- 1.
Lewis, K.; Lee, R.E.; Brötz-Oesterhelt, R.H.; et al. Sophisticated natural products as antibiotics. Nature 2024, 632, 39–49.
- 2.
Peng, X.; Gan, Y.; Yang, L.; et al. Biofunctional lipid nanoparticles for precision treatment and prophylaxis of bacterial infections. Sci. Adv. 2024, 10, eadk9754.
- 3.
Rossiter, S.E.; Fletcher, M.H.; et al. Natural products as platforms to overcome antibiotic resistance. Chem. Rev. 2017, 117, 12415–12474.
- 4.
Fu, J.; Li, Y.; Zhang, Y.; et al. An engineered pseudo-macrophage for rapid treatment of bacteria-infected osteomyelitis via microwave-excited anti-infection and immunoregulation. Adv. Mater. 2021, 33, e2102926.
- 5.
Blackmon, S.; Avendano, E.E.; Nirmala, N.; et al. Socioeconomic status and the risk for colonisation or infection with priority bacterial pathogens: A global evidence map. Lancet Microbe 2025, 6, 100993.
- 6.
Liu, C.; Kong, D.; Hsu, P.; et al. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nat. Nanotechnol. 2016, 11, 1098–1104.
- 7.
Gao, Y.; Wang, J.; Hu, D.; et al. Bacteria-targeted supramolecular photosensitizer delivery vehicles for photodynamic ablation against biofilms. Macromol. Rapid Commun. 2019, 40, e1800763.
- 8.
Ray, P.C.; Khan, S.A.; Singh, A.K.; et al. Nanomaterials for targeted detection and photothermal killing of bacteria. Chem. Soc. Rev. 2012, 41, 3193–3209.
- 9.
Green, J.; Paget, M.S. Bacterial redox sensors. Nat. Rev. Microbiol. 2004, 2, 954–966.
- 10.
Liu, D.F.; Li, W.W. Potential-dependent extracellular electron transfer pathways of exoelectrogens. Curr. Opin. Chem. Biol. 2020, 59, 140–146.
- 11.
Sporer, A.J.; Kahl, L.J.; et al. Redox-based regulation of bacterial development and behavior. Annu. Rev. Biochem. 2017, 86, 777–797.
- 12.
Nel, A.E.; Mädler, L.; Velegol, D.; et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 2009, 8, 543–557.
- 13.
Baldus Ilona, B.; Gräter, F. Mechanical Force Can Fine-Tune Redox Potentials of Disulfide Bonds. Biophys. J. 2012, 102, 622–629.
- 14.
Li, J.; Jiang, M.; Zhou, H.; et al. Vanadium dioxide nanocoating induces tumor cell death through mitochondrial electron transport chain interruption. Glob. Chall. 2019, 3, 1800058.
- 15.
Sakimoto, K.K.; Wong, A.B.; Yang, P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 2016, 351, 74–76.
- 16.
King, P.; Brown, K.; Harris, D. Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid. Science 2016, 352, 448–450.
- 17.
Guo, J.; Suástegui, M.; Sakimoto, K.K.; et al. Light-driven fine chemical production in yeast biohybrids. Science 2018, 362, 813–816.
- 18.
Liu, C.; Colón, B.C.; Ziesack, M.; et al. Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 2016, 352, 1210–1213.
- 19.
Zhang, H.; Liu, H.; Tian, Z.; et al. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nat. Nanotechnol. 2018, 13, 900–905.
- 20.
Li, X.; Zhu, H. Two-dimensional MoS2: Properties, preparation, and applications. J. Materiomics 2015, 1, 33–44.
- 21.
Hendi, A.H.; Osman, A.M.; Khan, I.; et al. Visible light-driven photoelectrocatalytic water splitting using Z-scheme Ag-decorated MoS2/RGO/NiWO4 heterostructure. ACS Omega 2020, 5, 31644–31656.
- 22.
Fu, J.; Liu, X.; Liu, X.; et al. Photoelectric-responsive extracellular matrix for bone engineering. ACS Nano 2019, 13, 13581–13594.
- 23.
Fu, J.; Zhu, W.; Liu, X.; et al. Self-activating anti-infection implant. Nat. Commun. 2021, 12, 6907.
- 24.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
- 25.
Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
- 26.
Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.
- 27.
Grimme, S.; Antony, J.; Ehrlich, S.; et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Chem. Phys. 2010, 132, 154104.
- 28.
