- 1.
Pihlajamäki, A.; Matus, M.F.; Malola, S.; et al. GraphBNC: Machine Learning-Aided Prediction of Interactions Between Metal Nanoclusters and Blood Proteins. Adv. Mater. 2024, 36, 2407046. https://doi.org/10.1002/adma.202407046.
- 2.
Li, Q.; Zhang, Y.; Guo, X.; et al. Nucleation and Growth Mechanisms of Micro/Nano Structural Manganese-Trimesic Acid Coordinations for Aqueous Zinc-Ion Batteries. Angew. Chem. Int. Ed. 2025, 64, e202509741. https://doi.org/10.1002/anie.202509741.
- 3.
Zhang, G.; Lu, Y.; Yang, Y.; et al. Dynamic Phase Transformations of Prussian Blue Analogue Crystals in Hydrotherms. J. Am. Chem. Soc. 2024, 146, 16659–16669. https://doi.org/10.1021/jacs.4c03827.
- 4.
Zhang, G.; Feng, W.; Du, G.; et al. Thermodynamically-Driven Phase Engineering and Reconstruction Deduction of Medium-Entropy Prussian Blue Analogue Nanocrystals. Adv. Mater. 2025, 2503814. https://doi.org/10.1002/adma.202503814.
- 5.
Dahl, J.C.; Niblett, S.; Cho, Y.; et al. Scientific Machine Learning of 2D Perovskite Nanosheet Formation. J. Am. Chem. Soc. 2023, 145, 23076–23087. https://doi.org/10.1021/jacs.3c05984.
- 6.
Chen, L.; Yang, S.; Li, Y.; et al. Precursor Symmetry Triggered Modulation of Fluorescence Quantum Yield in Graphene Quantum Dots. Adv. Funct. Mater. 2024, 34, 2401246. https://doi.org/10.1002/adfm.202401246.
- 7.
Le, T.C.; Yan, B.; Winkler, D.A. Robust Prediction of Personalized Cell Recognition from a Cancer Population by a Dual Targeting Nanoparticle Library. Adv. Funct. Mater. 2015, 25, 6927–6935. https://doi.org/10.1002/adfm.201502811.
- 8.
Kenry. Machine Learning-Assisted Clustering of Nanoparticle-Binding Peptides and Prediction of Their Properties. Adv. Theory Simul. 2023, 6, 2300122. https://doi.org/10.1002/adts.202300122.
- 9.
Dias, L.M.S.; Fu, L.; Pereira, R.F.P.; et al. Evolving Photonic Authentication with Sustainable Luminescent Smart E-tags. FlexMat 2024, 1, 116–126. https://doi.org/10.1002/flm2.16.
- 10.
Baig, M.M.; Khan, S.A.; Ahmad, H.; et al. 3D Printing of Hydrogels for Flexible Micro-supercapacitors. FlexMat 2024, 1, 79–99. https://doi.org/10.1002/flm2.14.
- 11.
Ahmad, F.; Mahmood, A.; Muhmood, T. Machine Learning-Integrated Omics for the Risk and Safety Assessment of Nanomaterials. Biomater. Sci. 2021, 9, 1598–1608. https://doi.org/10.1039/D0BM01672A.
- 12.
Ji, Z.; Guo, W.; Wood, E.L.; et al. Machine Learning Models for Predicting Cytotoxicity of Nanomaterials. Chem. Res. Toxicol. 2022, 35, 125–139. https://doi.org/10.1021/acs.chemrestox.1c00310.
- 13.
Suwardi, A.; Wang, F.; Xue, K.; et al. Machine Learning-Driven Biomaterials Evolution. Adv. Mater. 2022, 34, 2102703. https://doi.org/10.1002/adma.202102703.
- 14.
Wang, L.; Wang, H.; Bai, M.; et al. A Comparative Review: Research in Safety and Sustainability of Carbon Nanomaterials Without and With Machine Learning Assistance. IEEE Access 2024, 12, 167120–167152. https://doi.org/10.1109/ACCESS.2024.3494549.
- 15.
Dang, Y.; Wang, G.; Su, G.; et al. Rational Construction of a Ni/CoMoO4 Heterostructure with Strong Ni–O–Co Bonds for Improving Multifunctional Nanozyme Activity. ACS Nano 2022, 16, 4536–4550. https://doi.org/10.1021/acsnano.1c11012.
