2511002321
  • Open Access
  • Article

Predefined-Time Fault-Tolerant Consensus Tracking Control for Multiple Flexible Robotic Manipulator Systems with Prescribed Performance

  • Chaowen He 1,   
  • Alain Martinez 2,   
  • Ben Niu 3,   
  • Deepak Kumar Jain 3,   
  • Yuqiang Jiang 1,*,   
  • Dmytro Zubov 4,   
  • Yuanxin Li 5,   
  • Xiaomei Wang 6,*

Received: 28 Aug 2025 | Revised: 12 Nov 2025 | Accepted: 18 Nov 2025 | Published: 26 Nov 2025

Abstract

This article focuses on the predefined-time fault-tolerant consensus tracking control problem for the multiple single-link flexible robotic manipulator systems (FRMSs) with prescribed performance. Firstly, a predefined time performance function is provided to ensure the tracking error of the flexible robotic manipulator system (FRMS) reaches a predefined accuracy within a predefined time. Second, a new error coordinate system replaces the original control system to constrain the consensus control errors between the leader and the follower of the multiple FRMSs maintain the area set by the user. Thirdly, considering that the actuators of the multiple FRMSs are vulnerable to faults during long periods of operation, an adaptive compensation mechanism is proposed to improve the FRMS's fault tolerance. Lastly, simulation results validate the effectiveness of the control scheme.

References 

  • 1.

    Qiao, H.; Wu, Y.X.; Zhong, S.L.; et al. Brain-inspired intelligent robotics: Theoretical analysis and systematic application. Mach. Intell. Res. 2023, 20, 1–18.

  • 2.

    Liu, Y.; Chen, Z.; Gao, J.; et al. High performance assembly of complex structural parts in special environments–research on space manipulator assisted module docking method. Robot. Intell. Autom. 2023, 43, 122–131.

  • 3.

    Bhat, S.P.; Bernstein, D.S. Finite-time stability of continuous autonomous systems. SIAM J. Control. Optim. 2000, 38, 751–766.

  • 4.

    Feng, Y.; Kong, L.; Zhang, Z.; et al. Event-triggered finite-time control for a constrained robotic manipulator with flexible joints. Int. J. Robust Nonlinear Control. 2023, 33, 6031–6051.

  • 5.

    Zhou, B.; Yang, L.; Wang, C.; et al. Adaptive finite-time tracking control of robot manipulators with multiple uncertainties based on a low-cost neural approximator. J. Frankl. Inst. 2022, 359, 4938–4958.

  • 6.

    Wang, X.; Niu, B.; Zhao, X.; et al. Command-filtered adaptive fuzzy finite-time tracking control algorithm for flexible robotic manipulator: A singularity-free approach. IEEE Trans. Fuzzy Syst. 2023, 32, 409–419.

  • 7.

    Gao, J.; Tan, Z.; Li, L.; et al. A novel finite-time non-singular robust control for robotic manipulators. Chaos Solitons Fractals 2025, 194, 116266.

  • 8.

    Zheng, S.; Zha, Y.; Ahn, C.K.; et al. Constrained Finite-Time Output Regulation for Robot Manipulators With Control Input Delay. IEEE/ASME Trans. Mechatron. 2025, 30, 1–13.

  • 9.

    Hu, J.; Zhang, X.; Zhang, D.; et al. Finite-time adaptive super-twisting sliding mode control for autonomous robotic manipulators with actuator faults. ISA Trans. 2024, 144, 342–351.

  • 10.

    Chu, Y.; Han, X.; Rakkiyappan, R. Finite-time lag synchronization for two-layer complex networks with impulsive effects. Math. Model. Control. 2024, 4, 71–85.

  • 11.

    Polyakov, A. Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control. 2011, 57, 2106–2110.

  • 12.

    Ahmed, S.; Azar, A.T. Adaptive fractional tracking control of robotic manipulator using fixed-time method. Complex Intell. Syst. 2024, 10, 369–382.

  • 13.

    Zhang, D.; Hu, J.; Cheng, J.; et al. A novel disturbance observer based fixed-time sliding mode control for robotic manipulators with global fast convergence. IEEE/CAA J. Autom. Sin. 2024, 11, 661–672.

  • 14.

