2602002981
  • Open Access
  • Article

A Comparative Study of B10 Biodiesel Blends and Its Performance and Combustion Characteristics

  • Kambhampati Gurumurthy  1,*,   
  • N. Sunil Naik 2,   
  • B. Bala Krishna 3

Received: 03 Nov 2025 | Revised: 29 Jan 2026 | Accepted: 04 Feb 2026 | Published: 12 Feb 2026

Abstract

The primary objective of this work is to assess and examine the combustion properties of non-edible oil feedstock, specifically Azolla, in an Internal Combustion (IC) test Rig. First, a Soxhlet apparatus is used to extract oil from Azolla. This raw oil is then converted into Azolla biofuel. The comparison of Azolla biofuel with non-edible oils like Jatropha biodiesel, castor biodiesel, Neem oil biodiesel, and Karanja biodiesel takes place. In this study, we tested a 10% blend of biodiesel in a diesel engine, which included Azolla10, Jatropha10, Castor10, Neem10, and Karanja10. The researchers measured the physical properties of all fuels and conducted a comparison with American Society for Testing and Materials (ASTM) standards. An engine with one cylinder and water cooling was employed in the test setup. The diesel engine’s emissions and performance were assessed under various load conditions. Results showed that the Azolla10 blend and diesel fuel delivered similar performance. However, for emissions and Combustion Characteristics like Oxides of Nitrogen (NOx)-920 PPM, Hydrocarbon (HC)-52 PPM, Carbon Monoxide (CO)-0.085%, Carbon dioxide (CO2)-7.38%, In-cylinder Pressure-79 bar at 10 °C, Heat release rate-58 Kw at 0 °C and Mean gas temperature-25 °C. Azolla demonstrated a significant reduction compared to diesel. Based on these experiments, Diesel engines may be able to run on the Azolla blend without any changes.

References 

  • 1.

    Brouwer, P.; van der Werf, A.; Schluepmann, H.; et al. Lipid yield and composition of Azolla filiculoides and the implications for biodiesel production. Bioenergy Res. 2016, 9, 369–377. https://doi.org/10.1007/s12155-015-9665-3.

  • 2.

    Kumar, V.; Kumar, P.; Kumar, P.; et al. Anaerobic digestion of Azolla pinnata biomass grown in integrated industrial effluent for enhanced biogas production and COD reduction: Optimization and kinetics studies. Environ. Technol. Innov. 2020, 17, 100627. https://doi.org/10.1016/j.eti.2020.100627.

  • 3.

    Nautiyal, P.; Subramanian, K.A.; Dastidar, M.G.; et al. Experimental assessment of performance, combustion and emissions of a compression ignition engine fuelled with Spirulina platensis biodiesel. Energy 2020, 193, 116861. https://doi.org/10.1016/j.energy.2019.116861.

  • 4.

    Prabakaran, S.; Mohanraj, T.; Arumugam, A. Azolla pinnata methyl ester production and process optimization using a novel heterogeneous catalyst. Renew. Energy 2021, 180, 353–371. https://doi.org/10.1016/j.renene.2021.08.073.

  • 5.

    Christina, E.; Rajendran, V. Microbial Factories for Biofuel Production: Current Trends and Future Prospects. In Recent Developments in Microbial Technologies; Springer Nature: Singapore, 2020; pp. 71–97. https://doi.org/10.1007/978-981-15-4439-2_3.

  • 6.

    Monteiro, L.D.; Pianovski Júnior, G.; Velásquez, J.A.; et al. Performance impact of the application of castor oil biodiesel in diesel engines. Eng. Agrícola 2013, 33, 1165–1171. https://doi.org/10.1590/S0100-69162013000600009.

  • 7.

    Sundaram, M.; Balan, K.N.; Arunkumar, T.; et al. Emission study on the outcome of DMC on neem bio-diesel-ignited diesel engine. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 41, 1–10. https://doi.org/10.1080/15567036.2019.1691683.

  • 8.

    Rathore, Y.; Ramchandani, D. Karanja seed oil: A potential source of biodiesel. Int. J. Innov. Res. Sci. Eng. Technol. 2016, 5, 3946–3953. https://doi.org/10.15680/IJIRSET.2016.0503133.

  • 9.

    Yadav, S.; Kumar, A.; Chaudhary, A. Effect of Karanja biodiesel blends on the characteristics of Diesel engine. Zesz. Nauk. Politech. Śląsk. Transport. 2022, 115, 249–264. https://doi.org/10.20858/sjsutst.2022.115.17.

  • 10.

    Nair, J.N.; Kaviti, A.K.; Daram, A.K. Analysis of performance and emission on compression ignition engine fuelled with blends of neem biodiesel. Egypt. J. Pet. 2017, 26, 927–931. https://doi.org/10.1016/j.ejpe.2016.09.005.

  • 11.

    Ali, M.; Rind, S.J. Engine performance and emission analysis using Neem and Jatropha blended biodiesel. La Granja 2020, 32, 19–29. https://doi.org/10.17163/lgr.n32.2020.02.