- 16.
Fernandez, M.; Bilić, A.; Barnard, A.S. Machine Learning and Genetic Algorithm Prediction of Energy Differences between Electronic Calculations of Graphene Nanoflakes. Nanotechnology 2017, 28, 38LT03. https://doi.org/10.1088/1361-6528/aa82e5.
- 17.
Gupta, N.; Jayaraman, A. Computational Approach for Structure Generation of Anisotropic Particles (CASGAP) with Targeted Distributions of Particle Design and Orientational Order. Nanoscale 2023, 15, 14958–14970. https://doi.org/10.1039/D3NR02425C.
- 18.
Kløve, M.; Sommer, S.; Iversen, B.B.; et al. A Machine-Learning-Based Approach for Solving Atomic Structures of Nanomaterials Combining Pair Distribution Functions with Density Functional Theory. Adv. Mater. 2023, 35, 2208220. https://doi.org/10.1002/adma.202208220.
- 19.
Konstantopoulos, G.; Koumoulos, E.P.; Charitidis, C.A. Digital Innovation Enabled Nanomaterial Manufacturing; Machine Learning Strategies and Green Perspectives. Nanomaterials 2022, 12, 2646. https://doi.org/10.3390/nano12152646.
- 20.
Rangel DaCosta, L.; Sytwu, K.; Groschner, C.K.; et al. A Robust Synthetic Data Generation Framework for Machine Learning in High-Resolution Transmission Electron Microscopy (HRTEM). NPJ Comput. Mater. 2024, 10, 1–11. https://doi.org/10.1038/s41524-024-01336-0.
- 21.
Wan, K.; He, J.; Shi, X. Construction of High Accuracy Machine Learning Interatomic Potential for Surface/Interface of Nanomaterials—A Review. Adv. Mater. 2024, 36, 2305758. https://doi.org/10.1002/adma.202305758.
- 22.
Guerrero-Rivera, R.; Godínez-Garcia, F.J.; Hayashi, T.; et al. Machine-Learning Driven STM Images Prediction of Doped/Defective Graphene: towards Optimized Tools for 2D Nanomaterials Characterization. Comput. Mater. Sci. 2024, 242, 113076. https://doi.org/10.1016/j.commatsci.2024.113076.
- 23.
Kuznetsova, V.; Coogan, Á.; Botov, D.; et al. Expanding the Horizons of Machine Learning in Nanomaterials to Chiral Nanostructures. Adv. Mater. 2024, 36, 2308912. https://doi.org/10.1002/adma.202308912.
- 24.
Yang, L.; Wang, H.; Leng, D.; et al. Machine Learning Applications in Nanomaterials: Recent Advances and Future Perspectives. Chem. Eng. J. 2024, 500, 156687. https://doi.org/10.1016/j.cej.2024.156687.
- 25.
Zhang, H.; Yang, M.; Wu, Q.; et al. Engineering Two-Dimensional Nanomaterials for Photothermal Therapy. Angew. Chem. Int. Ed. 2025, 64, e202424768. https://doi.org/10.1002/anie.202424768.
- 26.
Cao, L.; Li, C.; Mueller, T. The Use of Cluster Expansions to Predict the Structures and Properties of Surfaces and Nanostructured Materials. J. Chem. Inf. Model. 2018, 58, 2401–2413. https://doi.org/10.1021/acs.jcim.8b00413.
- 27.
Diao, S.; Wu, Q.; Li, S.; et al. From Synthesis to Properties: Expanding the Horizons of Machine Learning in Nanomaterials Research. Mater. Horiz. 2025, 12, 4133–4164. https://doi.org/10.1039/D4MH01909A.
- 28.
Wang, M.; Wang, T.; Cai, P.; et al. Nanomaterials Discovery and Design through Machine Learning. Small Methods 2019, 3, 1900025. https://doi.org/10.1002/smtd.201900025.
- 29.
Chen, R.; Liu, F.; Tang, Y.; et al. Combined First-Principles and Machine Learning Study of the Initial Growth of Carbon Nanomaterials on Metal Surfaces. Appl. Surf. Sci. 2022, 586, 152762. https://doi.org/10.1016/j.apsusc.2022.152762.
- 30.
