• Open Access
  • Review

Bioinformatics and Multi-Omics-Driven Algal Systems Biology for Environmental and Biotechnological Applications

  • Obaid Ur Rehman 1,   
  • Muhammad Tayyab 1,   
  • Wei Liu 2,   
  • Shijiang Cao 3,   
  • Xinjuan Hu 1,   
  • Muhammad Uzair 1,   
  • Feifei Zhu 4,   
  • Shuhao Huo 1, *

Received: 15 Nov 2025 | Revised: 08 Dec 2025 | Accepted: 18 Dec 2025 | Published: 22 Dec 2025

Abstract

Significant improvement in bioinformatics and integrated multi-omics technologies that enable interrogation of biological complexity on the system level to advance algal research. Genomic analyses provide a foundational blueprint that enables the production of high-quality genomes and the identification of genes responsible for desirable characteristics, such as high lipid production and stress resilience. Transcriptomic profiling also describes the dynamics of gene expression, thereby explaining the regulatory networks that control key pathways, including photosynthesis and carbon partitioning. Proteomic analyses map the functional proteome and essential post-translational adaptations, whereas the study of endogenous small molecules by metabolomics can map metabolic flux and verify the rate-limiting step. This strong combination of heterogeneous data, facilitated by computational pipelines, enables the reconstruction of genome-scale metabolic models, which in turn facilitate the prediction of metabolic fluxes and the identification of strategic engineering leverage points. These efforts are complemented by machine-learning methods that identify subtle trends in large datasets to enhance gene annotation, predict gene behavior, and optimize cultivation in silico. Together, these bioinformatics-based procedures can provide an exceptional and widespread understanding of algal physiology. This systems-biology platform will expedite the rational design and development of engineered algal strains, thereby streamlining the use of algal strains for the generation of sustainable biofuels, high-value bioproducts, and industrial biotechnology.

References 

  • 1.

    Saravanakumar, K.; Sathyanarayanan, K.; Khan, M.; et al. Recent progress in biotechnological approaches for diverse applications of algae: An overview. Int. J. Environ. Sci. Technol. 2024, 21, 3453–3474.

  • 2.

    Rehman, O.U.; Hu, X.; Cao, S.; et al. Unraveling the impact of Anabaena azotica and Nostoc flagelliforme on wheat performance under saline-alkali soil and combined abiotic stresses. Algal Res. 2025, 104396.

  • 3.

    Ma, M.; Hu, Q. Microalgae as feed sources and feed additives for sustainable aquaculture: Prospects and challenges. Rev. Aquac. 2024, 16, 818–835.

  • 4.

    Gurau, S.; Imran, M.; Ray, R.L. Algae: A cutting-edge solution for enhancing soil health and accelerating carbon sequestration–A review. Environ. Technol. Innov. 2025, 37, 103980.

  • 5.

    Dhokane, D.; Shaikh, A.; Yadav, A.; et al. CRISPR-based bioengineering in microalgae for production of industrially important biomolecules. Front. Bioeng. Biotechnol. 2023, 11, 1267826.

  • 6.

    Chen, Y.; Pei, P.; Aslam, M.; et al. Microorganisms in Macroalgae Cultivation Ecosystems: A Systematic Review and Future Prospects Based on Bibliometric Analysis. Microorganisms 2025, 13, 1110.

  • 7.

    Rehman, O.U.; Zhu, F.; Hu, X.; et al. Harnessing breeding and biotechnological innovations for global food security under climate change. Funct. Integr. Genom. 2025, 25, 1–27.

  • 8.

    García-Moreno, P.J.; Yesiltas, B.; Echers, S.G.; et al. Recent advances in the production of emulsifying peptides with the aid of proteomics and bioinformatics. Curr. Opin. Food Sci. 2023, 51, 101039.

  • 9.

    Hamzelou, S.; Belobrajdic, D.; Broadbent, J.A.; et al. Utilizing proteomics to identify and optimize microalgae strains for high-quality dietary protein: A review. Crit. Rev. Biotechnol. 2024, 44, 1280–1295.

  • 10.

    Goold, H.D.; Moseley, J.L.; Lauersen, K.J. The synthetic future of algal genomes. Cell Genom. 2024, 4, 100505.

  • 11.

    Zaytsev, P.A.; Rodin, V.A.; Zaytseva, A.A.; et al. Advances of high-throughput sequencing for unraveling biotechnological potential of microalgal-bacterial communities. J. Appl. Phycol. 2024, 36, 1901–1919.

  • 12.

    Sun, H.; Luan, G.; Ma, Y.; et al. Engineered hypermutation adapts cyanobacterial photosynthesis to combined high light and high temperature stress. Nat. Commun. 2023, 14, 1238.

  • 13.

    Zhang, H.; Xiong, X.; Guo, K.; et al. A rapid aureochrome opto-switch enables diatom acclimation to dynamic light. Nat. Commun. 2024, 15, 5578.

