition and fatty acid profile of a thermophilic Bacillariophyta strain related to the genus Halamphora from north-eastern Tunisia. J. Mar. Biol. Assoc. UK 2020, 100, 529–536.
- 78.
Bedoshvili, Y.; Podunay, Y.; Nikonova, A.; et al. Lipid and fatty acids accumulation features of Entomoneis cf. paludosa during exponential and stationary growth phases in laboratory culture. Diversity 2021, 13, 459.
- 79.
Demirel, Z.; Imamoglu, E.; Dalay, M.C. Growth kinetics of Nanofrustulum shiloi under different mixing conditions in flat-plate photobioreactor. Braz. Arch. Biol. Technol. 2020, 63, e20190201.
- 80.
Ying, L.; Kang-sen, M.; Shi-chun, S.; et al. Effect of light intensity on the total lipid and fatty acid composition of six strains of marine diatoms. Chin. J. Oceanol. Limnol. 2001, 19, 249–254.
- 81.
Wang, X.W.; Liang, J.R.; Luo, C.S.; et al. Biomass, total lipid production, and fatty acid composition of the marine diatom Chaetoceros muelleri in response to different CO2 levels. Bioresour. Technol. 2014, 161, 124–130.
- 82.
Niu, Y.-F.; Wang, X.; Hu, D.-X.; et al. Molecular characterization of a glycerol-3-phosphate acyltransferase reveals key features essential for triacylglycerol production in Phaeodactylum tricornutum. Biotechnol. Biofuels 2016, 9, 60.
- 83.
Cheah, Y.T.; Ng, B.W.; Tan, T.L.; et al. Biomass and eicosapentaenoic acid production from Amphora sp. under different environmental and nutritional conditions. Biotechnol. Appl. Biochem. 2023, 70, 568–580.
- 84.
Levitan, O.; Dinamarca, J.; Hochman, G.; et al. Diatoms: A fossil fuel of the future. Trends Biotechnol. 2014, 32, 117–124.
- 85.
Sahena, F.; Zaidul, I.S.M.; Jinap, S.; et al. Fatty acid compositions of fish oil extracted from different parts of Indian mackerel (Rastrelliger kanagurta) using various techniques of supercritical CO2 extraction. Food Chem. 2010, 120, 879–885.
- 86.
Yang, M.; Wei, B.; Meng, J.; et al. Sources and Physiological Functions of ω-3 Polyunsaturated Fatty Acids: A Research Progress. China Oils Fats 2019, 44, 110–115.
- 87.
Adarme-Vega, T.C.; Thomas-Hall, S.R.; Schenk, P.M. Towards sustainable sources for omega-3 fatty acids production. Curr. Opin. Biotechnol. 2014, 26, 14–18.
- 88.
Peltomaa, E.; Johnson, M.D.; Taipale, S.J. Marine cryptophytes are great sources of EPA and DHA. Mar. Drugs 2017, 16, 3.
- 89.
Swanson, D.; Block, R.; Mousa, S.A. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv. Nutr. 2012, 3, 1–7.
- 90.
Brenes-Monge, H.P.; del Pilar Sánchez-Saavedra, M. Effect of nitrogen limitation and irradiance on the biochemical composition of Haslea ostrearia. Algal Res. 2025, 86, 103931.
- 91.
Torstensson, A.; Hedblom, M.; Andersson, J.; et al. Synergism between elevated pCO2 and temperature on the Antarctic sea ice diatom Nitzschia lecointei. Biogeosciences 2013, 10, 6391–6401.
- 92.
Tyagi, R.; Singh, P.K.; Saxena, A.; et al. Exploring the nutraceutical potential of high-altitude freshwater diatom Nitzschia sp. in batch culture. Syst. Microbiol. Biomanuf. 2024, 4, 1262–1272.
- 93.
de Viçose, G.C.; Porta, A.; Viera, M.P.; et al. Effects of density on growth rates of four benthic diatoms and variations in biochemical composition associated with growth phase. J. Appl. Phycol. 2012, 24, 1427–1437.