Alkharisi, M.K.; Dahish, H.A.; et al. Prediction Models for the Hybrid Effect of Nano Materials on Radiation Shielding Properties of Concrete Exposed to Elevated Temperatures. Case Stud. Constr. Mater. 2024, 21, e03750. https://doi.org/10.1016/j.cscm.2024.e03750.
- 31.
Dhoble, S.; Wu, T.-H. Kenry Decoding Nanomaterial-Biosystem Interactions through Machine Learning. Angew. Chem. Int. Ed. 2024, 63, e202318380. https://doi.org/10.1002/anie.202318380.
- 32.
Gao, X.J.; Yan, J.; Zheng, J.-J.; et al. Clear-Box Machine Learning for Virtual Screening of 2D Nanozymes to Target Tumor Hydrogen Peroxide. Adv. Healthc. Mater. 2023, 12, 2202925. https://doi.org/10.1002/adhm.202202925.
- 33.
Zong, X.; Xu, X.; Pang, D.-W.; et al. Fine-Tuning Electron Transfer for Nanozyme Design. Adv. Healthc. Mater. 2025, 14, 2401836. https://doi.org/10.1002/adhm.202401836.
- 34.
Ferdosi, S.; Stukalov, A.; Hasan, M.; et al. Enhanced Competition at the Nano–Bio Interface Enables Comprehensive Characterization of Protein Corona Dynamics and Deep Coverage of Proteomes. Adv. Mater. 2022, 34, 2206008. https://doi.org/10.1002/adma.202206008.
- 35.
Winkler, D.A. Role of Artificial Intelligence and Machine Learning in Nanosafety. Small 2020, 16, 2001883. https://doi.org/10.1002/smll.202001883.
- 36.
Firestein, K.L.; von Treifeldt, J.E.; Kvashnin, D.G.; et al. Young’s Modulus and Tensile Strength of Ti3C2 MXene Nanosheets As Revealed by In Situ TEM Probing, AFM Nanomechanical Mapping, and Theoretical Calculations. Nano Lett. 2020, 20, 5900–5908. https://doi.org/10.1021/acs.nanolett.0c01861.
- 37.
Lanjan, A.; Moradi, Z.; Srinivasan, S. Computational Framework Combining Quantum Mechanics, Molecular Dynamics, and Deep Neural Networks to Evaluate the Intrinsic Properties of Materials. J. Phys. Chem. A 2023, 127, 6603–6613. https://doi.org/10.1021/acs.jpca.3c02887.
- 38.
Mortazavi, B.; Rajabpour, A.; Zhuang, X.; et al. Exploring Thermal Expansion of Carbon-Based Nanosheets by Machine-Learning Interatomic Potentials. Carbon. 2022, 186, 501–508. https://doi.org/10.1016/j.carbon.2021.10.059.
- 39.
Li, J.; Telychko, M.; Yin, J.; et al. Machine Vision Automated Chiral Molecule Detection and Classification in Molecular Imaging. J. Am. Chem. Soc. 2021, 143, 10177–10188. https://doi.org/10.1021/jacs.1c03091.
- 40.
Fjodorova, N.; Novič, M.; Venko, K.; et al. Cheminformatics and Machine Learning Approaches to Assess Aquatic Toxicity Profiles of Fullerene Derivatives. IJMS 2023, 24, 14160. https://doi.org/10.3390/ijms241814160.
- 41.
Gao, W.; Yu, C.; Chen, R. Artificial Intelligence Accelerators Based on Graphene Optoelectronic Devices. Adv. Photonics Res. 2021, 2, 2100048. https://doi.org/10.1002/adpr.202100048.
- 42.
Jin, W.; Pei, J.; Xie, P.; et al. Machine Learning-Based Prediction of Mechanical Properties and Performance of Nickel–Graphene Nanocomposites Using Molecular Dynamics Simulation Data. ACS Appl. Nano Mater. 2023, 6, 12190–12199. https://doi.org/10.1021/acsanm.3c01919.
- 43.
Khot, A.C.; Dongale, T.D.; Nirmal, K.A.; et al. Amorphous Boron Nitride Memristive Device for High-Density Memory and Neuromorphic Computing Applications. ACS Appl. Mater. Interfaces 2022, 14, 10546–10557. https://doi.org/10.1021/acsami.1c23268.
- 44.
