- 1.
Baker, R.E.; Mahmud, A.S.; Miller, I.F.; et al. Infectious disease in an era of global change. Nat. Rev. Microbiol. 2022, 20, 193–205.
- 2.
Kumar, K.; Chopra, S. New drugs for Methicillin-resistant Staphylococcus aureus: An update. J. Antimicrob. Chemother. 2013, 68, 1465–1470.
- 3.
Fisher, R.A.; Gollan, B.; Helaine, S. Persistent bacterial infections and persister cells. Nat. Rev. Microbiol. 2017, 15, 453–464.
- 4.
Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; et al. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019, 17, 203–218.
- 5.
Blair, J.M.; Webber, M.A.; Baylay, A.J. et al. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015, 13, 42–51.
- 6.
Kurlenda, J.; Grinholc, M. Alternative therapies in Staphylococcus aureus diseases. Acta Biochim. Pol. 2012 59, 171–184.
- 7.
Palser, S.; Smith, S.; Nash, E.F.; et al. Treatments for preventing recurrence of infection with Pseudomonas aeruginosa in people with cystic fibrosis (Protocol). Cochrane Database Syst. Rev. 2019, 12, CD012300.
- 8.
Malhotra, S.; Hayes, D.; Wozniak, D.J. Cystic fibrosis and Pseudomonas aeruginosa: The host-microbe interface. Clin. Microbiol. Rev. 2019, 32, e00138-18.
- 9.
Cos, P.; Tote, K.; Horemans, T. Biofilms: An extra hurdle for effective antimicrobial therapy. Curr. Pharm. Des. 2010, 16, 2279–2295.
- 10.
Costerton, W.; Veeh, R.; Shirtliff, M.; et al. The application of biofilm science to the study and control of chronic bacterial infections. J. Clin. Investig. 2003, 112, 1466–1477.
- 11.
Petit, T.J.P.; Lebreton, A. Adaptations of intracellular bacteria to vacuolar or cytosolic niches. Trends Microbiol. 2022, 30, 736–748.
- 12.
Rumbaugh, K.P.; Sauer, K. Biofilm dispersion. Nat. Rev. Microbiol. 2020, 18, 571–586.
- 13.
Schütz, C.; Empting, M.; Beilstein, J. Targeting the Pseudomonas quinolone signal quorum sensing system for the discovery of novel anti-infective pathoblockers. Beilstein J. Org. Chem. 2018, 14, 2627–2645.
- 14.
Guan, W.; Tan, L.; Liu, X.; et al. Ultrasonic interfacial engineering of red phosphorous-metal for eradicating mrsa infection effectively. Adv. Mater. 2021, 33, 2006047.
- 15.
Chai, H.W.; Guo, L.; Wang, X.T.; et al. Antibacterial effect of 317L stainless steel contained copper in prevention of implant-related infection in vitro and in vivo. J. Mater. Sci. Mater. Med. 2011, 22, 2525–2535.
- 16.
Zhao, J.; Cao, Z.Q.; Ren, L.; et al. A novel ureteral stent material with antibacterial and reducing encrustation properties. Mater. Sci. Eng. C 2016, 68, 221–228.
- 17.
Zhuang, Y.F.; Ren, L.; Zhang, S.Y.; et al. Antibacterial effect of a copper-containing titanium alloy against implant-associated infection induced by methicillin-resistant Staphylococcus aureus. Acta Biomater. 2021, 119, 472–484.
- 18.
Zhang, X.R.; Yang, C.G.; Xi, T.; et al. Cu-bearing stainless steel affects its contact-killing efficiency by mediating the interfacial interaction with bacteria. ACS Appl. Mater. Interfaces 2021, 13, 2303–2315.
- 19.
Natan, M.; Edin, F.; Perkas, N.; et al. Two are better than one: Combining ZnO and MgF2 nanoparticles reduces Streptococcus pneumoniae and Staphylococcus aureus biofilm formation on cochlear implants. Adv. Funct. Mater. 2016, 26, 2473–2481.
- 20.
Xing, J.; Qi, S.; Wang, Z.; et al. Antimicrobial peptide functionalized conductive nanowire array electrode as a promising candidate for bacterial environment application. Adv. Funct. Mater. 2019, 29, 1806353.1–1806353.9.
