- 1.
Kitano, M.; Inoue, Y.; Yamazaki, Y.; et al. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat. Chem. 2012, 4, 934–940.
- 2.
Ham, C.; Koper, M.; Hetterscheid, D. Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 2014, 43, 5183–5191.
- 3.
Fryzuk, M. Ammonia transformed. Nature 2004, 427, 498–499.
- 4.
Guo, J.; Chen, P. Catalyst: NH3 as an Energy Carrier. Chem 2017, 3, 709–712.
- 5.
Zhang, G.; Li, B.; Shi, Y.; et al. Ammonia recovery from nitrate-rich wastewater using a membrane-free electrochemical system. Nat. Sustain. 2024, 7, 1251–1263.
- 6.
Kandemir, T.; Schuster, M.; Senyshyn, A.; et al. The Haber–Bosch process revisited: On the real structure and stability of “ammonia iron” under working condition. Angew. Chem. Int. Ed. 2013, 52, 12723–12726.
- 7.
Talib, S.H.; Ali, B.; Dar, A.H.; et al. Catalytic reduction of N2O by CO molecules using transition metal-phosphomolybdic acid (TM1/PMA) single-atom catalysts: A theoretical perspective. Nano Res. Energy 2025, 4, e9120158.
- 8.
Licht, S.; Cui, B.; Wang, B.; et al. Retracted: Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3. Science 2014, 345, 637–640.
- 9.
Chen, S.; Perathoner, S.; Ampelli, C.; et al. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst. Angew. Chem. Int. Ed. 2017, 129, 2743–2747.
- 10.
Yu, X.; Han, P.; Wei, Z.; et al. Boron-doped graphene for electrocatalytic N2 reduction. Joule 2018, 2, 1610–1622.
- 11.
Qin, S.; Li, K.; Cao, M.; et al. Fe-Co-Ni ternary single-atom electrocatalyst and stable quasi-solid-electrolyte enabling high-efficiency zinc-air batteries. Nano Res. Energy 2024, 3, e9120122.
- 12.
Chen, G.; Yuan, Y.; Jiang, H.; et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst. Nat. Energy 2020, 5, 605–613.
- 13.
Yang, J.; Qi, H.; Li, A.; et al. Potential-driven restructuring of Cu single atoms to nanoparticles for boosting the electrochemical reduction of nitrate to ammonia. J. Am. Chem. Soc. 2022, 144, 12062–12071.
- 14.
Jiang, Z.; Wang, Y.; Lin, Z.; et al. Molecular electrocatalysts for rapid and selective reduction of nitrogenous waste to ammonia. Energy Environ. Sci. 2023, 16, 2239–2246.
- 15.
Wang, Y.-R.; Ding, H.-M.; Yue, M.; et al. Subtle tuning of micro-environment in COFs nanoribbons actuates low electricity-consumption photo-assisted Co-electrolysis of methanol and CO2. Nano Res. Energy 2025, 4, e9120146.
- 16.
Feng, C.; Bo, K.; Wan, J.; et al. Triple synergy engineering via metal-free dual-atom incorporation for self-sustaining acidic ammonia electrosynthesis. Angew. Chem. Int. Ed. 2025, 64, e202505211.
- 17.
Gu, X.; Zhang, J.; Guo, S.; et al. Tiara Ni Clusters for Electrocatalytic Nitrate Reduction to Ammonia with 97% Faradaic Efficiency. J. Am. Chem. Soc. 2025, 147, 22785–22795.
- 18.
Foster, S.; Bakovic, S.; Duda, R.; et al. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 2018, 1, 490–500.
- 19.
Liu, Y.; Li, Y.; Sun, J.; et al. Present and future of functionalized Cu current collectors for stabilizing lithium metal anodes. Nano Res. Energy 2023, 2, e9120048.
- 20.
Zhao, Q.; Gan, R.; Ran, Y.-L.; et al. Single-atom catalysts: Controlled synthesis and dynamic mechanism in electrochemical oxygen evolution substitution reactions. Rare Met. 2024, 43, 4903–4920.
- 21.
Legare, M.; Belanger-Chabot, G.; Dewhurst, R.; et al. Nitrogen fixation and reduction at boron. Science 2018, 359, 896–900.
- 22.
Suryanto, B.; Du, H.; Wang, D.; et al. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2019, 2, 290–296.
- 23.
Cai, X.; Wang, S.; Peng, L.-M. Recent progress of photodetector based on carbon nanotube film and application in optoelectronic integration. Nano Res. Energy 2023, 2, e9120058.
- 24.
Yan, J.; Ye, F.; Dai, Q.; et al. Recent progress in carbon-based electrochemical catalysts: From structure design to potential applications. Nano Res. Energy 2023, 2, e9120047.
- 25.
Sun, R.; Xu, F.; Wang, C.-H.; et al. Rational design of metal selenides nanomaterials for alkali metal ion (Li+/Na+/K+) batteries: Current status and perspectives. Rare Met. 2024, 43, 1906–1931.
- 26.
Pham, H.Q.; Pham, H.T.Q.; Huynh, Q.; et al. Single-Atom Iridium-Based Catalysts: Synthesis Strategies and Electro(Photo)-Catalytic Applications for Renewable Energy Conversion and Storage. Coord. Chem. Rev. 2023, 486, 215143.
- 27.
Langevelde, P.; Katsounaros, I.; Koper, M. Electrocatalytic nitrate reduction for sustainable ammonia production. Joule 2021, 5, 290–294.
- 28.
Bhatnagar, A.; Sillanpää, M. A review of emerging adsorbents for nitrate removal from water. Chem. Eng. J. 2011, 168, 493–504.
- 29.
Pham, H.Q.; Huynh, T.T. Applications of doped-MXene-based materials for electrochemical energy storage. Coord. Chem. Rev. 2024, 517, 216039.
- 30.
Gruber, N.; Galloway, J. An earth-system perspective of the global nitrogen cycle. Nature 2008, 451, 293–296.
- 31.
Zhao, R.; Yan, Q.; Yu, L.; et al. A Bi‐Co corridor construction effectively improving the selectivity of electrocatalytic nitrate reduction toward ammonia by nearly 100%. Adv. Mater. 2023, 35, 2306633.
- 32.
Rosca, V.; Duca, M.; Groot, M.; et al. Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209–2244.
- 33.
Li, J.; Zhan, G.; Yang, J.; et al. Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters. J. Am. Chem. Soc. 2020, 142, 15, 7036–7046.