Zhang, C.; Yang, B.; Peng, Z.; et al. Machine Learning-Based Prediction of Mechanical Properties of N-Doped γ-Graphdiyne. Sci. China Mater. 2024, 67, 1129–1139. https://doi.org/10.1007/s40843-023-2733-7.
- 45.
Du, D.; Zhang, Y.; Li, X.; et al. First-Principles Calculations, Machine Learning and Monte Carlo Simulations of the Magnetic Coercivity of FexCo1−x Bulks and Nanoclusters. Nanomaterials 2025, 15, 577. https://doi.org/10.3390/nano15080577.
- 46.
Kang, J.; Noh, S.H.; Hwang, J.; et al. First-Principles Database Driven Computational Neural Network Approach to the Discovery of Active Ternary Nanocatalysts for Oxygen Reduction Reaction. Phys. Chem. Chem. Phys. 2018, 20, 24539–24544. https://doi.org/10.1039/C8CP03801E.
- 47.
Zhou, P.; Wang, M.; Tang, F.; et al. Machine Learning Accelerates the Screening of Efficient Metal-Oxide Catalysts for Photocatalytic Water Splitting. Mater. Res. Bull. 2024, 179, 112956. https://doi.org/10.1016/j.materresbull.2024.112956.
- 48.
Pinho, B.; Torrente-Murciano, L. Dial-A-Particle: Precise Manufacturing of Plasmonic Nanoparticles Based on Early Growth Information—Redefining Automation for Slow Material Synthesis. Adv. Energy Mater. 2021, 11, 2100918. https://doi.org/10.1002/aenm.202100918.
- 49.
Guo, G.; Goldfeder, J.; Lan, L.; et al. Towards End-to-End Structure Determination from x-Ray Diffraction Data Using Deep Learning. NPJ Comput. Mater. 2024, 10, 1–12. https://doi.org/10.1038/s41524-024-01401-8.
- 50.
Guo, G.; Saidi, T.L.; Terban, M.W.; et al. Ab Initio Structure Solutions from Nanocrystalline Powder Diffraction Data via Diffusion Models. Nat. Mater. 2025. https://doi.org/10.1038/s41563-025-02220-y.
- 51.
Ma, K.; Gong, Y.; Aubert, T.; et al. Self-Assembly of Highly Symmetrical, Ultrasmall Inorganic Cages Directed by Surfactant Micelles. Nature 2018, 558, 577–580. https://doi.org/10.1038/s41586-018-0221-0.
- 52.
Nishitsuji, R.; Nakashima, T.; Hisamoto, H.; et al. Simultaneous Recognition and Detection of Adenosine Phosphates by Machine Learning Analysis for Surface-Enhanced Raman Scattering Spectral Data. Sensors 2024, 24, 6648. https://doi.org/10.3390/s24206648.
- 53.
Yu, Y.; Lu, W.; Yao, X.; et al. Machine Learning-Integrated Surface-Enhanced Raman Spectroscopy Analysis of Multicomponent Dye Mixtures. Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2025, 332, 125806. https://doi.org/10.1016/j.saa.2025.125806.
- 54.
Ieracitano, C.; Mammone, N.; Paviglianiti, A.; et al. A Conditional Generative Adversarial Network and Transfer Learning-Oriented Anomaly Classification System for Electrospun Nanofibers. Int. J. Neur. Syst. 2022, 32, 2250054. https://doi.org/10.1142/S012906572250054X.
- 55.
Li, S.; Barnard, A.S. Safety-by-Design Using Forward and Inverse Multi-Target Machine Learning. Chemosphere 2022, 303, 135033. https://doi.org/10.1016/j.chemosphere.2022.135033.
- 56.
Li, Y.; Liu, Y.; Miao, Y.; et al. Development of Heat-Resistant Tunnel Muck-Based Shotcrete for Geothermal Environments: Dual Drive of Combining Explainable Machine Learning and Microstructure Characterization. Constr. Build. Mater. 2025, 473, 140994. https://doi.org/10.1016/j.conbuildmat.2025.140994.
- 57.
Tao, X. Compressive Strength Prediction of Nano-Modified Concrete: A Comparative Study of Advanced Machine Learning Techniques. AIP Adv. 2024, 14, 075017. https://doi.org/10.1063/5.0214890.
- 58.