- 94.
Guihéneuf, F.; Fouqueray, M.; Mimouni, V.; et al. Effect of UV stress on the fatty acid and lipid class composition in two marine microalgae Pavlova lutheri (Pavlovophyceae) and Odontella aurita (Bacillariophyceae). J. Appl. Phycol. 2010, 22, 629–638.
- 95.
Pasquet, V.; Ulmann, L.; Mimouni, V.; et al. Fatty acids profile and temperature in the cultured marine diatom Odontella aurita. J. Appl. Phycol. 2014, 26, 2265–2271.
- 96.
Hamilton, M.L.; Warwick, J.; Terry, A.; et al. Towards the industrial production of omega-3 long chain polyunsaturated fatty acids from a genetically modified diatom Phaeodactylum tricornutum. PLoS ONE 2015, 10, e0144054.
- 97.
Qiao, H.; Cong, C.; Sun, C.; et al. Effect of culture conditions on growth, fatty acid composition and DHA/EPA ratio of Phaeodactylum tricornutum. Aquaculture 2016, 452, 311–317.
- 98.
Şirin, P.A.; Serdar, S. Effects of nitrogen starvation on growth and biochemical composition of some microalgae species. Folia Microbiol. 2024, 69, 889–902.
- 99.
Steinrucken, P.; Prestegard, S.K.; de Vree, J.H.; et al. Comparing EPA production and fatty acid profiles of three Phaeodactylum tricornutum strains under western Norwegian climate conditions. Algal Res. 2018, 30, 11–22.
- 100.
Ruiz-Domínguez, M.C.; Toledo, C.; Órdenes, D.; et al. Variability of omega-3/6 fatty acid obtained through extraction-transesterification processes from Phaeodactylum tricornutum. Acta Chim. Slov. 2021, 68, 629–637.
- 101.
Svenning, J.B.; Dalheim, L.; Eilertsen, H.C.; et al. Temperature dependent growth rate, lipid content and fatty acid composition of the marine cold-water diatom Porosira glacialis. Algal Res. 2019, 37, 11–16.
- 102.
Artamonova, E.Y.; Vasskog, T.; Eilertsen, H.C. Lipid content and fatty acid composition of Porosira glacialis and Attheya longicornis in response to carbon dioxide (CO2) aeration. PLoS ONE 2017, 12, e0177703.
- 103.
Bastos, C.R.V.; Maia, I.B.; Pereira, H.; et al. Optimisation of biomass production and nutritional value of two marine diatoms (Bacillariophyceae), Skeletonema costatum and Chaetoceros calcitrans. Biology 2022, 11, 594.
- 104.
Wu, M.; Gao, G.; Jian, Y.; et al. High CO2 increases lipid and polyunsaturated fatty acid productivity of the marine diatom Skeletonema costatum in a two-stage model. J. Appl. Phycol. 2022, 34, 43–50.
- 105.
Gao, X.Z.; Jiang, X.M.; Zhang, Z.L.; et al. Comparative study on total lipid content and fatty acid composition of five newly isolated marine diatoms. J. Biol. 2014, 31, 60–63, 81.
- 106.
Zhukova, N. Changes in the lipid composition of Thalassiosira pseudonana during its life cycle. Russ. J. Plant Physiol. 2004, 51, 702–707.
- 107.
Etesami, E.; Jorjani, S.; Noroozi, M. Improvement of Thalassiosira weissflogii as high valuable nutritional feed. Iran. J. Fish. Sci. 2022, 21, 15–32.
- 108.
Suroy, M.; Moriceau, B.; Boutorh, J.; et al. Fatty acids associated with the frustules of diatoms and their fate during degradation—A case study in Thalassiosira weissflogii. Deep. Sea Res. Part. I Oceanogr. Res. Pap. 2014, 86, 21–31.
- 109.
Ofosu, F.K.; Daliri, E.B.; Lee, B.H.; et al. Current trends and future perspectives on omega-3 fatty acids. Res. Rev. J. Biol. 2017, 5, 11–20.