- 34.
Aslam, M.K.; Hussain, I.; Al-Marzouqi, A.H.; et al. Advances in covalent organic frameworks for photocatalytic CO2 reduction: Strategies and future perspectives. Nano Res. Energy 2025, 4, e9120149.
- 35.
Liu, X.; Liu, C.; He, X.; et al. Fe-doped Co3O4 nanowire strutted 3D pinewood-derived carbon: A highly selective electrocatalyst for ammonia production via nitrate reduction. Nano Res. 2024, 17, 2276–2282.
- 36.
Zhou, X.; Yang, T.; Li, T.; et al. In-situ fabrication of carbon compound NiFeMo-P anchored on nickel foam as bi-functional catalyst for boosting overall water splitting. Nano Res. Energy 2023, 2, e9120086.
- 37.
Pham, H.Q.; Dao, T.-B.-N.; Nguyen, A.Q.K.; et al. Nitrogen-doped, properties and applications for electrochemical hydrogen production. Adv. Colloid Interface Sci. 2025, 341, 103493.
- 38.
Li, N.-P.; Zhang, L.; Zhang, H.; et al. Synergistic effect between Er-doped MoS2 nanosheets and interfacial Mo–N coupling phases for enhanced electrocatalytic hydrogen evolution. Rare Met. 2024, 43, 1301–1308.
- 39.
Zhang, W.-T.; Wang, X.-Q.; Zhang, F.-Q.; et al. Frontiers in high entropy alloys and high entropy functional materials. Rare Met. 2024, 43, 4639–4776.
- 40.
Qiao, B.; Wang, A.; Yang, X.; et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.
- 41.
Zhang, Y.-Z.; Ao, H.-S.; Dong, Q.; et al. Electrolytes additives for Zn metal anodes: Regulation mechanism and current perspectives. Rare Met. 2024, 43, 4162–4197.
- 42.
Fan, Y.; Yan, Y.; Nwokonkwo, O.; et al. Tuning nitrate reduction reaction selectivity via selective adsorption in electrified membranes. Nat. Chem. Eng. 2025, 2, 379–390.
- 43.
Chen, Z.; Zhang, X.; Liu, W.; et al. Amination strategy to boost the CO2 electroreduction current density of M–N/C single-atom catalysts to the industrial application level. Energy Environ. Sci. 2021, 14, 2349–2356.
- 44.
Liu, L.-L.; Ma, S.-S.; Li, R.-P.; et al. Engineering 4f-2p-3d orbital hybridization on cerium-doped nickel–molybdenum phosphates for energy-saving hydrogen evolution. Rare Met. 2025, 44, 1883–1894.
- 45.
Zheng, X.; Li, P.; Dou, S.; et al. Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy Environ. Sci. 2021, 14, 2809–2858.
- 46.
Chen, F.; Wu, Z.; Gupta, S.; et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 2022, 17, 759–767.
- 47.
Zhou, B.; Yu, L.; Zhang, W.; et al. Cu1−Fe Dual Sites for Superior Neutral Ammonia Electrosynthesis from Nitrate. Angew. Chem. Int. Ed. 2024, 63, e202406046.
- 48.
Wang, Q.; Wei, H.; Liu, P.; et al. Recent advances in copper-based catalysts for electrocatalytic CO2 reduction toward multi-carbon products. Nano Res. Energy 2024, 3, e9120112.
- 49.
Guo, H.; Guo, Z.; Xue, G.; et al. Entropy‐driven stabilization of noble metal single atoms: Advancing ammonia synthesis and energy output in zinc‐nitrate batteries. Adv. Mater. 2025, 37, 2500224.
- 50.
Cai, Y.-M.; Li, Y.-H.; Xiao, Y.; et al. Synergistic rare-earth yttrium single atoms and copper phosphide nanoparticles for high-selectivity ammonia electrosynthesis. Rare Met. 2024, 43, 5792–5801.
- 51.
Wang, Y.; Hao, F.; Xu, H.; et al. Interfacial water structure modulation on unconventional phase non-precious metal alloy nanostructures for efficient nitrate electroreduction to ammonia in neutral media. Angew. Chem. Int. Ed. 2025, 64, e202508617.
- 52.
Han, S.; Li, H.; Li, T.; et al. Ultralow overpotential nitrate reduction to ammonia via a three-step relay mechanism. Nat. Catal. 2023, 6, 402–414.
- 53.
Li, Y.; Zhang, Q.; Dai, H.; et al. Photoelectrochemical nitrate denitrification towards acidic ammonia synthesis on copper-decorated black silicon. Energy Environ. Sci. 2024, 17, 9233–9243.
- 54.
Zhou, J.; Liu, F.; Xu, Z.; et al. Modulating the nitrate reduction pathway on unconventional phase ultrathin nanoalloys for selective ammonia electrosynthesis. J. Am. Chem. Soc. 2025, 147, 26, 23226–23238.
- 55.
You, Y.; Chen, H.; Guo, J.; et al. Structure reconstruction driven by oxygen vacancies forming P-CoMoO4/Co (OH)2 heterostructure boosting electrocatalytic nitrate reduction to ammonia. Appl. Catal. B Environ. 2025, 363, 124837.
- 56.
Wang, H.; Liu, Q.; Chen, K.; et al. Unlocking the coupling potential of built-in electric field and pulsed electroreduction for efficient nitrate to ammonia at low concentrations. Appl. Catal. B Environ. 2025, 374, 125387.
- 57.
Xu, M.; Dong, S.; Guo, H.; et al. Defective perovskite supported palladium-nickel nanocatalyst for effective electrochemical nitrate reduction. Appl. Catal. B Environ. 2025, 375, 125433.
- 58.
Wang, R.; Jia, S.; Wu, L.; et al. Tuning the acid hardness nature of Cu catalyst for selective nitrate‐to‐ammonia electroreduction. Angew. Chem. Int. Ed. 2025, 64, 15, e202425262.
- 59.
Chao, G.; Zong, W.; Zhu, J.; et al. Selective mass accumulation at the metal–polymer bridging interface for efficient nitrate electroreduction to ammonia and Zn-nitrate batteries. J. Am. Chem. Soc. 2025, 147, 25, 21432–21442.
- 60.
Li, Z.; Wang, Q.; Zhong, L.; et al. Boosting ammonia electrosynthesis via interfacial tandem nitrate reduction enabled by an amorphous@ crystalline electrocatalyst. Mater. Today 2025, 85, 49–59.
- 61.