  • 14.

    Li, C.-T.; Eng, R.; Zuniga, C.; et al. Optimization of nutrient utilization efficiency and productivity for algal cultures under light and dark cycles using genome-scale model process control. NPJ Syst. Biol. Appl. 2023, 9, 7.

  • 15.

    Saini, J.S.; Manni, M.; Hassler, C.; et al. Genomic insights into the coupling of a Chlorella-like microeukaryote and sulfur bacteria in the chemocline of permanently stratified Lake Cadagno. ISME J. 2023, 17, 903–915.

  • 16.

    Gee, C.W.; Andersen-Ranberg, J.; Boynton, E.; et al. Implicating the red body of Nannochloropsis in forming the recalcitrant cell wall polymer algaenan. Nat. Commun. 2024, 15, 5456.

  • 17.

    Long, B.; Fischer, B.; Zeng, Y.; et al. Machine learning-informed and synthetic biology-enabled semi-continuous algal cultivation to unleash renewable fuel productivity. Nat. Commun. 2022, 13, 541.

  • 18.

    Ghallab, D.S.; Shawky, E.; Ibrahim, R.S.; Mohyeldin, M.M. Comprehensive metabolomics unveil the discriminatory metabolites of some Mediterranean Sea marine algae in relation to their cytotoxic activities. Sci. Rep. 2022, 12, 8094.

  • 19.

    Rumbaugh, T.D.; Gorka, M.J.; Baker, C.S.; et al. Light-induced H2 generation in a photosystem I-O2-tolerant [FeFe] hydrogenase nanoconstruct. Proc. Natl. Acad. Sci. USA 2024, 121, e2400267121.

  • 20.

    Jiang, M.; Zheng, J.; Tang, Y.; et al. Retrievable hydrogel networks with confined microalgae for efficient antibiotic degradation and enhanced stress tolerance. Nat. Commun. 2025, 16, 3160.

  • 21.

    Zhang, K.; Xi, M.; Wu, G.; et al. Environmental drivers and microbial interactions in harmful dinoflagellate blooms: Insights from metagenomics and machine learning. Process Saf. Environ. Prot. 2025, 199, 107205.

  • 22.

    Ahmad, A.; Banat, F.; Alsafar, H.; Hasan, S.W. Recent breakthroughs in integrated biomolecular and biotechnological approaches for enhanced lipid and carotenoid production from microalgae. Phytochem. Rev. 2023, 22, 993–1013.

  • 23.

    Nagarajan, D.; Lee, D.-J.; Varjani, S.; et al. Microalgae-based wastewater treatment–microalgae-bacteria consortia, multi-omics approaches and algal stress response. Sci. Total Environ. 2022, 845, 157110.

  • 24.

    Ray, A.; Kundu, P.; Ghosh, A. Reconstruction of a genome-scale metabolic model of Scenedesmus obliquus and its application for lipid production under three trophic modes. ACS Synth. Biol. 2023, 12, 3463–3481.

  • 25.

    Poorinmohammad, N.; Kerkhoven, E.J. Systems-level approaches for understanding and engineering of the oleaginous cell factory Yarrowia lipolytica. Biotechnol. Bioeng. 2021, 118, 3640–3654.

  • 26.

    Cruz, R.C.; Reis Costa, P.; Vinga, S.; et al. A review of recent machine learning advances for forecasting harmful algal blooms and shellfish contamination. J. Mar. Sci. Eng. 2021, 9, 283.

  • 27.

    Kuo, E.Y.; Yang, R.Y.; Chin, Y.Y.; et al. Multiomics approaches and genetic engineering of metabolism for improved biorefinery and wastewater treatment in microalgae. Biotechnol. J. 2022, 17, 2100603.

  • 28.

    Melero-Cobo, X.; Gallemí, M.; Carnicer, M.; et al. MoCloro: an extension of the Chlamydomonas reinhardtii modular cloning toolkit for microalgal chloroplast engineering. Physiol. Plant. 2025, 177, e70088.

  • 29.

    Grigoriev, I.V.; Hayes, R.D.; Calhoun, S.; et al. PhycoCosm, a comparative algal genomics resource. Nucleic Acids Res. 2021, 49, D1004–D1011.

  • 30.

    Li, H.; Sun, X.; Li, W.; et al. Comparative transcriptomic insights into key genes for biomass production and lipid synthesis in Chlorella sorokiniana mutated by argon and air atmospheric and room temperature plasma at different culture stages: Common mechanisms and unique differences. J. Clean. Prod. 2024, 474, 143590.

  • 31.

    Wang, M.; Ye, X.; Bi, H.; Shen, Z. Microalgae biofuels: illuminating the path to a sustainable future amidst challenges and opportunities. Biotechnol. Biofuels Bioprod. 2024, 17, 10.

  • 32.

    Wang, H.; Zhang, X.; Gao, M.; et al. Multi-omics insights of biotin-enhanced astaxanthin and total fatty acid productivity in heterotrophic Chromochloris zofingiensis under stress conditions. Algal Res. 2025, 104158.