  • 12.

    Attai, Y.A.; Abu-Elyazeed, O.S.; ElBeshbeshy, M.R.; et al. Diesel engine performance, emissions and combustion characteristics of castor oil blends using pyrolysis. Adv. Mech. Eng. 2020, 12, 1687814020975527. https://doi.org/10.1177/1687814020975527.

  • 13.

    Chauhan, B.S.; Kumar, N.; Cho, H.M. A study on the performance and emission of a diesel engine fueled with Jatropha biodiesel oil and its blends. Energy 2012, 37, 616–622. https://doi.org/10.1016/j.energy.2011.10.043.

  • 14.

    Nithyananda, B.S.; Anand, A.; Prakash, G.N. Performance study on diesel engine using different blends of neem biodiesel. Int. J. Eng. Res. Appl. 2013, 3, 1778–1781.

  • 15.

    Zheng, F.; Cho, H.M. Investigation of the impact of castor biofuel on the performance and emissions of diesel engines. Energies 2023, 16, 7665. https://doi.org/10.3390/en16227665.

  • 16.

    Harreh, D.; Saleh, A.A.; Reddy, A.N.; et al. An experimental investigation of karanja biodiesel production in Sarawak, Malaysia. J. Eng. 2018, 2018, 4174205. https://doi.org/10.1155/2018/4174205.

  • 17.

    Subramaniam, M.; Solomon, J.M.; Nadanakumar, V.; et al. Experimental investigation on performance, combustion and emission characteristics of DI diesel engine using algae as a biodiesel. Energy Rep. 2020, 6, 1382–1392. https://doi.org/10.1016/j.egyr.2020.05.022.

  • 18.

    Thiruvenkatachari, S.; Saravanan, C.G.; Geo, V.E.; et al. Experimental investigations on the production and testing of azolla methyl esters from Azolla microphylla in a compression ignition engine. Fuel 2021, 287, 119448. https://doi.org/10.1016/j.fuel.2020.119448.

  • 19.

    Kannan, D.; Christraj, W. Emission analysis of Azolla methyl ester with BaO nano additives for IC engine. Energy Sources Part A Recovery Util. Environ. Eff. 2018, 40, 1234–1241. https://doi.org/10.1080/15567036.2018.1476617.

  • 20.

    Golzary, A.; Hosseini, A.; Saber, M. Azolla filiculoides as a feedstock for biofuel production: Cultivation condition optimization. Int. J. Energy Water Resour. 2021, 5, 85–94. https://doi.org/10.1007/s42108-020-00092-3.

  • 21.

    Venkatraman, V.; Sugumar, S.; Sekar, S.; et al. Environmental effect of CI engine using microalgae biofuel with nano-additives. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 41, 2429–2438. https://doi.org/10.1080/15567036.2018.1563250.

  • 22.

    Narayanasamy, B.; Jeyakumar, N. Performance and emission analysis of methyl ester of Azolla algae with TiO2 Nano additive for diesel engine. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 41, 1434–1445. https://doi.org/10.1080/15567036.2018.1548519.

  • 23.

    Sudhakaran, R.; Narayanan, S.; Ruthuraraj, R.; et al. Investigations on effect of compression ratio on performance and emission parameters of CI engine operating on Azolla methyl ester blends. J. Therm. Anal. Calorim. 2025, 150, 5517–5528. https://doi.org/10.1007/s10973-025-14091-1.

  • 24.

    KJ, R.; Madhan, S.; Prabu, B.S.; et al. Pilot scale production of biodiesel from Azolla oil via heterogeneous catalysis and diesel engine analysis: Kinetic and techno-economic analysis considerations. Energy Sources Part A Recovery Util. Environ. Eff. 2024, 46, 2377–2404. https://doi.org/10.1080/15567036.2024.2303392.

  • 25.

    Kannan, T.R.; Roji, S.S. Process optimization of IC engine testing: SiO2 nanoparticle dosed Azolla methyl ester. Environ. Prog. Sustain. Energy 2024, 43, e14299. https://doi.org/10.1002/ep.14299.

  • 26.

    Mahgoub, B.K. Effect of nano-biodiesel blends on CI engine performance, emissions and combustion characteristics–Review. Heliyon 2023, 9, e21367. https://doi.org/10.1016/j.heliyon.2023.e21367.

  • 27.

    Elsaid, H.A.; Mubark, A.E.; Daher, A.M.; et al. Lipid extraction from Azolla filiculoides and its applications for catalyzed biodiesel production. Biofuels 2025, 16, 816–823. https://doi.org/10.1080/17597269.2025.2457816.

  • 28.

    Senusi, W.; Ahmad, M.I.; Khalil, H.A.; et al. Comparative assessment for biodiesel production from low-cost feedstocks of third oil generation. Renew. Energy 2024, 236, 121369. https://doi.org/10.1016/j.renene.2024.121369.

  • 29.