Li, S.; Liu, Y.; Zhao, X.; et al. Sandwich-like heterostructures of MoS2/graphene with enlarged interlayer spacing and enhanced hydrophilicity as high-performance cathodes for aqueous zinc-ion batteries. Adv. Mater. 2021, 33, e2007480.
- 29.
Kottegoda, N.; Sandaruwan, C.; Priyadarshana, G.; et al. Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano 2017, 11, 1214–1221.
- 30.
Bayer, B.C.; Kaindl, R.; Monazam, M.R.A.; et al. Atomic-scale in situ observations of crystallization and restructuring processes in two-dimensional MoS2 films. ACS Nano 2018, 12, 8758–8769.
- 31.
Yang, C.T.; Li, K.Y.; Meng, F.Q.; et al. ROS-induced HepG2 cell death from hyperthermia using magnetic hydroxyapatite nanoparticles. Nanotechnology 2018, 29, 375101.
- 32.
Liang, Z.; Xue, Y.; Wang, X.; et al. Co doped MoS2 as cocatalyst considerably improved photocatalytic hydrogen evolution of g-C3N4 in an alkalescent environment. Chem. Eng. J. 2021, 421, 130016.
- 33.
Umezawa, N.; Shuxin, O.; Ye, J. Theoretical study of high photocatalytic performance of Ag3PO4. Phys. Rev. B 2011, 83, 035202.
- 34.
Li, Y.; Liu, X.; Tan, L.; et al. Rapid sterilization and accelerated wound healing using Zn2+ and graphene oxide modified g-C3N4 under dual light irradiation. Adv. Funct. Mater. 2018, 28, 1800299.
- 35.
Zhu, Y.; Liu, X.; Wu, J.; et al. Regulation of macrophage polarization through surface topography design to facilitate implant-to-bone osteointegration. Sci. Adv. 2021, 7, eabf6654.
- 36.
Nosaka, Y.; Nosaka, A.Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302–11336.
- 37.
Bagramyan, K.; Galstyan, A.; Trchounian, A. Redox potential is a determinant in the Escherichia coli anaerobic fermentative growth and survival: Effects of impermeable oxidant. Bioelectrochemistry 2000, 51, 151–156.
- 38.
Nothling, M.D.; Cao, H.; McKenzie, T.G.; et al. Bacterial redox potential powers controlled radical polymerization. J. Am. Chem. Soc. 2021, 143, 286–293.
- 39.
Shi, L.; Dong, H.; Reguera, G.; et al. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat. Rev. Microbiol. 2016, 14, 651–662.
- 40.
Li, Y.; Liu, X.; Tan, L.; et al. Eradicating multidrug-resistant bacteria rapidly using a multi functional g—C3N4@Bi2S3 nanorod heterojunction with or without antibiotics. Adv. Funct. Mater. 2019, 29, 1900946.
- 41.
Fang, X.; Kalathil, S.; Divitini, G.; et al. A three-dimensional hybrid electrode with electroactive microbes for efficient electrogenesis and chemical synthesis. Proc. Nat. Acad. Sci. USA 2020, 117, 5074–5080.
- 42.
Courtney, C.M.; Goodman, S.M.; Nagy, T.A.; et al. Potentiating antibiotics in drug-resistant clinical isolates via stimuli-activated superoxide generation. Sci. Adv. 2017, 3, e1701776.
- 43.
Lin, W.; Kirschvink, J.L.; Paterson, G.A.; et al. On the origin of microbial magnetoreception. Natl. Sci. Rev. 2020, 7, 472–479.
- 44.
Martinière, A.; Gibrat, R.; Sentenac, H.; et al. Uncovering pH at both sides of the root plasma membrane interface using noninvasive imaging. Proc. Nat. Acad. Sci. USA 2018, 115, 6488.
- 45.
Kzhyshkowska, J.; Gudima, A.; Riabov, V.; et al. Macrophage responses to implants: Prospects for personalized medicine. J. Leukoc. Biol. 2015, 98, 953–962.
- 46.
Fu, J.; Liu, X.; Cui, Z.; et al. Probiotic-based nanoparticles for targeted microbiota modulation and immune restoration in bacterial pneumonia. Natl. Sci. Rev. 2023, 10, nwac221.
- 47.
Li, Y.; Liu, X.; Cui, Z.; et al. Inflammation and microbiota regulation potentiate pneumonia therapy by biomimetic bacteria and macrophage membrane nanosystem. Research 2023, 6, 0096.