- 110.
Tyagi, R.; Rastogi, R.P.; Babich, O.; et al. New perspectives of omega-3 fatty acids from diatoms. Syst. Microbiol. Biomanuf. 2023, 4, 528–541.
- 111.
Khozin-Goldberg, I.; Sayanova, O. Metabolic engineering and synthetic biology approaches to enhancing production of long-chain polyunsaturated fatty acids in microalgae. In Grand Challenges in Algae Biotechnology. Grand Challenges in Biology and Biotechnology; Hallmann, A., Rampelotto, P., Eds.; Springer: Cham, Switzerland, 2019; pp. 249–289.
- 112.
Arao, T.; Yamada, M. Biosynthesis of polyunsaturated fatty acids in the marine diatom, Phaeodactylum tricornutum. Phytochemistry 1994, 35, 1177–1181.
- 113.
Gong, Y.; Wan, X.; Jiang, M.; et al. Metabolic engineering of microorganisms to produce omega-3 very long-chain polyunsaturated fatty acids. Prog. Lipid Res. 2014, 56, 19–35.
- 114.
Metherel, A.H.; Bazinet, R.P. Updates to the n-3 polyunsaturated fatty acid biosynthesis pathway: DHA synthesis rates, tetracosahexaenoic acid and (minimal) retroconversion. Prog. Lipid Res. 2019, 76, 101008.
- 115.
Meyer, A.; Cirpus, P.; Ott, C.; et al. Biosynthesis of docosahexaenoic acid in Euglena gracilis: Biochemical and molecular evidence for the involvement of a Δ4-fatty acyl group desaturase. Biochemistry 2003, 42, 9779–9788.
- 116.
Jones, P.J.; Papamandjaris, A.A. Lipids: Cellular metabolism. In Present knowledge in nutrition; Wiley: Hoboken, NJ, USA, 2012; 132–148.
- 117.
Akiba, S.; Murata, T.; Kitatani, K.; et al. Involvement of lipoxygenase pathway in docosapentaenoic acid-induced inhibition of platelet aggregation. Biol. Pharm. Bull. 2000, 23, 1293–1297.
- 118.
Tapiero, H.; Ba, G.N.; Couvreur, P.; et al. Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomed. Pharmacother. 2002, 56, 215–222.
- 119.
De Lau, L.; Bornebroek, M.; Witteman, J.; et al. Dietary fatty acids and the risk of Parkinson disease: The Rotterdam study. Neurology 2005, 64, 2040–2045.
- 120.
Julien, C.; Berthiaume, L.; Hadj-Tahar, A.; et al. Postmortem brain fatty acid profile of levodopa-treated Parkinson disease patients and parkinsonian monkeys. Neurochem. Int. 2006, 48, 404–414.
- 121.
Morris, M.C.; Evans, D.A.; Bienias, J.L.; et al. Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch. Neurol. 2003, 60, 940–946.
- 122.
Wang, C.; Wang, D.; Xu, J.; et al. DHA enriched phospholipids with different polar groups (PC and PS) had different improvements on MPTP-induced mice with Parkinson’s disease. J. Funct. Foods 2018, 45, 417–426.
- 123.
Calon, F.; Lim, G.P.; Yang, F.; et al. Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mouse model. Neuron 2004, 43, 633–645.
- 124.
Garg, P.; Pejaver, R.K.; Sukhija, M.; et al. Role of DHA, ARA, & phospholipids in brain development: An Indian perspective. Clin. Epidemiol. Glob. Health 2017, 5, 155–162.
- 125.
Zhai, S.D.; Jiang, L.Q.; Liu, F. New advances in clinical applications of Ω-3 unsaturated fatty acids. Chin. J. New Drugs 2003, 2, 98–101.
- 126.
Kesavulu, M.M.; Kameswararao, B.; Apparao, C.; et al. Effect of omega-3 fatty acids on lipid peroxidation and antioxidant enzyme status in type 2 diabetic patients. Diabetes Metab. 2002, 28, 20–26.
- 127.