    Zhao, B.; Yao, X.; Zheng, W.X. Fixed-time composite anti-disturbance control for flexible-link manipulators based on disturbance observer. IEEE Trans. Circuits Syst. I Regul. Pap. 2024, 71, 3390–3400.

  • 15.

    Lai, G.; Zou, S.; Xiao, H.; et al. Fixed-time adaptive fuzzy control with prescribed tracking performances for flexible-joint manipulators. J. Frankl. Inst. 2024, 361, 106809.

  • 16.

    Yu, J.; Wu, M.; Ji, J.; et al. Neural network-based region tracking control for a flexible-joint robot manipulator. J. Comput. Nonlinear Dyn. 2024, 19, 021003.

  • 17.

    S´anchez-Torres, J.D.; G´omez-Guti´errez, D.; L´opez, E.; et al. A class of predefined-time stable dynamical systems. IMA J. Math. Control. Inf. 2018, 35, i1–i29.

  • 18.

    Jiang, H.; Yang, Y.; Hua, C.; et al. Predefined-Time Composite Fuzzy Adaptive Control for Flexible-Joint Manipulator System With High-Order Fully Actuated Control Approach. IEEE Trans. Ind. Electron. 2025, 72, 7191–7199.

  • 19.

    Sai, H.; Xu, Z.; Zhang, E. Adaptive practical predefined-time neural tracking control for multi-joint uncertain robotic manipulators with input saturation. Neural Comput. Appl. 2023, 35, 20423–20440.

  • 20.

    Fan, Y.; Zhan, H.; Li, Y.; et al. A Predefined Time Constrained Adaptive Fuzzy Control Method With Singularity-Free Switching for Uncertain Robots. IEEE Trans. Fuzzy Syst. 2024, 32, 2650–2662.

  • 21.

    Wang, J.; Zhao, W.; Cao, J.; et al. Reinforcement Learning-Based Predefined-Time Tracking Control for Nonlinear Systems Under Identifier–Critic–Actor Structure. IEEE Trans. Cybern. 2024, 54, 6345–6357.

  • 22.

    Shen, H.; Zhao, W.; Cao, J.; et al. Predefined-Time Event-Triggered Tracking Control for Nonlinear Servo Systems: A Fuzzy Weight-Based Reinforcement Learning Scheme. IEEE Trans. Fuzzy Syst. 2024, 32, 4557–4569.

  • 23.

    Wang, Y.; Wang, X.; Chen, S.; et al. Multi-Station Multi-Robot Welding System Planning and Scheduling Based on STNSGA-D: An Industrial Case Study. IEEE Trans. Autom. Sci. Eng. 2024, 21, 7465–7479.

  • 24.

    Zhou, X.;Wang, H.; Tian, Y. Robust adaptive flexible prescribed performance tracking and vibration control for rigid–flexible coupled robotic systems with input quantization. Nonlinear Dyn. 2024, 112, 1951–1969.

  • 25.

    Ma, H.; Zhou, Q.; Li, H.; et al. Adaptive prescribed performance control of a flexible-joint robotic manipulator with dynamic uncertainties. IEEE Trans. Cybern. 2021, 52, 12905–12915.

  • 26.

    Sun, P.; Li, S.; Zhu, B.; et al. Vision-based finite-time prescribed performance control for uncooperative UAV target-tracking subject to field of view constraints. ISA Trans. 2024, 149, 168–177.

  • 27.

    Liu, Z.; Zhao, Y.; Zhang, O.; et al. Adaptive fuzzy neural network-based finite time prescribed performance control for uncertain robotic systems with actuator saturation. Nonlinear Dyn. 2024, 112, 12171–12190.

  • 28.

    Yang, P.; Su, Y.; Zhang, L. Proximate fixed-time fault-tolerant tracking control for robot manipulators with prescribed performance. Automatica 2023, 157, 111262.

  • 29.

    Liu, C.; Zhao, K.; Li, J.; et al. Fuzzy adaptive predefined time control with global prescribed performance for robotic manipulator under unknown disturbance. IEEE Trans. Syst. Man Cybern. Syst. 2025, 55, 3397–3410.

  • 30.

    Zhu, B.; Zhang, L.; Niu, B.; et al. Adaptive reinforcement learning for fault-tolerant optimal consensus control of nonlinear canonical multiagent systems with actuator loss of effectiveness. IEEE Syst. J. 2024, 18, 1681–1692.