Zhu, G.; Bao, W.; Xie, M.; et al. Accelerating tandem electroreduction of nitrate to ammonia via multi‐site synergy in mesoporous carbon‐supported high‐entropy intermetallics. Adv. Mater. 2025, 37, 5, 2413560.
- 62.
Wu, T.; Chen, J.; Liu, L.; et al. Three-dimensional Cu3P/Cu heterostructure as robust tandem electrocatalyst for selective electroreduction of nitrate to ammonia. Appl. Catal. B Environ. 2024, 358, 124408.
- 63.
Wang, Y.; Xu, A.; Wang, Z.; et al. Enhanced nitrate-to-ammonia activity on copper–nickel alloys via tuning of intermediate adsorption. J. Am. Chem. Soc. 2020, 142, 12, 5702–5708.
- 64.
Guo, Y.; Zhang, R.; Zhang, S.; et al. Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO2 nanoarrays for ammonia production and energy supply with zinc–nitrate batteries. Energy Environ. Sci. 2021, 14, 3938–3944.
- 65.
Zhang, H.; Wang, H.; Cao, X.; et al. Unveiling cutting‐edge developments in electrocatalytic nitrate‐to‐ammonia conversion. Adv. Mater. 2024, 36, 16, 2312746.
- 66.
Cao, Y.; Yuan, S.; Meng, L.; et al. Recent advances in electrocatalytic nitrate reduction to ammonia: Mechanism insight and catalyst design. ACS Sustain. Chem. Eng. 2023, 11, 21, 7965–7985.
- 67.
Min, B.; Gao, Q.; Yan, Z.; et al. Powering the remediation of the nitrogen cycle: Progress and perspectives of electrochemical nitrate reduction. Ind. Eng. Chem. Res. 2021, 60, 41, 14635–14650.
- 68.
Vooys, A.; Santen, R.; Veen, J. Electrocatalytic reduction of NO3− on palladium/copper electrodes. J. Mol. Catal. A Chem. 2000, 154, 203–215.
- 69.
Dima, G.; Vooys, A.; Koper, M. Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions. J. Electroanal. Chem. 2003, 554, 15–23.
- 70.
Cheng, Y.; Wang, H.; Song, H.; et al. Design strategies towards transition metal single atom catalysts for the oxygen reduction reaction–A review. Nano Res. Energy 2023, 2, e9120082.
- 71.
Carvalho, O.; Marks, R.; Nguyen, H.; et al. Role of electronic structure on nitrate reduction to ammonium: A periodic journey. J. Am. Chem. Soc. 2022, 144, 32, 14809–14818.
- 72.
Guo, H.; Zhang, P.; Huang, S.; et al. Achilles’ heel of single atom catalysts towards practical PEMFC application: Degradation mechanisms and regulatory strategies. Nano Res. Energy 2025, 4, e9120144.
- 73.
Wu, B.; Wang, T.; Liu, B.; et al. Stable solar water splitting with wettable organic-layer-protected silicon photocathodes. Nat. Commun. 2022, 13, 4460.
- 74.
Jin, W.; Lee, Y.; Shin, C.; et al. Crystalline silicon photocathode with tapered microwire arrays achieving a high current density of 41.7 mA cm⁻2. Adv. Mater. Interfaces 2024, 11, 2400178.
- 75.
Tayyebi, A.; Mehrotra, R.; Mubarok, M.A.; et al. Bias-free solar NH3 production by perovskite-based photocathode coupled to valorization of glycerol. Nat. Catal. 2024, 7, 510.
- 76.
Chiang, C.-H.; Kao, Y.-T.; Wu, P.-H.; et al. Efficient ammonia photosynthesis from nitrate by graphene/Si Schottky junction integrated with Ni–Fe LDH catalyst. J. Mater. Chem. A 2023, 11, 11179.
- 77.
Zhou, J.; Wen, M.; Huang, R.; et al. Regulating active hydrogen adsorbed on grain boundary defects of nano-nickel for boosting ammonia electrosynthesis from nitrate. Energy Environ. Sci. 2023, 16, 2611.
- 78.
Ballif, C.; Haug, F.-J.; Boccard, M.; et al. Status and perspectives of crystalline silicon photovoltaics in research and industry. Nat. Rev. Mater. 2022, 7, 597.
- 79.
Gao, R.; Zhang, J.; Fan, G.; et al. In situ electrochemical reconstruction of cation‐vacancy‐enriched Ni@Ni2P particles in hollow N‐doped carbon nanofibers for efficient nitrate reduction. Angew. Chem. Int. Ed. 2025, 64, e202505948.
- 80.
Sui, C.; Jiang, Z.; Higueros, G.; et al. Designing electrodes and electrolytes for batteries by leveraging deep learning. Nano Res. Energy 2024, 3, e9120102.
- 81.
Wu, Q.; Han, Y.; Wu, L.; et al. Constructing asymmetric Sn‐Cu‐C interface via defective carbon trapped atomic clusters for efficient neutral nitrate reduction. Adv. Mater. 2025, 37, 2505743.
- 82.
Yin, H.; He, J.; Xiao, B.; et al. Advances and prospects of g-C3N4 in lithium-sulfur batteries. Nano Res. Energy 2024, 3, e9120138.
- 83.
Jang, D.; Maeng, J.; Kim, J.; et al. Boosting electrocatalytic nitrate reduction reaction for ammonia synthesis by plasma-induced oxygen vacancies over MnCuOx. Appl. Surf. Sci. 2023, 610, 155521.
- 84.
Messias, I.; Winkler, M.E.G.; Costa, G.F.; et al. Role of structural and compositional changes of Cu2O nanocubes in nitrate electroreduction to ammonia. ACS Appl. Energy Mater. 2024, 7, 9034–9044.
- 85.
Liu, D.; Qiao, L.; Peng, S.; et al. Recent advances in electrocatalysts for efficient nitrate reduction to ammonia. Adv. Funct. Mater. 2023, 33, 2303480.
- 86.
Zhang, B.; Dai, Z.; Chen, Y.; et al. Defect-induced triple synergistic modulation in copper for superior electrochemical ammonia production across broad nitrate concentrations. Nat. Commun. 2024, 15, 2816.
- 87.
Sun, Y.; Shi, Y.; Gao, Y.; et al. Electroreduction of nitrate into ammonia on Co3O4: Mechanistic insights into Co2+-promoted NO3RR performance. Chem. Eng. J. 2025, 512, 162506.
- 88.
