- 1.
Allen, E. Modeling with It Stochastic Differential Equations; Springer: Dordrecht, The Netherlands, 2007.
- 2.
Kloeden, P.E.; Platen, E. Numerical Solution of Stochastic Differential Equations; Springer: Berlin, Germany, 1992.
- 3.
Mao, X. Stochastic Differential Equations and Applications, 2nd ed.; Horwood: Chichester, UK, 2007.
- 4.
Hutzenthaler, M.; Jentzen, A.; Kloeden, P.E. Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients. Proc. R. Soc. A Math. Phys. Eng. Sci. 2011, 467, 1563–1576.
- 5.
Li, X.; Mao, X.; Yin, G. Explicit numerical approximations for stochastic differential equations in finite and infinite horizons: truncation methods, convergence in pth moment and stability. IMA J. Numer. Anal. 2019, 39, 847–892.
- 6.
Mao, X. The truncated Euler?Maruyama method for stochastic differential equations. J. Comput. Appl. Math. 2015, 290, 370–384.
- 7.
Hutzenthaler, M.; Jentzen, A.; Kloeden, P.E. Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients. Ann. Appl. Probab. 2012, 22, 1611–1641.
- 8.
Sabanis, S. Euler approximations with varying coefficients: the case of superlinearly growing diffusion coefficients. Ann. Appl. Probab. 2016, 26, 2083–2105.
- 9.
Liu, W.; Mao, X. Strong convergence of the stopped Euler?Maruyama method for nonlinear stochastic differential equations. Appl. Math. Comput. 2013, 223, 389–400.
- 10.
Anderson, D.F.; Higham, D.J.; Sun, Y. Multilevel Monte Carlo for stochastic differential equations with small noise. SIAM J. Numer. Anal. 2016, 54, 505–529.
- 11.
Beyn, W.; Isaak, E.; Kruse, R. Stochastic C-stability and B-consistency of explicit and implicit Euler-type schemes. J. Sci. Comput. 2016, 67, 955–987.
- 12.
Andersson, A.; Kruse, R. Mean-square convergence of the BDF2?Maruyama and backward Euler schemes for SDE satisfying a global monotonicity condition. BIT 2017, 57, 21–53.
- 13.
Szpruch, L.; Mao, X.; Higham, D.J.; et al. Numerical simulation of a strongly nonlinear Ait-Sahalia-type interest rate model. BIT 2011, 51, 405–425.
- 14.
Wang, X.; Wu, J.; Dong, B. Mean-square convergence rates of stochastic theta methods for SDEs under a coupled monotonicity condition. BIT 2020, 60, 759–790.
- 15.
Buckwar, E.; Pikovsky, A.; Scheutzow, M. Stochastic dynamics with delay and memory-Preface. Stoch. Dyn. 2005, 5, III–IV.
- 16.
Deng, S.; Fei, C.; Fei, W.; et al. Tamed EM schemes for neutral stochastic differential delay equations with superlinear diffusion coefficients. J. Comput. Appl. Math. 2021, 388, 113269.
- 17.
Fei, W.; Hu, L.; Mao, X.; et al. Advances in the truncated Euler-Maruyama method for stochastic differential delay equations. Commun. Pure Appl. Anal. 2020, 19, 2081–2100.
- 18.
Guo, Q.; Mao, X.; Yue, R. The truncated Euler-Maruyama method for stochastic differential delay equations. Numer. Algorithms 2018, 78, 599–624.
- 19.
Li, M.; Huang, C. Projected Euler-Maruyama method for stochastic delay differential equations under a global monotonicity condition. Appl. Math. Comput. 2020, 366, 124733.
- 20.
Song, G.; Hu, J.; Gao, S.; et al. The strong convergence and stability of explicit approximations for nonlinear stochastic delay differential equations. Numer. Algorithms 2022, 89, 855–883.
- 21.
Gan, S.; Schurz, H.; Zhang, H. Mean square convergence of stochastic θ-methods for nonlinear neutral stochastic differential delay equations. Int. J. Numer. Anal. Model. 2011, 8, 201–213.
- 22.
Liu, M.; Cao, W.; Fan, Z. Convergence and stability of the semi-implicit Euler method for a linear stochastic differential delay equation. J. Comput. Appl. Math. 2004, 170, 255–268.
- 23.
Wang, L.; Mei, C.; Xue, H. The semi-implicit Euler method for stochastic differential delay equation with jumps. Appl. Math. Comput. 2007, 192, 567–578.
- 24.
Wang, X.; Gan, S. The improved split-step backward Euler method for stochastic differential delay equations. Int. J. Comput. Math. 2011, 88, 2359–2378.
- 25.
Zhang, H.; Gan, S.; Hu, L. The split-step backward Euler method for linear stochastic delay differential equations. J. Comput. Appl. Math. 2009, 225, 558–568.
- 26.
Zhang, C.; Xie, Y. Backward Euler-Maruyama method applied to nonlinear hybrid stochastic differential equations with time-variable delay. Sci. China Math. 2019, 62, 597–616.
- 27.
Zhou, S. Strong convergence and stability of backward Euler-Maruyama scheme for highly nonlinear hybrid stochastic differential delay equation. Calcolo 2015, 52, 445–473.
- 28.
Zhou, S.; Jin, H. Numerical solution to highly nonlinear neutral-type stochastic differential equation. Appl. Numer. Math. 2019, 140, 48–75.
- 29.