Pajot, A.; Hao Huynh, G.; Picot, L.; et al. Fucoxanthin from algae to human, an extraordinary bioresource: Insights and advances in up and downstream processes. Mar. Drugs 2022, 20, 222.
- 128.
Xia, S.; Wang, K.; Wan, L.; et al. Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Mar. Drugs 2013, 11, 2667–2681.
- 129.
Fang, J.P.; Chen, Q.C.; Huang, L.Q. Research progress on the biosynthetic pathway of fucoxanthin and its response to light. J. Fujian Norm. Univ. 2021, 37, 96–108.
- 130.
Kim, S.M.; Kang, S.-W.; Kwon, O.-N.; et al. Fucoxanthin as a major carotenoid in Isochrysis aff. galbana: Characterization of extraction for commercial application. J. Korean Soc. Appl. Biol. Chem. 2012, 55, 477–483.
- 131.
Fernandes, F.; Barbosa, M.; Oliveira, A.P.; et al. The pigments of kelps (Ochrophyta) as part of the flexible response to highly variable marine environments. J. Appl. Phycol. 2016, 28, 3689–3696.
- 132.
Oliyaei, N.; Moosavi-Nasab, M. Ultrasound-assisted extraction of fucoxanthin from Sargassum angustifolium and Cystoseira indica brown algae. J. Food Process. Preserv. 2021, 45, e15929.
- 133.
Molina, G.A.; González-Reyna, M.A.; Loske, A.M.; et al. Weak shock wave-mediated fucoxanthin extraction from Sargassum spp. and its electrochemical quantification. Algal Res. 2022, 68, 102891.
- 134.
Jaswir, I.; Noviendri, D.; Salleh, H.M.; Miyashita, K. Fucoxanthin extractions of brown seaweeds and analysis of their lipid fraction in methanol. Food Sci. Technol. Res. 2012, 18, 251–257.
- 135.
Savira, A.D.R.; Amin, M.N.G.; Alamsjah, M.A. The effect of different type of solvents on the antioxidant activity of fucoxanthin extract from brown seaweed Sargassum duplicatum. IOP Conf. Ser. Earth Environ. Sci. 2021, 718, 012010.
- 136.
Ktari, L.; Mdallel, C.; Aoun, B.; et al. Fucoxanthin and phenolic contents of six dictyotales from the tunisian coasts with an emphasis for a green extraction using a supercritical CO2 method. Front. Mar. Sci. 2021, 8, 647159.
- 137.
Xiao, X.; Si, X.; Yuan, Z.; et al. Isolation of fucoxanthin from edible brown algae by microwave-assisted extraction coupled with high-speed countercurrent chromatography. J. Sep. Sci. 2012, 35, 2313–2317.
- 138.
Nunes, N.; Leça, J.M.; Pereira, A.C.; et al. Evaluation of fucoxanthin contents in seaweed biomass by vortex-assisted solid-liquid microextraction using high-performance liquid chromatography with photodiode array detection. Algal Res. 2019, 42, 101603.
- 139.
Jaswir, I.; Noviendri, D.; Salleh, H.M.; et al. Analysis of fucoxanthin content and purification of all-trans-fucoxanthin from Turbinaria turbinata and Sargassum plagyophyllum by SiO2 open column chromatography and reversed phase-HPLC. J. Liq. Chromatogr. Relat. Technol. 2013, 36, 1340–1354.
- 140.
Kanda, H.; Kamo, Y.; Machmudah, S.; et al. Extraction of fucoxanthin from raw macroalgae excluding drying and cell wall disruption by liquefied dimethyl ether. Mar. Drugs 2014, 12, 2383–2396.
- 141.
Shannon, E.; Abu-Ghannam, N. Optimisation of fucoxanthin extraction from Irish seaweeds by response surface methodology. J. Appl. Phycol. 2016, 29, 1027–1036.
- 142.
Raji, V.; Loganathan, C.; Sadhasivam, G.; et al. Purification of fucoxanthin from Sargassum wightii Greville and understanding the inhibition of angiotensin 1-converting enzyme: An in vitro and in silico studies. Int. J. Biol. Macromol. 2020, 148, 696–703.