Maeng, J.; Jang, D.; Ha, J.; et al. Oxygen Vacancy‐Controlled CuOx/N, Se Co‐Doped Porous Carbon via Plasma‐Treatment for Enhanced Electro‐Reduction of Nitrate to Green Ammonia. Small 2024, 20, 2403253.
- 89.
Mei, W.; Chang, C.-W.; Li, Z.; et al. Robust oxygen-vacancy-engineered Co(OH)2/Cu heterostructures boost nitrate electroreduction to ammonia beyond 2 A cm−2. Adv. Mater. 2025, 2507363.
- 90.
Song, M.; Xing, Y.; Li, Y.; et al. Fe and Cu double-doped Co3O4 nanorod with abundant oxygen vacancies: A high-rate electrocatalyst for tandem electroreduction of nitrate to ammonia. Inorg. Chem. 2023, 62, 16641–16651.
- 91.
Bui, T.S.; Lovell, E.C.; Daiyan, R.; et al. Defective metal oxides: Lessons from CO2RR and applications in NOxRR. Adv. Mater. 2023, 35, 2205814.
- 92.
Gu, L.; Cong, Y.; Wu, Z.; et al. Multiscopic microenvironment engineering in nitrate electrocatalytic reduction. Adv. Funct. Mater. 2025, 2500316.
- 93.
Li, H.; Ma, N.; Long, Y.; et al. The electrocatalytic role of oxygen vacancy in nitrate reduction reactions. ACS Appl. Mater. Interfaces. 2024, 16, 46312–46322.
- 94.
Jeong, Y.J.; Tan, R.; You, T.H.; et al. Boosting nitrate-to-ammonia electrosynthesis via hierarchically branched TiO2 nanorods. J. Mater. Chem. A 2025, 13, 28295–28304.
- 95.
Lv, Y.; Ren, J.; Jiang, M.; et al. A-site deficiency-mediated creation of oxygen vacancies in LaMnO3-δ nanofibers for efficient nitrate reduction. ACS Catal. 2025, 15, 8094–8102.
- 96.
Deng, Z.-W.; Liu, Y.; Lin, J.; et al. Rational design and energy catalytic application of high-loading single-atom catalysts. Rare Met. 2024, 43, 4844–4866.
- 97.
Yang, L.-H.; Lin, Z.-Q.; Yu, C.-H.; et al. Polarity-inverted perovskite LaFeO3 promotes nitrate electroreduction by intensifying the adsorption effect. J. Mater. Sci. Technol. 2026, 245, 164–174.
- 98.
Wu, Q.; Fan, X.; Shan, B.; et al. Insights into lattice oxygen and strains of oxide-derived copper for ammonia electrosynthesis from nitrate. Nat. Commun. 2025, 16, 3479.
- 99.
Yoon, A.; Bai, L.; Yang, F.; et al. Revealing catalyst restructuring and composition during nitrate electroreduction through correlated operando microscopy and spectroscopy. Nat. Mater. 2025, 24, 762–769.
- 100.
Fu, W.; Yin, Y.; He, S.; et al. Electrocatalytic conversion of nitrate to ammonia on the oxygen vacancy engineering of zinc oxide for nitrogen recovery from nitrate-polluted surface water. Environ. Res. 2025, 264, 120279.
- 101.
Li, P.; Li, R.; Liu, Y.; et al. Pulsed nitrate-to-ammonia electroreduction facilitated by tandem catalysis of nitrite intermediates. J. Am. Chem. Soc. 2023, 145, 6471.
- 102.
Zhang, S.; Li, M.; Li, J.; et al. High-ammonia selective metal–organic framework–derived Co-doped Fe/Fe2O3 catalysts for electrochemical nitrate reduction. Proc. Natl. Acad. Sci. USA 2022, 119, 2115504119.
- 103.
Li, J.; Chen, R.; Wang, J.; et al. Subnanometric alkaline-earth oxide clusters for sustainable nitrate to ammonia photosynthesis. Nat. Commun. 2022, 13, 1098.
- 104.
Wei, Q.; He, Y.; Ding, G.; et al. Pd orbital hybridization and lattice strain induced by B, Co-co-doped Cu promote the electrocatalytic nitrate reduction to ammonia. Chem. Eng. J. 2025, 508, 161014.
- 105.
Xu, Y.; Sheng, Y.; Wang, M.; et al. Lattice-strain and Lewis acid sites synergistically promoted nitrate electroreduction to ammonia over PdBP nanothorn arrays. J. Mater. Chem. A 2022, 10, 16290–16296.
- 106.
Gao, Q.; Yao, B.; Liu, Y.; et al. Strain relaxation enhances ammonia electrosynthesis from nitrate on Cu/CuAu core/shell nanocrystals with ordered intermetallic layers. Chem. Catal. 2025, 5, 101328.
- 107.
Wang, Y.; Hao, F.; Sun, M.; et al. Crystal phase engineering of ultrathin alloy nanostructures for highly efficient electroreduction of nitrate to ammonia. Adv. Mater. 2024, 36, 2313548.
- 108.
Liu, S.; Miao, W.; Ma, K.; et al. Defect-rich AuCu@Ag nanowires with exclusive strain effect accelerate nitrate reduction to ammonia. Appl. Catal. B Environ. Energy 2024, 350, 123919.
- 109.
Fu, Y.; Wang, S.; Wang, Y.; et al. Enhancing electrochemical nitrate reduction to ammonia over Cu nanosheets via facet tandem catalysis. Angew. Chem. Int. Ed. 2023, 62, e202303327.
- 110.
Liu, H.; Jia, S.; Wu, L.; et al. Circumventing scaling relations via gradient orbital coupling promotes ammonia electrosynthesis on Cobalt catalyst. Angew. Chem. Int. Ed. 2025, 64, e202510478.
- 111.
Liu, J.; Xu, Y.; Duan, R.; et al. Reaction-driven formation of anisotropic strains in FeTeSe nanosheets boosts low-concentration nitrate reduction to ammonia. Nat. Commun. 2025, 16, 3595.
- 112.
Liu, Z.; Li, Y.-Q.; Tan, Y.-F.; et al. Sulfur-modulated charge-asymmetry Cu–Zn bimetallic nanoclusters for efficient CO2 electroreduction. Rare Met. 2025, 44, 6211–6222.
- 113.
Yang, Y.; Zhang, W.; Wu, G.; et al. Electronic structure tuning in Cu–Co dual single atom catalysts for enhanced COOH* spillover and electrocalytic CO2 reduction activity. Angew. Chem. Int. Ed. 2025, 64, 23, e202504423.