  • 31.

    Ji, N.; Liu, J. Consensus control and vibration suppression for multiple flexible nonlinear Timoshenko manipulators under undirected communication topology. Commun. Nonlinear Sci. Numer. Simul. 2024, 138, 108200.

  • 32.

    Zhang, Q.; Zhang, Q.; Liu, J. Adaptive consensus tracking control for robotic manipulators with nonlinear time-varying fault-tolerant actuator and unknown control input directions. Int. J. Adapt. Control. Signal Process. 2024, 38, 1114–1134.

  • 33.

    Wang, C.; Zhan, H.; Guo, Q.; et al. Distributed neural fixed-time consensus control of uncertain multiple Euler-Lagrange systems with event-triggered mechanism. IEEE/ASME Trans. Mechatron. 2024, 30, 1830–1841.

  • 34.

    Zhao, W.; Li, X.; Liu, Y.; et al. Adaptive Fault Tolerant Consensus Tracking Control for Flexible Manipulators MASs With Input Quantization and Time-Varying Delay. IEEE Trans. Cybern. 2025, 55, 2597–2607.

  • 35.

    Stojanovi´c, V. Fault-tolerant control of a hydraulic servo actuator via adaptive dynamic programming. Math. Model. Control. 2023, 3, 181–191.

  • 36.

    Guo, X.; Wang, C.; Dong, Z.; et al. Adaptive containment control for heterogeneous MIMO nonlinear multiagent systems with unknown direction actuator faults. IEEE Trans. Autom. Control. 2022, 68, 5783–5790.

  • 37.

    Ren, H.; Ma, H.; Li, H.; et al. Adaptive fixed-time control of nonlinear MASs with actuator faults. IEEE/CAA J. Autom. Sin. 2023, 10, 1252–1262.

  • 38.

    Zheng, X.; Li, H.; Ahn, C.K.; et al. NN-based fixed-time attitude tracking control for multiple unmanned aerial vehicles with nonlinear faults. IEEE Trans. Aerosp. Electron. Syst. 2022, 59, 1738–1748.

  • 39.

    Liang, H.; Chen, L.; Pan, Y.; et al. Fuzzy-based robust precision consensus tracking for uncertain networked systems with cooperative–antagonistic interactions. IEEE Trans. Fuzzy Syst. 2022, 31, 1362–1376.

  • 40.

    Yu, J.; Shi, P.; Dong, W.; et al. Observer and command-filter-based adaptive fuzzy output feedback control of uncertain nonlinear systems. IEEE Trans. Ind. Electron. 2015, 62, 5962–5970.

  • 41.

    Wang, C.; Lin, Y. Decentralized adaptive tracking control for a class of interconnected nonlinear time-varying systems. Automatica 2015, 54, 16–24.

  • 42.

    Yu,W.; Ren,W.; Zheng,W.X.; et al. Distributed control gains design for consensus in multi-agent systems with second-order nonlinear dynamics. Automatica 2013, 49, 2107–2115.

  • 43.

    Zhang, H.; Lewis, F.L.; Qu, Z. Lyapunov, Adaptive, and Optimal Design Techniques for Cooperative Systems on Directed Communication Graphs. IEEE Trans. Ind. Electron. 2012, 59, 3026–3041.

  • 44.

    Farrell, J.A.; Polycarpou, M.; Sharma, M.; et al. Command Filtered Backstepping. IEEE Trans. Autom. Control. 2009, 54, 1391–1395.

  • 45.

    He, W.; Huang, H.; Ge, S.S. Adaptive neural network control of a robotic manipulator with time-varying output constraints. IEEE Trans. Cybern. 2017, 47, 3136–3147.

  • 46.

    Huang, A.C.; Chen, Y.C. Adaptive sliding control for single-link flexible-joint robot with mismatched uncertainties. IEEE Trans. Control. Syst. Technol. 2004, 12, 770–775.

Share this article:
How to Cite
He, C.; Martinez, A.; Niu, B.; Jain, D. K.; Jiang, Y.; Zubov, D.; Li, Y.; Wang, X. Predefined-Time Fault-Tolerant Consensus Tracking Control for Multiple Flexible Robotic Manipulator Systems with Prescribed Performance. Complex Systems Stability & Control 2025, 1 (1), 7.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.