- 143.
Shang, Y.F.; Kim, S.M.; Lee, W.J.; et al. Pressurized liquid method for fucoxanthin extraction from Eisenia bicyclis (Kjellman) Setchell. J. Biosci. Bioeng. 2011, 111, 237–241.
- 144.
Ye, Y.; Sun, J.; Wang, L.; et al. Isolation and purification of fucoxanthin from brown seaweed Sargassum horneri using open ODS column chromatography and ethanol precipitation. Molecules 2021, 26, 3777.
- 145.
McClure, D.D.; Luiz, A.; Gerber, B.; et al. An investigation into the effect of culture conditions on fucoxanthin production using the marine microalgae Phaeodactylum tricornutum. Algal Res. 2018, 29, 41–48.
- 146.
Derwenskus, F.; Metz, F.; Gille, A.; et al. Pressurized extraction of unsaturated fatty acids and carotenoids from wet Chlorella vulgaris and Phaeodactylum tricornutum biomass using subcritical liquids. GCB Bioenergy 2018, 11, 335–344.
- 147.
Khoo, K.S.; Ooi, C.W.; Chew, K.W.; et al. Extraction of fucoxanthin from Chaetoceros calcitrans by electropermeabilization-assisted liquid biphasic flotation system. J. Chromatogr. A 2022, 1668, 462915.
- 148.
Eilers, U.; Bikoulis, A.; Breitenbach, J.; et al. Limitations in the biosynthesis of fucoxanthin as targets for genetic engineering in Phaeodactylum tricornutum. J. Appl. Phycol. 2015, 28, 123–129.
- 149.
Paidi, M.K.; Attupuram, A.; Udata, K.S.; et al. Acetone diethyl ether-based biorefinery process for co-extraction of fucoxanthin, chlorophyll, DHA, and EPA from the diatom Thalassiosira lundiana. Algal Res. 2023, 74, 103215.
- 150.
Popovich, C.A.; Faraoni, M.B.; Sequeira, A.; Det al. Potential of the marine diatom Halamphora coffeaeformis to simultaneously produce omega-3 fatty acids, chrysolaminarin and fucoxanthin in a raceway pond. Algal Res. 2020, 51, 102030.
- 151.
Lu, X.; Liu, B.; He, Y.; et al. Novel insights into mixotrophic cultivation of Nitzschia laevis for co-production of fucoxanthin and eicosapentaenoic acid. Bioresour. Technol. .2019, 294, 122145.
- 152.
Kim, S.M.; Jung, Y.J.; Kwon, O.N.; et al. A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Appl. Biochem. Biotechnol. 2012, 166, 1843–1855.
- 153.
Gilbert-López, B.; Barranco, A.; Herrero, M.; et al. Development of new green processes for the recovery of bioactives from Phaeodactylum tricornutum. Food Res. Int. 2017, 99, 1056–1065.
- 154.
Wang, S.; Verma, S.K.; Hakeem Said, I.; et al. Changes in the fucoxanthin production and protein profiles in Cylindrotheca closterium in response to blue light-emitting diode light. Microb. Cell Fact. 2018, 17, 1–13.
- 155.
Khoo, K.S.; Ooi, C.W.; Chew, K.W.; et al. Bioprocessing of Chaetoceros calcitrans for the recovery of fucoxanthin using CO2-based alkyl carbamate ionic liquids. Bioresour. Technol. 2021, 322, 124520.
- 156.
Sun, J.; Zhou, C.; Cheng, P.; et al. A simple and efficient strategy for fucoxanthin extraction from the microalga Phaeodactylum tricornutum. Algal Res. 2022, 61, 102610.
- 157.
Xia, S.; Gao, B.; Fu, J.; et al. Production of fucoxanthin, chrysolaminarin, and eicosapentaenoic acid by Odontella aurita under different nitrogen supply regimes. J. Biosci. Bioeng. 2018, 126, 723–729.
- 158.