- 114.
Gao, Q.; Pillai, H.S.; Huang, Y.; et al. Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights. Nat. Commun. 2022, 13, 2338.
- 115.
Lu, Y.; Yue, F.; Liu, T.; et al. Size-effect induced controllable Cu0-Cu+ sites for ampere-level nitrate electroreduction coupled with biomass upgrading. Nat. Commun. 2025, 16, 2392.
- 116.
Liu, X.; Wang, Y.; Hu, Z.; et al. Self-reducing Cu2O/Cu nanosheet interface for efficient electrocatalytic production of ammonium from nitrate. Appl. Catal. B Environ. Energy 2025, 371, 125254.
- 117.
Li, J.; Liu, L.; Huang, S.; et al. Nanoflower-Like CuPd/CuO heterostructure for an energy-output electrocatalytic system coupling ammonia electrosynthesis and zinc-nitrate battery. Adv. Funct. Mater. 2025, 35, 2501527.
- 118.
Zheng, S.; Yang, X.; Shi, Z.-Z.; et al. The loss of interfacial water-adsorbate hydrogen bond connectivity position surface-active hydrogen as a crucial intermediate to enhance nitrate reduction reaction. J. Am. Chem. Soc. 2024, 146, 26965–26974.
- 119.
Li, X.; Rong, H.; Zhang, J.; et al. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 7, 1842–1855.
- 120.
Fei, H.; Dong, J.; Chen, D.; et al. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem. Soc. Rev. 2019, 48, 20, 5207–5241.
- 121.
Gong, Y.; Jiao, L.; Qian, Y.; et al. Regulating the coordination environment of MOF‐templated single‐atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem. Int. Ed. 2020, 59, 7, 2705–2709.
- 122.
Liang, J.; Yu, Q.; Yang, X.; et al. A systematic theoretical study on FeOx-supported single-atom catalysts: M1/FeOx for CO oxidation. Nano Res. 2018, 11, 3, 1599–1611.
- 123.
Zhang, W.; Zhao, Y.; Huang, W.; et al. Coordination environment manipulation of single atom catalysts: Regulation strategies, characterization techniques and applications. Coordin. Chem. Rev. 2024, 515, 215952.
- 124.
Zhu, Y.; Sokolowski, J.; Song, X.; et al. Engineering local coordination environments of atomically dispersed and heteroatom‐coordinated single metal site electrocatalysts for clean energy‐conversion. Adv. Energy Mater. 2020, 10, 11, 1902844.
- 125.
Gao, Y.; Liu, B.; Wang, D. Microenvironment engineering of single/dual‐atom catalysts for electrocatalytic application. Adv. Mater. 2023, 35, 31, 2209654.
- 126.
Wu, X.; Zhang, H.; Zuo, S.; et al. Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nano-Micro Lett. 2021, 13, 136.
- 127.
Liu, W.; Zhang, L.; Liu, X.; et al. Discriminating catalytically active FeNx species of atomically dispersed Fe–N–C catalyst for selective oxidation of the C–H bond. J. Am. Chem. Soc. 2017, 139, 31, 10790–10798.
- 128.
Du, J., Lin, Q.Y., Zhang, J.Q.; et al. N-doped core–shell mesoporous carbon spheres embedded by Ni nanoparticles for CO2 electroreduction. Rare Met. 2023, 42, 2284–2293.
- 129.
Jakub, Z.; Hulva, J.; Meier, M.; et al. Local structure and coordination define adsorption in a model Ir1/Fe3O4 single‐atom catalyst. Angew. Chem. Int. Ed. 2019, 58, 39, 13961–13968.
- 130.
Chen, J.; Xiao, Y.; Da, Y.; et al. Mechanistic insights and advances in electrode/electrolyte interfaces for efficient electrocatalytic CO2 reduction to C2 products. SmartMat 2025, 6, e1324.
- 131.
Wang, Z.; Hao, X.; Jiang, Z.; et al. C and N hybrid coordination derived Co–C–N complex as a highly efficient electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 48, 15070–15073.
- 132.
Yang, Q.; Jia, Y.; Wei, F.; et al. Understanding the activity of Co‐N4−xCx in atomic metal catalysts for oxygen reduction catalysis. Angew. Chem. Int. Ed. 2020, 59, 15, 6122–6127.
- 133.
Chen, W.; Pei, J.; He, C.; et al. Single tungsten atoms supported on MOF‐derived N‐doped carbon for robust electrochemical hydrogen evolution. Adv. Mater. 2018, 30, 30, 1800396.
- 134.
Wang, Y.; Zhang, W.; Wen, W.; et al. Atomically dispersed unsaturated Cu-N3 sites on high-curvature hierarchically porous carbon nanotube for synergetic enhanced nitrate electroreduction to ammonia. Adv. Funct. Mater. 2023, 33, 2302651.
- 135.
Liu, K.; Sun, Z.; Peng, X.; et al. Tailoring asymmetric RuCu dual-atom electrocatalyst toward ammonia synthesis from nitrate. Nat. Commun. 2025, 16, 2167.
- 136.
Talib, S.H.; Jiang, X.; Feng, S.; et al. Theoretical catalytic performance of single-atom catalysts M1/PW12O40 for alkyne hydrogenation materials. Nano Res. Energy 2024, 3, e9120128.
- 137.
Yin, L.; Zhang, S.; Sun, M.; et al. Heteroatom‐driven coordination fields altering single cerium atom sites for efficient oxygen reduction reaction. Adv. Mater. 2023, 35, 28, 2302485.
- 138.
Yang, J.; Wang, M.; Gao, S.; et al. Proton driving mechanism revealed in sulfur-doped single-atom FeN2O2 carbon dots for superior peroxidase activity. Angew. Chem. Int. Ed. 2025, 64, 30, e202504575.
- 139.
Ci, H.; Shi, Z.; Wang, M.; et al. A review in rational design of graphene toward advanced Li–S batteries. Nano Res. Energy 2023, 2, e9120054.
- 140.
Xu, J.; Zhang, S.; Liu, H.; et al. Breaking local charge symmetry of iron single atoms for efficient electrocatalytic nitrate reduction to ammonia. Angew. Chem. Int. Ed. 2023, 62, 39, e202308044.
- 141.