Ghorbani, K.; Mirchi, P.; Arabha, S.; et al. Lattice Thermal Conductivity and Young’s Modulus of XN4 (X = Be, Mg and Pt) 2D Materials Using Machine Learning Interatomic Potentials. Phys. Chem. Chem. Phys. 2023, 25, 12923–12933. https://doi.org/10.1039/D3CP00746D.
- 59.
Lindsey, R.K.; Goldman, N.; Fried, L.E.; et al. Chemistry-Mediated Ostwald Ripening in Carbon-Rich C/O Systems at Extreme Conditions. Nat. Commun. 2022, 13, 1424. https://doi.org/10.1038/s41467-022-29024-x.
- 60.
Isfeldt, G.; Lundell, F.; Wohlert, J. Interaction of Complex Particles: A Framework for the Rapid and Accurate Approximation of Pair Potentials Using Neural Networks. Phys. Rev. E 2024, 110, 055305. https://doi.org/10.1103/PhysRevE.110.055305.
- 61.
Pradeepa, A.; Arathi, P. Computing Degree-Based Topological Descriptors of Certain Tessellations of Kekulenes Using M-Polynomial and Neighborhood M-Polynomial. Polycycl. Aromat. Compd. 2025, 45, 36–59. https://doi.org/10.1080/10406638.2024.2384901.
- 62.
Harper, D.R.; Nandy, A.; Arunachalam, N.; et al. Representations and Strategies for Transferable Machine Learning Improve Model Performance in Chemical Discovery. J. Chem. Phys. 2022, 156, 074101. https://doi.org/10.1063/5.0082964.
- 63.
Dong, W.; Huang, Y.; Lehane, B.; et al. Multi-Objective Design Optimization for Graphite-Based Nanomaterials Reinforced Cementitious Composites: A Data-Driven Method with Machine Learning and NSGA-Ⅱ. Constr. Build. Mater. 2022, 331, 127198. https://doi.org/10.1016/j.conbuildmat.2022.127198.
- 64.
Gao, H.; Zhong, S.; Dangayach, R.; et al. Understanding and Designing a High-Performance Ultrafiltration Membrane Using Machine Learning. Environ. Sci. Technol. 2023, 57, 17831–17840. https://doi.org/10.1021/acs.est.2c05404.
- 65.
Furxhi, I.; Roberts, S.; Cross, R.; et al. Bayesian Network Modelling for Predicting the Environmental Hazard of Silver Nanomaterials in Soils. NanoImpact 2025, 37, 100553. https://doi.org/10.1016/j.impact.2025.100553.
- 66.
Kelkar, A.S.; Dallin, B.C.; Van Lehn, R.C. Identifying Nonadditive Contributions to the Hydrophobicity of Chemically Heterogeneous Surfaces via Dual-Loop Active Learning. J. Chem. Phys. 2022, 156, 024701. https://doi.org/10.1063/5.0072385.
- 67.
Zhuang, Z.; Xu, Q.; Zeng, H.; et al. A Deep-Learning-Based Compact Method for Accelerating the Electrowetting Lattice Boltzmann Simulations. Phys. Fluids 2024, 36, 043323. https://doi.org/10.1063/5.0206608.
- 68.
Wang, Z.; Ranasinghe, J.C.; Wu, W.; et al. Machine Learning Interpretation of Optical Spectroscopy Using Peak-Sensitive Logistic Regression. ACS Nano 2025, 19, 15457–15473. https://doi.org/10.1021/acsnano.4c16037.
- 69.
Yu, H.; Zhou, G.-Y.; Liu, Y.-B.; et al. Deep Learning-Assisted Superhydrophobic LIG/MWCNT Wearable Sensor for Underwater Motion Detection. IEEE Sens. J. 2024, 24, 29392–29399. https://doi.org/10.1109/JSEN.2024.3434948.
- 70.
Bruefach, A.; Ophus, C.; Scott, M.C. Analysis of Interpretable Data Representations for 4D-STEM Using Unsupervised Learning. Microsc. Microanal. 2022, 28, 1998–2008. https://doi.org/10.1017/S1431927622012259.
- 71.
Ieracitano, C.; Paviglianiti, A.; Campolo, M.; et al. A Novel Automatic Classification System Based on Hybrid Unsupervised and Supervised Machine Learning for Electrospun Nanofibers. IEEE/CAA J. Autom. Sin. 2021, 8, 64–76. https://doi.org/10.1109/JAS.2020.1003387.
- 72.