Marella, T.K.; Tiwari, A. Marine diatom Thalassiosira weissflogii based biorefinery for co-production of eicosapentaenoic acid and fucoxanthin. Bioresour. Technol. 2020, 307, 123245.
- 159.
Tachihana, S.; Nagao, N.; Katayama, T.; et al. High productivity of eicosapentaenoic acid and fucoxanthin by a marine diatom Chaetoceros gracilis in a semi-continuous culture. Front. Bioeng. Biotechnol. 2020, 8, 602721.
- 160.
Yang, R.; Wei, D.; Xie, J. Diatoms as cell factories for high-value products: Chrysolaminarin, eicosapentaenoic acid, and fucoxanthin. Crit. Rev. Biotechnol. 2020, 40, 993–1009.
- 161.
Seo, M.J.; Seo, Y.J.; Pan, C.H.; et al. Fucoxanthin suppresses lipid accumulation and ROS production during differentiation in 3T3-L1 adipocytes. Phytother. Res. 2016, 30, 1802–1808.
- 162.
Maria, A.G.; Graziano, R.; Nicolantonio, D.O. Carotenoids: Potential allies of cardiovascular health? Food Nutr. Res. 2015, 59, 26762.
- 163.
Maeda, H.; Hosokawa, M.; Sashima, T.; et al. Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochem. Biophys. Res. Commun. 2005, 332, 392–397.
- 164.
Mei, C.; Zhou, S.; Zhu, L.; et al. Antitumor effects of Laminaria extract fucoxanthin on lung cancer. Mar. Drugs 2017, 15, 39.
- 165.
Ye, G.; Wang, L.; Yang, K.; et al. Fucoxanthin may inhibit cervical cancer cell proliferation via downregulation of HIST1H3D. J. Int. Med. Res. 2020, 48, 1–14.
- 166.
Zhu, Y.; Cheng, J.; Min, Z.; et al. Effects of fucoxanthin on autophagy and apoptosis in SGC-7901cells and the mechanism. J. Cell. Biochem. 2018, 119, 7274–7284.
- 167.
Wang, J.; Ma, Y.; Yang, J.; et al. Fucoxanthin inhibits tumour-related lymphangiogenesis and growth of breast cancer. J. Cell. Mol. Med. 2019, 23, 2219–2229.
- 168.
Zhang, Y.; Fang, H.; Xie, Q.; et al. Comparative evaluation of the radical-scavenging activities of fucoxanthin and its stereoisomers. Molecules 2014, 19, 2100–2113.
- 169.
Raji, V.; Loganathan, C.; Ramesh, T.; et al. Dual antidiabetic and antihypertensive activity of fucoxanthin isolated from Sargassum wightii Greville in in vivo rat model. Food Sci. Hum. Wellness 2023, 12, 1693–1700.
- 170.
Xu, H.Y.; Jiang, M.T.; Yang, Y.F.; et al. Microalgae-based fucoxanthin attenuates rheumatoid arthritis by targeting the JAK-STAT signaling pathway and gut microbiota. J. Agric. Food Chem. 2025, 73, 11708–11719.
- 171.
Zhang, L.; Li, T.; Liu, J.; et al. The regulation of the NF-κB p65 and Nrf2/HO-1 signaling pathways by fucoxanthin in human THP-1 monocyte macrophages under a lipopolysaccharide-induced inflammation model. Foods 2025, 14, 1746.
- 172.
Zhou, Y.; Zhang, J.; Xu, K.; et al. Fucoxanthin improves serum lipids, liver metabolism and gut microbiota in hyperlipidemia mice. Food Sci. Hum. Wellness 2025, 14, 9250017.
- 173.
Kroth, P.G.; Chiovitti, A.; Gruber, A.; et al. A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS ONE 2008, 3, e1426.
- 174.
Gügi, B.; Le Costaouec, T.; Burel, C.; et al. Diatom-specific oligosaccharide and polysaccharide structures help to unravel biosynthetic capabilities in diatoms. Mar. Drugs 2015, 13, 5993–6018.