  • 33.

    Xi, Y.; Yin, L.; Chi, Z.Y.; Luo, G. Characterization and RNA-seq transcriptomic analysis of a Scenedesmus obliqnus mutant with enhanced photosynthesis efficiency and lipid productivity. Sci. Rep. 2021, 11, 11795.

  • 34.

    Zhang, Y.; Gu, Z.; Ren, Y.; et al. Integrating transcriptomics and metabolomics to characterize metabolic regulation to elevated CO2 in Chlamydomonas Reinhardtii. Mar. Biotechnol. 2021, 23, 255–275.

  • 35.

    Ves-Urai, P.; Krobthong, S.; Thongsuk, K.; et al. Comparative secretome analysis between salinity-tolerant and control Chlamydomonas reinhardtii strains. Planta 2021, 253, 68.

  • 36.

    Cecchin, M.; Simicevic, J.; Chaput, L.; et al. Acclimation strategies of the green alga Chlorella vulgaris to different light regimes revealed by physiological and comparative proteomic analyses. J. Exp. Bot. 2023, 74, 4540–4558.

  • 37.

    Perin, G.; Morosinotto, T. Understanding regulation in complex environments: a route to enhance photosynthetic light-reactions in microalgae photobioreactors. Front. Photobiol. 2023, 1, 1274525.

  • 38.

    Lacroux, J.; Atteia, A.; Brugière, S.; et al. Proteomics unveil a central role for peroxisomes in butyrate assimilation of the heterotrophic Chlorophyte alga Polytomella sp. Front. Microbiol. 2022, 13, 1029828.

  • 39.

    Sreenikethanam, A.; Raj, S.; Rajesh Banu, J.; et al. Algal lipids for biofuel production: strategies, environmental impacts, downstream processing and commercialization. Phytochem. Rev. 2023, 22, 1127–1145.

  • 40.

    Wang, J.; Tian, Q.; Zhou, H.; et al. Key metabolites and regulatory network mechanisms in co-culture of fungi and microalgae based on metabolomics analysis. Bioresour. Technol. 2023, 388, 129718.

  • 41.

    Ghassemi, N.; Poulhazan, A.; Deligey, F.; et al. Solid-state NMR investigations of extracellular matrixes and cell walls of algae, bacteria, fungi, and plants. Chem. Rev. 2021, 122, 10036–10086.

  • 42.

    Chen, H.; Wang, Q. Regulatory mechanisms of lipid biosynthesis in microalgae. Biol. Rev. 2021, 96, 2373–2391.

  • 43.

    Shen, H.; Song, X.; Zhang, Y.; et al. Profiling of brevetoxin metabolites produced by Karenia brevis 165 based on liquid chromatography-mass spectrometry. Toxins 2021, 13, 354.

  • 44.

    Yao, H.; Yang, J.; Wang, Z.; et al. High-throughput metabolite analysis of unicellular microalgae by orthogonal hybrid ionization label-free mass cytometry. Anal. Chem. 2024, 96, 11404–11411.

  • 45.

    Eladl, S.N.; Elnabawy, A.M.; Eltanahy, E.G. Recent biotechnological applications of value-added bioactive compounds from microalgae and seaweeds. Bot. Stud. 2024, 65, 28.

  • 46.

    Sun, Y.; Jing, H.; Li, Z.; et al. Integrated transcriptomic, metabolomic and lipidomic analyses uncover the crucial roles of lipid metabolism pathways in oat (Avena sativa) responses to heat stress. BMC Genom. 2025, 26, 780.

  • 47.

    Liu, M.; Yu, L.; Zheng, J.; et al. Turning the industrially relevant marine alga Nannochloropsis red: one move for multifaceted benefits. New Phytol. 2024, 244, 1467–1481.

  • 48.

    Razzak, S.A.; Bahar, K.; Islam, K.O.; et al. Microalgae cultivation in photobioreactors: Sustainable solutions for a greener future. Green Chem. Eng. 2024, 5, 418–439.

  • 49.

    Li, C.-T.; Eng, R.; Zuniga, C.; et al. Optimization of nutrient utilization efficiency and productivity for algal cultures under light and dark cycles using genome-scale model process control. NPJ Syst. Biol. Applications. 2023. 9, 7.

  • 50.

    Patidar, S.K. Metabolic interactions between microalgae and bacteria: Multifunctional ecological interplay and environmental applications. Algal Res. 2025, 103904.

Share this article:
How to Cite
Rehman, O. U.; Tayyab, M.; Liu, W.; Cao, S.; Hu, X.; Uzair, M.; Zhu, F.; Huo, S. Bioinformatics and Multi-Omics-Driven Algal Systems Biology for Environmental and Biotechnological Applications. Algae and Environment 2025, 1 (1), 7. https://doi.org/10.53941/algaeenviron.2025.100007.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.