Sun, Z.; Shi, J.; Wang, J.; et al. A Deep Learning-Based Framework for Automatic Analysis of the Nanoparticle Morphology in SEM/TEM Images. Nanoscale 2022, 14, 10761–10772. https://doi.org/10.1039/D2NR01029A.
- 73.
Kho, Z.; Bridger, A.; Butler, K.; et al. On the Use of Clustering Workflows for Automated Microstructure Segmentation of Analytical STEM Datasets. APL Mater. 2025, 13, 010901. https://doi.org/10.1063/5.0246329.
- 74.
Li, Y.; Wang, Y.; Qi, S.; et al. Predicting Scattering from Complex Nano-Structures via Deep Learning. IEEE Access 2020, 8, 139983–139993. https://doi.org/10.1109/ACCESS.2020.3012132.
- 75.
Boiko, D.A.; Kashin, A.S.; Sorokin, V.R.; et al. Analyzing Ionic Liquid Systems Using Real-Time Electron Microscopy and a Computational Framework Combining Deep Learning and Classic Computer Vision Techniques. J. Mol. Liq. 2023, 376, 121407. https://doi.org/10.1016/j.molliq.2023.121407.
- 76.
Gu, Z.; Zhu, R.; Shen, T.; et al. Autonomous Nanorobots with Powerful Thrust under Dry Solid-Contact Conditions by Photothermal Shock. Nat. Commun. 2023, 14, 7663. https://doi.org/10.1038/s41467-023-43433-6.
- 77.
Gandhi, A.M.; Shanmugan, S.; Gorjian, S.; et al. Performance Enhancement of Stepped Basin Solar Still Based on OSELM with Traversal Tree for Higher Energy Adaptive Control. Desalination 2021, 502, 114926. https://doi.org/10.1016/j.desal.2020.114926.
- 78.
Jiang, T.; Gai, S.; Yin, Y.; et al. A Light/Thermal Cascaded-Driven Equipment for Machine Recognition Inspired by Water Lilies Using as Multifunctional Soft Actuator. Chem. Eng. J. 2024, 495, 153348. https://doi.org/10.1016/j.cej.2024.153348.
- 79.
Guo, W.; Ma, Z.; Chen, Z.; et al. Thin and Soft Ti3C2Tx MXene Sponge Structure for Highly Sensitive Pressure Sensor Assisted by Deep Learning. Chem. Eng. J. 2024, 485, 149659. https://doi.org/10.1016/j.cej.2024.149659.
- 80.
Zhang, J.; Perrin, M.L.; Barba, L.; et al. High-Speed Identification of Suspended Carbon Nanotubes Using Raman Spectroscopy and Deep Learning. Microsyst. Nanoeng. 2022, 8, 1–9. https://doi.org/10.1038/s41378-022-00350-w.
- 81.
Zhao, Z.; Yang, X.; Wang, Y.; et al. Putting the Incoming/Outgoing Correlation (INOUTCO) Ion Imaging Surface Scattering Technique to the Test in O Atom Scattering from Graphite. J. Phys. Chem. C 2025, 129, 722–731. https://doi.org/10.1021/acs.jpcc.4c06578.
- 82.
Hai, T.; Dahan, F.; Dhahad, H.A.; et al. Deep-Learning Optimization and Environmental Assessment of Nanomaterial’s Boosted Hydrogen and Power Generation System Combined with SOFC. Int. J. Hydrog. Energy 2024, 52, 202–215. https://doi.org/10.1016/j.ijhydene.2022.11.332.
- 83.
Jia, P.; Cao, C.; Lu, X.; et al. Machine Learning-Integrated Numerical Simulation for Predicting Photothermal Conversion Performance of Metallic Nanofluids. Small 2025, 21, 2408984. https://doi.org/10.1002/smll.202408984.
- 84.
Balraadjsing, S.; Peijnenburg, W.J.G.M.; Vijver, M.G. Exploring the Potential of in Silico Machine Learning Tools for the Prediction of Acute Daphnia Magna Nanotoxicity. Chemosphere 2022, 307, 135930. https://doi.org/10.1016/j.chemosphere.2022.135930.
- 85.
Guo, H.; Lesani, P.; Zreiqat, H.; et al. A Fluorescent Sensor Array Based on Carbon Dots for the Accurate Determination of pH. Sens. Diagn. 2024, 3, 1923–1934. https://doi.org/10.1039/D4SD00275J.