- 175.
Ben Atitallah, A.; Hentati, F.; Dammak, M.; et al. Effect of microalgae incorporation on quality characteristics and functional and antioxidant capacities of ready-to-eat fish burgers made from common carp (Cyprinus carpio). Appl. Sci. 2019, 9, 1830.
- 176.
Tiwari, A.; Melchor-Martínez, E.M.; Saxena, A.; et al. Therapeutic attributes and applied aspects of biological macromolecules (polypeptides, fucoxanthin, sterols, fatty acids, polysaccharides, and polyphenols) from diatoms—A review. Int. J. Biol. Macromol. 2021, 171, 398–413.
- 177.
Qin, J.; Wang, J.-K.; Zhang, J.-T. Adsorption properties of diatom frustules for heavy metal Cu2+. Guangdong Chem. Ind. 2016, 43, 93–95.
- 178.
Phogat, S.; Saxena, A.; Kapoor, N.; et al. Diatom mediated smart drug delivery system. J. Drug Deliv. Sci. Technol. 2021, 63, 102433.
- 179.
Aw, M.S.; Simovic, S.; Addai-Mensah, J.; et al. Silica microcapsules from diatoms as new carrier for delivery of therapeutics. Nanomedicine 2011, 6, 1159–1173.
- 180.
Jeffryes, C.; Campbell, J.; Li, H.; et al. The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices. Energy Environ. Sci. 2011, 4, 3930–3941.
- 181.
Bandara, T.; Furlani, M.; Albinsson, I.; et al. Diatom frustules enhancing the efficiency of gel polymer electrolyte based dye-sensitized solar cells with multilayer photoelectrodes. Nanoscale Adv. 2020, 2, 199–209.
- 182.
Gautam, S.; Kashyap, M.; Gupta, S.; et al. Metabolic engineering of TiO2 nanoparticles in Nitzschia palea to form diatom nanotubes: An ingredient for solar cells to produce electricity and biofuel. RSC advances 2016, 6, 97276–97284.
- 183.
Sun, X.W.; Zhang, Y.X.; Losic, D. Diatom silica, an emerging biomaterial for energy conversion and storage. J. Mater. Chem. A 2017, 5, 8847–8859.
- 184.
Huang, D.-R.; Jiang, Y.-J.; Liou, R.-L.; et al. Enhancing the efficiency of dye-sensitized solar cells by adding diatom frustules into TiO2 working electrodes. Appl. Surf. Sci. 2015, 347, 64–72.
- 185.
Tan, T.-W.; Yu, J.-L.; Zhang, X. Recent advances in biorefinery technology research. Chem. Eng. Prog. 2011, 30, 117–125.
- 186.
Kamm, B.; Kamm, M. Principles of biorefineries. Appl. Microbiol. Biotechnol. 2004, 64, 137–145.
- 187.
Li, M.; Zou, W.; Kou, H.; et al. Research progress on biorefining of sorghum straw. Food Ferment. Ind. 2023, 49, 358–366.
- 188.
Kholany, M.; Coutinho, J.A.P.; Ventura, S.P.M. Carotenoid production from microalgae: The portuguese scenario. Molecules 2022, 27, 2540.
- 189.
Thevarajah, B.; Nishshanka, G.K.S.H.; Premaratne, M.; et al. Large-scale production of Spirulina-based proteins and c-phycocyanin: A biorefinery approach. Biochem. Eng. J. 2022, 185, 108541.
- 190.
Mussagy, C.U.; Caicedo-Paz, A.V.; Figueroa, D.; et al. Maximizing Haematococcus biorefineries: Ionic liquid-based astaxanthin recovery, biocosmetic formulation, solar cell applications, and biofertilizer valorization. Bioresour. Technol. 2025, 426, 132347.
- 191.
Delbrut, A.; Albina, P.; Lapierre, T.; et al. Fucoxanthin and polyunsaturated fatty acids co-extraction by a green process. Molecules 2018, 23, 874.
- 192.
