- 1.
Cohen, J. The immunopathogenesis of sepsis. Nature 2002, 420, 885–891.
- 2.
Burnouf, T.; Radosevich, M. Reducing the risk of infection from plasma products: Specific preventative strategies. Blood Rev. 2000, 14, 94–110.
- 3.
Savelkoel, J.; Claushuis, T.A.M.; van Engelen, T.S.R.; et al. Global impact of world sepsis day on digital awareness of sepsis: An evaluation using google trends. Crit. Care 2018, 22, 61.
- 4.
Prescott, H.C.; Angus, D.C. Enhancing recovery from sepsis: A review. JAMA 2018, 319, 62–75.
- 5.
Zampieri, F.G.; Bagshaw, S.M.; Semler, M.W. Fluid therapy for critically ill adults with sepsis: A review. JAMA 2023, 329, 1967–1980.
- 6.
Mancini, N.; Carletti, S.; Ghidoli, N.; et al. The era of molecular and other non-culture-based methods in diagnosis of sepsis. Clin. Microbiol. Rev. 2010, 23, 235–251.
- 7.
Meyer, T.; Franke, G.; Polywka, S.K.A.; et al. Improved detection of bacterial central nervous system infections by use of a broad-range pcr assay. J. Clin. Microbiol. 2014, 52, 1751–1753.
- 8.
Hsieh, K.; Ferguson, B.S.; Eisenstein, M.; et al. Integrated electrochemical microsystems for genetic detection of pathogens at the point of care. Acc. Chem. Res. 2015, 48, 911–920.
- 9.
Sunbul, M.; Jäschke, A. Contact-mediated quenching for RNA imaging in bacteria with a fluorophore-binding aptamer. Angew. Chem. Int. Ed. 2013, 52, 13401–13404.
- 10.
Zhang, L.; Dong, W.F.; Sun, H.B. Multifunctional superparamagnetic iron oxide nanoparticles: Design, synthesis and biomedical photonic applications. Nanoscale 2013, 5, 7664–7684.
- 11.
Gu, H.; Ho, P.L.; Tsang, K.W.T.; et al. Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration. J. Am. Chem. Soc. 2003, 125, 15702–15703.
- 12.
Chen, J.; Duncan, B.; Wang, Z.; et al. Bacteriophage-based nanoprobes for rapid bacteria separation. Nanoscale 2015, 7, 16230–16236.
- 13.
Ray, P.C.; Khan, S.A.; Singh, A.K.; et al. Nanomaterials for targeted detection and photothermal killing of bacteria. Chem. Soc. Rev. 2012, 41, 3193–3209.
- 14.
Zhou, R.; Wu, X.; Xue, S.; et al. Magnetic metal-organic frameworks-based ratiometric sers aptasensor for sensitive detection of patulin in apples. Food Chem. 2025, 466, 142200.
- 15.
Kavruk, M.; Babaie, Z.; Kibar, G.; et al. Aptamer decorated PDA@magnetic silica microparticles for bacteria purification. Microchim. Acta 2024, 191, 285.
- 16.
Didar, T.F.; Cartwright, M.J.; Rottman, M.; et al. Improved treatment of systemic blood infections using antibiotics with extracorporeal opsonin hemoadsorption. Biomaterials 2015, 67, 382–392.
- 17.
Wu, L.; Wang, Y.; Xu, X.; et al. Aptamer-based detection of circulating targets for precision medicine. Chem. Rev. 2021, 121, 12035–12105.
- 18.
Li, Z.; Luo, B.; Chen, Y.; et al. Nanomaterial-based encapsulation of biochemicals for targeted sepsis therapy. Mater. Today Bio 2025, 33, 102054.
- 19.
Li, S.; Cui, S.; Yin, D.; et al. Dual antibacterial activities of a chitosan-modified upconversion photodynamic therapy system against drug-resistant bacteria in deep tissue. Nanoscale 2017, 9, 3912–3924.
- 20.
Zhang, L.; Huang, H.; Zhang, B.; et al. Structure and properties of violet phosphorus and its phosphorene exfoliation. Angew. Chem. Int. Ed. 2020, 59, 1074–1080.
- 21.
Zhao, C.; Han, X.; Wang, S.; et al. Violet phosphorus nanosheet: A biocompatible and stable platform for stimuli-responsive multimodal cancer phototherapy. Adv. Healthc. Mater. 2023, 12, 2201995.
- 22.
Li, C.; Wu, Y.; Chen, Y.; et al. Violet phosphorene nanosheets coupled with CRISPR/Cas12a in a biosensor with a low background signal for onsite detection of tigecycline-resistant hypervirulent Klebsiella pneumoniae. Sens. Actuators B: Chem. 2023, 395, 134509.
- 23.
Shen, Q.; Kang, J.; Zhao, X.; et al. Bacterial elimination via cell membrane penetration by violet phosphorene peripheral sub-nanoneedles combined with oxidative stress. Chem. Sci. 2024, 15, 4926–4937.