- 86.
Okeke, C.; Juma, I.; Cobarrubia, A.; et al. Probing Anharmonic Phonons in WS2 van Der Waals Crystal by Raman Spectroscopy and Machine Learning. iScience 2023, 26, 107174. https://doi.org/10.1016/j.isci.2023.107174.
- 87.
Exner, T.E.; Papadiamantis, A.G.; Melagraki, G.; et al. Metadata Stewardship in Nanosafety Research: Learning from the Past, Preparing for an “on-the-Fly” FAIR Future. Front. Phys. 2023, 11, 1233879. https://doi.org/10.3389/fphy.2023.1233879.
- 88.
He, S.; Nader, K.; Abarrategi, J.S.; et al. NANO.PTML Model for Read-across Prediction of Nanosystems in Neurosciences. Computational Model and Experimental Case of Study. J. Nanobiotechnol. 2024, 22, 435. https://doi.org/10.1186/s12951-024-02660-9.
- 89.
Cruz, C.; Matatagui, D.; Ramírez, C.; et al. Carbon SH-SAW-Based Electronic Nose to Discriminate and Classify Sub-Ppm NO2. Sensors 2022, 22, 1261. https://doi.org/10.3390/s22031261.
- 90.
Shao, S.; Xie, C.; Xia, Y.; et al. Highly Conjugated Three-Dimensional van Der Waals Heterostructure-Based Nanocomposite Films for Ultrahigh-Responsive TEA Gas Sensors at Room Temperature. J. Mater. Chem. A 2022, 10, 2995–3008. https://doi.org/10.1039/D1TA09749K.
- 91.
Singh, S.; Saggu, I.S.; Singh, S.; et al. Detection of DMF and NH3 at Room Temperature Using a Sensor Based on a MoS2 /Single-Walled Carbon Nanotube Composite. ACS Appl. Nano Mater. 2023, 6, 10698–10712. https://doi.org/10.1021/acsanm.3c01638.
- 92.
Jeindl, A.; Domke, J.; Hörmann, L.; et al. Nonintuitive Surface Self-Assembly of Functionalized Molecules on Ag(111). ACS Nano 2021, 15, 6723–6734. https://doi.org/10.1021/acsnano.0c10065.
- 93.
Leppänen, E.; Aarva, A.; Sainio, S.; et al. Connection between the Physicochemical Characteristics of Amorphous Carbon Thin Films and Their Electrochemical Properties. J. Phys. Condens. Matter 2021, 33, 434002. https://doi.org/10.1088/1361-648X/ac1a2e.
- 94.
Packwood, D.M. Bi-Functional On-Surface Molecular Assemblies Predicted from a Multifaceted Computational Approach. Adv. Phys. Res. 2022, 1, 2200019. https://doi.org/10.1002/apxr.202200019.
- 95.
Khan, S.A.; Farooq, U.; Imran, M.; et al. Mathematical and Artificial Neural Network Modeling to Predict the Heat Transfer of Mixed Convective Electroosmotic Nanofluid Flow with Helmholtz-Smoluchowski Velocity and Multiple Slip Effects: An Application of Soft Computing. Case Stud. Therm. Eng. 2024, 61, 104950. https://doi.org/10.1016/j.csite.2024.104950.
- 96.
Zhang, Y.; Li, Q.; Feng, W.; et al. Regulating Electron Transfer in Vanadium-Based Metal–Organic Frameworks via the Synergy of Linker Engineering and Machine Learning for Efficient and Reversible Aqueous Zinc Ion Batteries. Adv. Mater. 2025, 37, 2507609. https://doi.org/10.1002/adma.202507609.
- 97.
Li, Q.; Zhang, Y.; Feng, W.; et al. Manganese–Based Metal–Organic Coordination for Aqueous Zinc–Ion Batteries with Varying Mechanical Adaptability and Machine Learning–Assisted Performance Decoding. Adv. Mater. 2025, 37, 2507951. https://doi.org/10.1002/adma.202507951.
- 98.
Aytaç, E.; Khanzada, N.K.; Ibrahim, Y.; et al. Reverse Osmosis Membrane Engineering: Multidirectional Analysis Using Bibliometric, Machine Learning, Data, and Text Mining Approaches. Membranes 2024, 14, 259. https://doi.org/10.3390/membranes14120259.