Zhang, W.; Wang, F.; Gao, B.; et al. An integrated biorefinery process: Stepwise extraction of fucoxanthin, eicosapentaenoic acid and chrysolaminarin from the same Phaeodactylum tricornutum biomass. Algal Res. 2018, 32, 193–200.
- 193.
YH Research. Food-Grade Fucoxanthin Market Analysis. Available online: https://www.yhresearch.cn/reports/2155476/food-grade-fucoxanthin (accessed on 13 January 2025).
- 194.
YH Research. Omega-3 PUFA Market Research Report. Available online: https://www.yhresearch.cn/reports/1338705/omega-3-pufa (accessed on 25 December 2023).
- 195.
YH Research. Global and China Diatomite Industry Top Enterprise Market Share and Ranking Research Report in 2025. Available online: https://www.yhresearch.cn/reports/2113867/diatomaceous-earth (accessed on 19 January 2025).
- 196.
Diatomite Market Size and Share Outlook—Forecast Trends and Growth Analysis Report (2025–2034) Available online: https://www.expertmarketresearch.com/reports/diatomite-market (accessed on 1 April 2025).
- 197.
Gilcher, E.B.; Lane, M.K.M.; Pontious, R.S.; et al. Sequential extraction and purification of triglycerides and carotenoids with supercritical carbon dioxide for valorization of the integrated algal biorefinery. ACS. Sustain. Chem. Eng. 2025, 13, 1667–1676.
- 198.
Weickert, S.; Schmid-Staiger, U.; Lewandowski, I. Influence of specific light availability and solvent on process economics—The production of fucoxanthin and eicosapentaenoic acid from P. tricornutum using flat-panel airlift photobioreactors with artificial light. Algal Res. 2023, 75, 103284.
- 199.
Sivaramakrishnan, R.; Suresh, S.; Kanwal, S.; et al. Microalgal biorefinery concepts’ developments for biofuel and bioproducts: Current perspective and bottlenecks. Int. J. Mol. Sci. 2022, 23, 2623.
- 200.
Chew, K.W.; Chia, S.R.; Show, P.L.; et al. Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: A review. J. Taiwan. Inst. Chem. Eng. 2018, 91, 332–344.
- 201.
Zhao, Y.; Sun, Y.; Zhu, Z.; et al. Effects of salinity and temperature on growth performance, biochemical composition, and biosilification process of Cyclotella cryptica. Algal Res. 2024, 84, 103751.
- 202.
Yi, Z.; Xu, M.; Magnusdottir, M.; et al. Photo-oxidative stress-driven mutagenesis and adaptive evolution on the marine diatom Phaeodactylum tricornutum for enhanced carotenoid accumulation. Mar. Drugs 2015, 13, 6138–6151.
- 203.
Wang, S.; Wu, S.; Yang, G.; et al. A review on the progress, challenges and prospects in commercializing microalgal fucoxanthin. Biotechnol. Adv. 2021, 53, 107865.
- 204.
Pocha, C.K.R.; Chia, W.Y.; Chew, K.W.; et al. Current advances in recovery and biorefinery of fucoxanthin from Phaeodactylum tricornutum. Algal Res. 2022, 65, 102735.
- 205.
Bozarth, A.; Maier, U.-G.; Zauner, S. Diatoms in biotechnology: Modern tools and applications. Appl. Microbiol. Biotechnol. 2009, 82, 195–201.
- 206.
Pang, Y.; Duan, L.; Song, B.; et al. A Review of fucoxanthin biomanufacturing from Phaeodactylum tricornutum. Bioprocess Biosyst. Eng. 2024, 47, 1951–1972.
- 207.
Budiarso, F.S.; Leong, Y.K.; Chang, J.-J.; et al. Current advances in microalgae-based fucoxanthin production and downstream processes. Bioresour. Technol. 2025, 428, 132455.
- 208.
Akyıl, S.; İlter, I.; Koç, M.; et al. Effects of extraction methods and conditions on bioactive compounds extracted from Phaeodactylum tricornutum. Acta Chim. Slov. 2020, 67, 1250–1261.