Yan, Z.; Xiao, A.; Tang, X. Strong convergence of the split-step theta method for neutral stochastic delay differential equations. Appl. Numer. Math. 2017, 120, 215–232.
- 30.
Yue, C.; Zhao, L. Strong convergence of the split-step backward Euler method for stochastic delay differential equations with a nonlinear diffusion coefficient. J. Comput. Appl. Math. 2021, 382, 113087.
- 31.
Higham, D.J. Mean-square and asymptotic stability of stochastic theta method. SIAM J. Numer. Anal. 2000, 38, 753–769.
- 32.
Higham, D.J.; Mao, X.; Yuan, C. Almost sure and moment exponential stability in the numerical simulation of stochastic differential equations. SIAM J. Numer. Anal. 2007, 45, 592–609.
- 33.
Mao, X.; Shen, Y.; Gray, A. Almost sure exponential stability of backward Euler-Maruyama discretizations for hybrid stochastic differential equations. J. Comput. Appl. Math. 2011, 235, 1213–1226.
- 34.
Mao, X.; Szpruch, L. Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients. J. Comput. Appl. Math. 2013, 238, 14–28.
- 35.
Zhu, Q.; Song, S.; Tang, T. Mean square exponential stability of stochastic nonlinear delay systems. Internat. J. Control 2017, 90, 2384–2393.
- 36.
Liu, L.; Zhu, Q. Almost sure exponential stability of numerical solutions to stochastic delay Hopfield neural networks. Appl. Math. Comput. 2015, 266, 698–712.
- 37.
Liu, L.; Zhu, Q. Mean square stability of two classes of theta method for neutral stochastic differential delay equations. J. Comput. Appl. Math. 2016, 305, 55–67.
- 38.
Farkhondeh Rouz, O. Preserving asymptotic mean-square stability of stochastic theta scheme for systems of stochastic delay differential equations. Comput. Methods Differ. Equ. 2020, 8, 468–479.
- 39.
Huang, C. Mean square stability and dissipativity of two classes of theta methods for systems of stochastic delay differential equations. J. Comput. Appl. Math. 2014, 259, 77–86.
- 40.
Li, Q.; Gan, S. Almost sure exponential stability of numerical solutions for stochastic delay differential equations with jumps. J. Appl. Math. Comput. 2011, 37, 541–557.
- 41.
Miloevi, M. Convergence and almost sure exponential stability of implicit numerical methods for a class of highly nonlinear neutral stochastic differential equations with constant delay. J. Comput. Appl. Math. 2015, 280, 248–264.
- 42.
Miloevi, M. Implicit numerical methods for highly nonlinear neutral stochastic differential equations with time-dependent delay. Appl. Math. Comput. 2014, 244, 741–760.
- 43.
Qu, X.; Huang, C. Delay-dependent exponential stability of the backward Euler method for nonlinear stochastic delay differential equations. Int. J. Comput. Math. 2012, 89, 1039–1050.
- 44.
Wang, W.; Chen, Y. Mean-square stability of semi-implicit Euler method for nonlinear neutral stochastic delay differential equations. Appl. Numer. Math. 2011, 61, 696–701.
- 45.
Wu, F.; Mao, X.; Szpruch, L. Almost sure exponential stability of numerical solutions for stochastic delay differential equations. Numer. Math. 2010, 115, 681–697.
- 46.
Yu, Z. The improved stability analysis of the backward Euler method for neutral stochastic delay differential equations. Int. J. Comput. Math. 2013, 90, 1489–1494.
- 47.
Zong, X.; Wu, F. Exponential stability of the exact and numerical solutions for neutral stochastic delay differential equations. Appl. Math. Model. 2016, 40, 19–30.
- 48.
Chen, L.; Wu, F. Almost sure exponential stability of the backward Euler-Maruyama scheme for stochastic delay differential equations with monotone-type condition. J. Comput. Appl. Math. 2015, 282, 44–53.
- 49.
Cao, W.; Hao, P.; Zhang, Z. Split-step θ-method for stochastic delay differential equations. Appl. Numer. Math. 2014, 76, 19–33.
- 50.
Mo, H.; Deng, F.; Zhang, C. Exponential stability of the split-step θ-method for neutral stochastic delay differential equations with jumps. Appl. Math. Comput. 2017, 315, 85–95.
- 51.
Zhao, G.; Liu, M. Numerical methods for nonlinear stochastic delay differential equations with jumps. Appl. Math. Comput. 2014, 233, 222–231.
- 52.
Zong, X.; Wu, F.; Huang, C. Theta schemes for SDDEs with non-globally Lipschitz continuous coefficients. J. Comput. Appl. Math. 2015, 278, 258–277.
- 53.
Liu, W.; Mao, X.; Wu, Y. The backward Euler-Maruyama method for invariant measures of stochastic differential equations with super-linear coefficients. Appl. Numer. Math. 2023, 184, 137–150.
- 54.
Higham, D.J. Stochastic ordinary differential equations in applied and computational mathematics. IMA J. Appl. Math. 2011, 76, 449–474.
- 55.
Milstein, G.N.; Tretyakov, M.V. Stochastic Numerics for Mathematical Physics; Springer: Berlin, Germany, 2004.
- 56.
Mo, H.; Liu, L.; Xing, M.; et al. Exponential stability of implicit numerical solution for nonlinear neutral stochastic differential equations with time-varying delay and Poisson jumps. Math. Methods Appl. Sci. 2021, 44, 5574–5592.