Ajmal, S.; Kumar, A.; Mushtaq, M.; et al. Uniting synergistic effect of single‐Ni site and electric field of B‐Bridged‐N for boosted electrocatalytic nitrate reduction to ammonia. Small 2024, 20, 32, 2310082.
- 142.
Jin, H.-L.; Li, Q.-N.; Tian, Y.-Y.; et al. Machine-learning-aided Au-based single-atom alloy catalysts discovery for electrochemical NO reduction reaction to NH3. Rare Met. 2024, 43, 5813–5822.
- 143.
Wu, Q.; Fan, X.; Liu, K.; et al. Efficient and selective electroreduction of nitrate to ammonia via interfacial engineering of B-doped Cu nanoneedles. Appl. Catal. B Environ. 2025, 361, 124597.
- 144.
Wang, Z.; Lian, X.; Yang, R.; et al. Planar chlorination engineering enhances the polarity of the Fe–N4 site for boosting nitrate electroreduction. ACS Catal. 2025, 15, 8230–8238.
- 145.
Xiang, J.; Wang, P.; Li, P.; et al. Inter‐site distance effect in electrocatalysis. Angew. Chem. Int. Ed. 2025, 64, e202500644.
- 146.
Hu, C.; Zhang, Y.; Hu, A.; et al. Near‐and long‐range electronic modulation of single metal sites to boost CO2 electrocatalytic reduction. Adv. Mater. 2023, 35, 2209298.
- 147.
Zhang, S.; Wu, J.; Zheng, M.; et al. Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia. Nat. Commun. 2023, 14, 3634.
- 148.
Chen, Z.; Sang, K.; Ye, L.; et al. Tandem switch‐triggered on‐demand synthesis of aromatic amines in high yields. Angew. Chem. Int. Ed. 2025, 64, 18, e202424847.
- 149.
Luo, W.; Liu, K.; Luo, T.; et al. Promoting C–F bond activation for perfluorinated compounds decomposition via atomically synergistic Lewis and Brønsted acid sites. J. Am. Chem. Soc. 2025, 147, 9, 7391–7399.
- 150.
Wang, Y.; Wang, C.; Li, M.; et al. Nitrate electroreduction: Mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 2021, 50, 6720–6733.
- 151.
Jia, R.; Wang, Y.; Wang, C.; et al. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catal. 2020, 10, 3533–3540.
- 152.
Yan, K.; Ge, X.; Cao, Y.; et al. Pd ensemble sites tuned local environment of Cu catalysts for matching propyne semi‐hydrogenation. Angew. Chem. Int. Ed. 2025, 64, 19, e202503263.
- 153.
Wang, L.; Gui, W.-K.; Jiang, S.; et al. Bi2S3 nanofiber bunch for highly efficient CO2 electroreduction to formate at low overpotential. Rare Met. 2024, 43, 3391–3399.
- 154.
Morales, C.; Cave, E.; Nitopi, S.; et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 2018, 1, 764–771.
- 155.
Lou, Y.; Zheng, Q.; Zhou, S.; et al. Phase-dependent electrocatalytic nitrate reduction to ammonia on Janus Cu@ Ni tandem catalyst. ACS Catal. 2024, 14, 7, 5098–5108.
- 156.
Li, X.; Shen, P.; Li, X.; et al. Sub-nm RuOx clusters on Pd metallene for synergistically enhanced nitrate electroreduction to ammonia. ACS Nano 2023, 17, 2, 1081–1090.
- 157.
Li, J.; Hu, J.; Zhang, M.; et al. A fundamental viewpoint on the hydrogen spillover phenomenon of electrocatalytic hydrogen evolution. Nat. Commun. 2021, 12, 3502.
- 158.
Feng, J.; Hu, Q.; Yue, X.; et al. Bimetallic phthalocyanine catalyst for ammonia electrosynthesis from nitrate reduction across all pH ranges. Appl. Catal. B Environ. Energy 2025, 366, 125027.
- 159.
Zhu, J.; Hu, L.; Zhao, P.; et al. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 2, 851–918.
- 160.
Xiao, H.; Lv, Y.; Hua, W.; et al. Atomically dispersed dual frustrated Lewis pairs for efficient relay conversion of nitrate into ammonia. Appl. Catal. B Environ. 2025, 377, 125501.
- 161.
Wan, J.; Zhang, H.; Yang, J.; et al. Synergy between Fe and Mo single atom catalysts for ammonia electrosynthesis. Appl. Catal. B Environ. 2024, 347, 123816.
- 162.
Shen, F.; He, S.; Tang, X.; et al. Breaking linear scaling relation limitations on a dual‐driven single‐atom copper‐tungsten oxide catalyst for ammonia synthesis. Angew. Chem. Int. Ed. 2025, 64, 21, e202423154.
- 163.
Chen, H.; Qi, K.; Dong, X.; et al. Ligand-mediated activity of Cu4 clusters boosts electrocatalytic nitrate reduction. Angew. Chem. Int. Ed. 2025, 64, e202510429. https://doi.org/10.1002/anie.202510429.
- 164.
Zhang, L.; Cai, Y.; Li, Y.; et al. Unlocking high-current-density nitrate reduction and formaldehyde oxidation synergy for scalable ammonia production and fixation. Energy Environ. Sci. 2025, 18, 6, 2804–2816.
- 165.
Wan, J.; Yang, J.; Yang, N.; et al. Axial chlorine-induced symmetry-breaking iron single-atom catalyst for electrochemical ammonia synthesis. ACS Catal. 2025, 15, 6, 4507–4518.
- 166.
Guan, J.; Cai, L.; Li, W.; et al. Boosting nitrate electroreduction to ammonia on atomic Ru-Co pair sites in hollow spinels. Appl. Catal. B Environ. 2024, 358, 124387.
- 167.
Xia, J.; Xu, J.; Yu, B.; et al. A metal–sulfur–carbon catalyst mimicking the two‐component architecture of nitrogenase. Angew. Chem. Int. Ed. 2024, 63, 45, e202412740.
- 168.
Wang, B.; Ma, J.; Yang, R.; et al. Bridging nickel‐MOF and copper single atoms/clusters with H‐substituted graphdiyne for the tandem catalysis of nitrate to ammonia. Angew. Chem. Int. Ed. 2024, 63, 30, e202404819.
- 169.
Liu, Y.; Zhuang, Z.; Liu, Y.; et al. Shear‐strained Pd single‐atom electrocatalysts for nitrate reduction to ammonia. Angew. Chem. Int. Ed. 2024, 63, 43, e202411396.
- 170.