- 99.
Baig, N.; Usman, J.; Abba, S.I.; et al. Fractionation of Dyes/Salts Using Loose Nanofiltration Membranes: Insight from Machine Learning Prediction. J. Clean. Prod. 2023, 418, 138193. https://doi.org/10.1016/j.jclepro.2023.138193.
- 100.
Li, J.; Meng, K.; Yu, X.; et al. Mechanistic Insight into a Graphene-like Stimulus-Responsive Desalination Membrane from Molecular Dynamics and First Principles. Diam. Relat. Mater. 2023, 136, 109910. https://doi.org/10.1016/j.diamond.2023.109910.
- 101.
Madejski, G.R.; Ahmad, S.D.; Musgrave, J.; et al. Silicon Nanomembrane Filtration and Imaging for the Evaluation of Microplastic Entrainment along a Municipal Water Delivery Route. Sustainability 2020, 12, 10655. https://doi.org/10.3390/su122410655.
- 102.
Zhang, M.; He, H.; Huang, Y.; et al. Machine Learning Integrated High Quantum Yield Blue Light Carbon Dots for Real-Time and on-Site Detection of Cr(VI) in Groundwater and Drinking Water. Sci. Total Environ. 2023, 904, 166822. https://doi.org/10.1016/j.scitotenv.2023.166822.
- 103.
Ji, Y.; Ma, S.; Lv, S.; et al. Nanomaterials for Targeted Delivery of Agrochemicals by an All-in-One Combination Strategy and Deep Learning. ACS Appl. Mater. Interfaces 2021, 13, 43374–43386. https://doi.org/10.1021/acsami.1c11914.
- 104.
Hao, T.; Zhou, H.; Gai, P.; et al. Deep Learning-Assisted Single-Atom Detection of Copper Ions by Combining Click Chemistry and Fast Scan Voltammetry. Nat. Commun. 2024, 15, 10292. https://doi.org/10.1038/s41467-024-54743-8.
- 105.
Stuart, S.; Watchorn, J.; Gu, F.X. An Interpretable Machine Learning Framework for Modelling Macromolecular Interaction Mechanisms with Nuclear Magnetic Resonance. Digit. Discov. 2023, 2, 1697–1709. https://doi.org/10.1039/D3DD00009E.
- 106.
Sun, H.; Amin, M.N.; Qadir, M.T.; et al. Investigating the Effectiveness of Carbon Nanotubes for the Compressive Strength of Concrete Using AI-Aided Tools. Case Stud. Constr. Mater. 2024, 20, e03083. https://doi.org/10.1016/j.cscm.2024.e03083.
- 107.
Della Pia, F.; Zen, A.; Kapil, V.; et al. On the Increase of the Melting Temperature of Water Confined in One-Dimensional Nano-Cavities. J. Chem. Phys. 2024, 161, 224706. https://doi.org/10.1063/5.0239452.
- 108.
Vakharia, V.; Castelli, I.E.; Bhavsar, K.; et al. Bandgap Prediction of Metal Halide Perovskites Using Regression Machine Learning Models. Phys. Lett. A 2022, 422, 127800. https://doi.org/10.1016/j.physleta.2021.127800.
- 109.
Chen, K.; Li, N.; Luo, Y.; et al. High-Performance Hardware Primitives Based on Sub-10 Nm Nanodiodes for Cryptography Applications. J. Mater. Chem. C 2024, 12, 17878–17889. https://doi.org/10.1039/D4TC02206H.
- 110.
Wang, S.; Zhu, J.; Blackwell, R.; et al. Automated Tip Conditioning for Scanning Tunneling Spectroscopy. J. Phys. Chem. A 2021, 125, 1384–1390. https://doi.org/10.1021/acs.jpca.0c10731.
- 111.
Guccione, P.; Diacono, D.; Toso, S.; et al. Towards the Extraction of the Crystal Cell Parameters from Pair Distribution Function Profiles. IUCrJ 2023, 10, 610–623. https://doi.org/10.1107/S2052252523006887.
- 112.
He, J.; Wang, C.; Tang, H.; et al. Prospective Research on the Tribological Behavior of Graphdiyne Nanofluid and Its Machine Learning Performance Prediction. Appl. Surf. Sci. 2025, 696, 162954. https://doi.org/10.1016/j.apsusc.2025.162954.