    Atmanli, A. Experimental comparison of biodiesel production performance of two different microalgae. Fuel 2020, 278, 118311. https://doi.org/10.1016/j.fuel.2020.118311.

  • 30.

    Liu, H.; Wang, X.; Wu, Y.; et al. Effect of diesel/PODE/ethanol blends on combustion and emissions of a heavy duty diesel engine. Fuel 2019, 257, 116064. https://doi.org/10.1016/j.fuel.2019.116064.

  • 31.

    Biswas, B.; Singh, R.; Krishna, B.B.; et al. Pyrolysis of azolla, sargassum tenerrimum and water hyacinth for production of bio-oil. Bioresour. Technol. 2017, 242, 139–145. https://doi.org/10.1016/j.biortech.2017.03.044.

  • 32.

    Moser, B.R. Biodiesel production, properties, and feedstocks. Vitr. Cell. Dev. Biol. Plant 2009, 45, 229–266. https://doi.org/10.1007/s11627-009-9204-z.

  • 33.

    Baskar, G.; Selvakumari, I.A.; Aiswarya, R.J. Biodiesel production from castor oil using heterogeneous Ni doped ZnO nanocatalyst. Bioresour. Technol. 2018, 250, 793–798. https://doi.org/10.1016/j.biortech.2017.12.010.

  • 34.

    Muthu, H.; SathyaSelvabala, V.; Varathachary, T.K.; et al. Synthesis of biodiesel from Neem oil using sulfated zirconia via tranesterification. Braz. J. Chem. Eng. 2010, 27, 601–608. https://doi.org/10.1590/S0104-66322010000400012.

  • 35.

    Patel, R.L.; Sankhavara, C.D. Biodiesel production from Karanja oil and its use in diesel engine: A review. Renew. Sustain. Energy Rev. 2017, 71, 464–474. https://doi.org/10.1016/j.rser.2016.12.075.

  • 36.

    Palit, S.; Chowdhuri, A.K.; Mandal, B.K. Environmental impact of using biodiesel as fuel in transportation: A review. Int. J. Glob. Warm. 2011, 3, 232–256. https://doi.org/10.1504/IJGW.2011.043421.

  • 37.

    Berman, P.; Nizri, S.; Wiesman, Z. Castor oil biodiesel and its blends as alternative fuel. Biomass Bioenergy 2011, 35, 2861–2866. https://doi.org/10.1016/j.biombioe.2011.03.024.

  • 38.

    Patel, V.R.; Dumancas, G.G.; Viswanath, L.C.; et al. Castor oil: Properties, uses, and optimization of processing parameters in commercial production. Lipid Insights 2016, 9, LPI.S40233. https://doi.org/10.4137/LPI.S40233.

  • 39.

    Scholz, V.; Da Silva, J.N. Prospects and risks of the use of castor oil as a fuel. Biomass Bioenergy 2008, 32, 95–100. https://doi.org/10.1016/j.biombioe.2007.08.004.

  • 40.

    Madai, I.J.; Chande Jande, Y.A.; Kivevele, T. Fast Rate Production of Biodiesel from Neem Seed Oil Using a Catalyst Made from Banana Peel Ash Loaded with Metal Oxide (Li-CaO/Fe2(SO4)3). Adv. Mater. Sci. Eng. 2020, 2020, 7825024. https://doi.org/10.1155/2020/7825024.

  • 41.

    Dohaei, M.; Karimi, K.; Rahimmalek, M.; et al. Integrated biorefinery of aquatic fern Azolla filiculoides for enhanced extraction of phenolics, protein, and lipid and methane production from the residues. J. Clean. Prod. 2020, 276, 123175. https://doi.org/10.1016/j.jclepro.2020.123175.

  • 42.

    Fattah, I.R.; Masjuki, H.H.; Liaquat, A.M.; et al. Impact of various biodiesel fuels obtained from edible and non-edible oils on engine exhaust gas and noise emissions. Renew. Sustain. Energy Rev. 2013, 18, 552–567. https://doi.org/10.1016/j.rser.2012.10.036.

  • 43.

    Maleki, E.; Aroua, M.K.; Sulaiman, N.M. Castor oil—A more suitable feedstock for enzymatic production of methyl esters. Fuel Process. Technol. 2013, 112, 129–132. https://doi.org/10.1016/j.fuproc.2013.03.003.

  • 44.

    Singh, S.P.; Singh, D. Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renew. Sustain. Energy Rev. 2010, 14, 200–216. https://doi.org/10.1016/j.rser.2009.07.017.

  • 45.

    Avhad, M.R.; Marchetti, J.M. A review on recent advancement in catalytic materials for biodiesel production. Renew. Sustain. Energy Rev. 2015, 50, 696–718. https://doi.org/10.1016/j.rser.2015.05.038.

Share this article:
How to Cite
Gurumurthy , K.; Sunil Naik, N.; Bala Krishna, B. A Comparative Study of B10 Biodiesel Blends and Its Performance and Combustion Characteristics. Thermal Science and Applications 2026, 1 (1), 33–49.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.