Zhao, Z.; Yang, S.; Wang, S.; et al. Isolated rhodium atoms activate porous TiO2 for enhanced electrocatalytic conversion of nitrate to ammonia. Adv. Sci. 2025, 12, 2, 2411705.
- 171.
Park, J.; Theerthagiri, J.; Yodsin, N.; et al. CO2 laser‐stabilized Ni‐Co dual single‐atomic sites for energy generation and ammonia harvesting. Adv. Mater. 2025, 37, 30, 2506137.
- 172.
Zhong, W.; Hong, Q.; Ai, X.; et al. RhNi bimetallenes with lattice-compressed Rh skin towards ultrastable acidic nitrate electroreduction. Adv. Mater. 2024, 36, 23, 2314351.
- 173.
Messe, A.; Napier, C.; Kim, D.; et al. Underpotential deposition of 3D transition metals: Versatile electrosynthesis of single-atom catalysts on oxidized carbon supports. Adv. Mater. 2024, 36, 19, 2311341.
- 174.
Zhang, Y.; Zheng, H.; Zhou, K.; et al. Conjugated coordination polymer as a new platform for efficient and selective electroreduction of nitrate into ammonia. Adv. Mater. 2023, 35, 10, 2209855.
- 175.
Ni, J.; Yan, J.; Li, F.; et al. Atomic Co-P catalytic pair drives efficient electrochemical nitrate reduction to ammonia. Adv. Energy Mater. 2024, 14, 28, 2400065.
- 176.
Zhang, S.; Li, K.; Zhang, X.; et al. Concurrently selective electrosynthesis of ammonia and glycolic acid over cathodic single‐atom cobalt and anodic PdNi alloying catalysts. Adv. Funct. Mater. 2025, 35, 6, 2415046.
- 177.
Song, J.; Qian, S.; Yang, W.; et al. Nano-single-atom heterointerface engineering for pH-universal electrochemical nitrate reduction to ammonia. Adv. Funct. Mater. 2024, 34, 49, 2409089.
- 178.
Lin, H.; Wei, J.; Guo, Y.; et al. Bi1‐CuCo2O4 hollow carbon nanofibers boosts NH3 production from electrocatalytic nitrate reduction. Adv. Funct. Mater. 2024, 34, 51, 2409696.
- 179.
Zhang, N.; Zhang, G.; Shen, P.; et al. Lewis acid Fe‐V pairs promote nitrate electroreduction to ammonia. Adv. Funct. Mater. 2023, 33, 13, 2211537.
- 180.
Zhang, G.; Wang, F.; Chen, K.; et al. Atomically dispersed Sn confined in FeS2 for nitrate‐to‐ammonia electroreduction. Adv. Funct. Mater. 2024, 34, 1, 2305372.
- 181.
Liu, L.; Xiao, T.; Fu, H.; et al. Construction and identification of highly active single-atom Fe1-NC catalytic site for electrocatalytic nitrate reduction. Appl. Catal. B Environ. Energy 2023, 323, 122181.
- 182.
Yu, J.; Gao, R.; Guo, X.; et al. Electrochemical nitrate reduction to ammonia on AuCu single-atom alloy aerogels under wide potential window. Angew. Chem. Int. Ed. 2025, 64, 4, e202415975.
- 183.
Xie, M.; Tang, S.; Li, Z.; et al. Intermetallic single-atom alloy In–Pd bimetallene for neutral electrosynthesis of ammonia from nitrate. J. Am. Chem. Soc. 2023, 145, 25, 13957–13967.
- 184.
Ji, X.; Sun, K.; Liu, Z.; et al. Identification of dynamic active sites among Cu species derived from MOFs@ CuPc for electrocatalytic nitrate reduction reaction to ammonia. Nano-Micro Lett. 2023, 15, 1, 110.
- 185.
Xiang, T.; Liu, X.; Wang, Z.; et al. Boosting active hydrogen generation via ruthenium single atoms for efficient electrocatalytic nitrate reduction to ammonia. Appl. Catal. B Environ. 2025, 365, 124943.
- 186.
Li, Q.; Ma, Y.; Zeng, Q.; et al. Coupling ZnN4 atomic sites with graphitic nitrogen for enhanced ammonium production via electrocatalytic nitrate reduction. Small 2025, 21, 6, 2409925.
- 187.
Wei, J.; Lin, H.; Li, Y.; et al. Cobalt-copper dual-atom catalyst boosts electrocatalytic nitrate reduction from water. J. Hazard. Mater. 2025, 493, 138264.
- 188.
Liu, Y.; Qiu, W.; Wang, P.; et al. Pyridine-N-rich Cu single-atom catalyst boosts nitrate electroreduction to ammonia. App. Catal. B Environ. 2024, 340, 123228.
- 189.
Weng, Z.; Wu, Y.; Wang, M.; et al. Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat. Commun. 2018, 9, 415.
- 190.
Ren, Y.; Tian, F.; Jin, L.; et al. Fluidic MXene electrode functionalized with iron single atoms for selective electrocatalytic nitrate transformation to ammonia. Environ. Sci. Technol. 2023, 57, 28, 10458–10466.
- 191.
Ren, Y.; Wang, J.; Yang, L.; et al. Single-atom Cu and Zn vacancy synergy in NiFe-LDH boosts metal–support interaction for high-efficiency nitrate-to-ammonia electroreduction. Environ. Sci. Technol. 2025, 59, 22, 11414–11425.
- 192.
Zhang, H.; Liu, Y.; Gao, S.; et al. Atomically dispersed iron & iron clusters synergistically accelerate electrocatalytic ammonia synthesis. Chem. Eng. J. 2025, 504, 158785.
- 193.
Hao, J.; Wang, T.; Yu, R.; et al. Integrating few-atom layer metal on high-entropy alloys to catalyze nitrate reduction in tandem. Nat. Commun. 2024, 15, 9020.
- 194.
Yan, Z.; Gao, W.; Zhong, C.; et al. Regulating spin state of Fe (III) by the Mo single atom anchored in the (001) crystal face of α-Fe2O3 to achieve efficient electrocatalytic nitrate to synthesize ammonia. Appl. Catal. B Environ. 2025, 366, 125008.
- 195.
Chen, K.; Ma, Z.; Li, X.; et al. Single‐atom Bi alloyed Pd metallene for nitrate electroreduction to ammonia. Adv. Funct. Mater. 2023, 33, 12, 2209890.
- 196.