- 21.
Wagner, S.; Sommer, R.; Hinsberger, S.; et al. Novel strategies for the treatment of pseudomonas aeruginosa infections. J. Med. Chem. 2016, 59, 5929–5969.
- 22.
Christian, Schütz.; Ho, D.K.; Hamed, M.M.; et al. A new PqsR inverse agonist potentiates tobramycin efficacy to eradicate Pseudomonas aeruginosa biofilms. Adv. Sci. 2021, 8, 2004369.
- 23.
Liu, R.; Tang, Y.L.; Zeng, L.L.; et al. In vitro and in vivo studies of anti-bacterial copper-bearing titanium alloy for dental application. Dent. Mater. 2018, 34, 1112–1126.
- 24.
Xiao, X.; Zhu, W.; Liu, Q.; et al. Impairment of biofilm formation by TiO2 photocatalysis through quorum quenching. Environ. Sci. Technol. 2016, 50, 11895–11902.
- 25.
Truong-Bolduc, Q.C.; Strahilevitz, J.; Hooper, D.C. NorC, a new efflux pump regulated by MgrA of Staphylococcus aures. Antimicrob Agents Chemother 2006, 50, 1104–1107.
- 26.
Høiby, N.; Bjarnsholt, T.; Givskov, M.; et al. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 2010, 35, 322–332.
- 27.
Prakash, B.; Veeregowda, B.; Krishnappa, G. Biofilms: A survival strategy of bacteria. Curr. Sci. 2003, 85, 1299–1307.
- 28.
Costerton, J.W.; Lewandowski, Z.; Caldwell, D.E.; et al. Microbial biofilms. Annu. Rev. Microbiol. 1995, 49, 711–745.
- 29.
Xavier, K.; Bassler, B. Interference with AI-2-mediated bacterial cell-cell communication. Nature 2005, 437, 750.
- 30.
Zhao, L.; Xue, T.; Shang, F.; et al. Staphylococcus aureus AI-2 quorum sensing associates with the KdpDE two-component system to regulate capsular polysaccharide synthesis and virulence. Infect. Immun. 2010, 78, 3506–3515.
- 31.
Li, M.; Villaruz, A.E.; Vadyvaloo, V.; et al. AI-2-dependent gene regulation in staphylococcus epidermidis. BMC Microbiol. 2008, 8, 4.
- 32.
Zhang, X.L.; Lee, K.; Yu, H.R.; et al. Photolytic quorum quenching: A new anti-biofouling strategy for membrane bioreactors. Chem. Eng. J. 2019, 378, 12223–12232.
- 33.
Zhang, X.R.; Yang, C.G.; Yang, K. Contact killing of Cu-bearing stainless steel based on charge transfer caused by the microdomain potential difference. ACS Appl. Mater. Interfaces 2020, 12, 361–372.
- 34.
Crowe, M.; O’Sullivan, M.; Cassetti, O.; et al. Estimation and consumption pattern of free sugar intake in 3-year-old Irish preschool children. Eur. J. Nutr. 2020, 59, 2065–2074.
- 35.
Orelle, C.; Mathieu, K.; Jault, J.M. Multidrug ABC transporters in bacteria. Res. Microbiol. 2019, 170, 381–391.
- 36.
Barbosa, T.M.; Levy, S.B. The impact of antibiotic use on resistance development and persistence. Drug Resist. Updates 2000, 3, 303–311.
- 37.
Huda, N.; Lee, E.W.; Chen, J.; et al. Molecular cloning and characterization of an ABC multidrug efflux pump, VcaM, in Non-O1 Vibrio cholerae. Antimicrob. Agents Chemother. 2003, 47, 2413–2417.
- 38.
Tiwari, S.; Van Tonder, A.J.; Vilchèze, C.; et al. Arginine-deprivation induced oxidative damage sterilizes mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 2018, 115, 9779–9784.
- 39.
Suga, H.; Smith, K.M. Molecular mechanisms of bacterial quorum sensing as a new drug target. Curr. Opin. Chem. Biol. 2003, 7, 586–591.