Wang, Y.; Yin, H.; Dong, F.; et al. N‐coordinated Cu–Ni dual‐single‐atom catalyst for highly selective electrocatalytic reduction of nitrate to ammonia. Small 2023, 19, 20, 2207695.
- 197.
Li, Q.; Li, Y.; Xu, B.; et al. Gram‐scale ammonia synthesis via electrochemical nitrate reduction using enzyme‐inspired dual‐atomic Cu catalyst. Angew. Chem. Int. Ed. 2025, 64, e202510139.
- 198.
Zhao, X.; Geng, Q.; Dong, F.; et al. Boosting the selectivity and efficiency of nitrate reduction to ammonia with a single-atom Cu electrocatalyst. Chem. Eng. J. 2023, 466, 143314.
- 199.
Duan, W.; Chen; Zhu, Y.; et al. Synergistic effects of Co single atoms and Co nanoparticles for electrocatalytic nitrate-to-ammonium conversion in strongly acidic wastewater. Appl. Catal. B Environ. 2025, 363, 124812.
- 200.
Du, C.; Lu, S.; Wang, J.; et al. Selectively reducing nitrate into NH3 in neutral media by PdCu single-atom alloy electrocatalysis. ACS Catal. 2023, 13, 16, 10560–10569.
- 201.
Gu, Z.; Zhang, Y.; Fu, Y.; et al. Coordination desymmetrization of copper single‐atom catalyst for efficient nitrate reduction. Angew. Chem. Int. Ed. 2024, 63, 38, e202409125.
- 202.
Zhang, S.; Liu, Y.; Ding, Y.; et al. Rational ligand design of conjugated coordination polymers for efficient and selective nitrate electroreduction to ammonia. Adv. Mater. 2025, 37, 27, 2418681.
- 203.
Wang, Z.; Yi, Z.; Wong, L.; et al. Oxygen doping cooperated with Co‐N‐Fe dual‐catalytic sites: Synergistic mechanism for catalytic water purification within nanoconfined membrane. Adv. Mater. 2024, 36, 30, 2404278.
- 204.
Yang, L.; Wang, C.; Li, Y.; et al. Frustrated Lewis pairs on Zr single atoms supported N‐doped TiO2‐x catalysts for electrochemical nitrate reduction to ammonia. Adv. Funct. Mater. 2024, 34, 36, 2401094.
- 205.
Zhao, T.; Chen, K.; Xu, X.; et al. Homonuclear dual-atom catalysts embedded on N-doped graphene for highly efficient nitrate reduction to ammonia: From theoretical prediction to experimental validation. Appl. Catal. B Environ. Energy 2023, 339, 123156.
- 206.
Shen, Z.; Yu, Y.; Zhao, Z.; et al. N, O trans-coordinating silver single-atom catalyst for robust and efficient ammonia electrosynthesis from nitrate. Appl. Catal. B Environ. 2023, 331, 122687.
- 207.
Zhang, A.; Liang, Y.; Zhang, H.; et al. Doping regulation in transition metal compounds for electrocatalysis. Chem. Soc. Rev. 2021, 50, 17, 9817–9844.
- 208.
Wang, K.; Mao, R.; Liu, R.; et al. Intentional corrosion-induced reconstruction of defective NiFe layered double hydroxide boosts electrocatalytic nitrate reduction to ammonia. Nat. Water. 2023, 1, 1068–1078.
- 209.
Wang, T.; Tao, L.; Zhu, X.; et al. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat. Catal. 2022, 5, 66–73.
- 210.
Zhong, D.; Gong, Y.; Zhang, C.; et al. Dinuclear metal synergistic catalysis for energy conversion. Chem. Soc. Rev. 2023, 52, 9, 3170–3214.
- 211.
Cai, Z.; Zhou, D.; Wang, M.; et al. Introducing Fe2+ into nickel–iron layered double hydroxide: Local structure modulated water oxidation activity. Angew. Chem. Int. Ed. 2018, 57, 30, 9392–9396.
- 212.
Wei, C.; Feng, Z.; Baisariyev, M.; et al. Valence change ability and geometrical occupation of substitution cations determine the pseudocapacitance of spinel ferrite XFe2O4 (X = Mn, Co, Ni, Fe). Chem. Mater. 2016, 28, 12, 4129–4133.
- 213.
Wang, D.; Zhou, J.; Hu, Y.; et al. In Situ X-ray absorption near-edge structure study of advanced NiFe(OH)x electrocatalyst on carbon paper for water oxidation. J. Phys. Chem. C 2015, 119, 34, 19573–19583.
- 214.
Tylus, U.; Jia, Q.; Strickland, K.; et al. Elucidating oxygen reduction active sites in pyrolyzed metal–nitrogen coordinated non-precious-metal electrocatalyst systems. J. Phys. Chem. C 2014, 118, 17, 8999–9008.
- 215.
Wang, X.; Cullen, D.; Pan, Y.; et al. Nitrogen‐coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 2018, 30, 11, 1706758.
- 216.
Wan, Y.; Tang, Y.; Zuo, Y.; et al. Interfacial hydrogen-bond modulation of dynamic catalysts for nitrate electroreduction to ammonia. Energy Environ. Sci. 2025, 18, 7460–7469.
- 217.
Zhong, J.; Duan, H.; Cai, M.; et al. Cascade electrocatalytic reduction of nitrate to ammonia using bimetallic covalent organic frameworks with tandem active sites. Angew. Chem. Int. Ed. 2025, 137, e202507956.
- 218.
Li, X.; Xia, S.; Yang, S.; et al. Asymmetric manganese sites in covalent organic frameworks for efficient nitrate‐to‐ammonia electrocatalysis. Angew. Chem. Int. Ed. 2025, 64, 29, e202507479.
- 219.
Pan, F.; Fang, L.; Li, B.; et al. N and OH-immobilized Cu3 clusters in situ reconstructed from single-metal sites for efficient CO2 electromethanation in bicontinuous mesochannels. J. Am. Chem. Soc. 2024, 146, 2, 1423–1434.
- 220.
Ding, Z.; Pang, Y.; Ma, A.; et al. Single-atom catalysts based on two-dimensional metalloporphyrin monolayers for electrochemical nitrate reduction to ammonia by first-principles calculations and interpretable machine learning. Int. J. Hydrogen Energy 2024, 80, 586–598.
- 221.
Lv, L.; Shen, Y.; Zhou, M.; et al. High-throughput screening for efficient dual-atom catalysts in electrocatalytic nitrate reduction to ammonia via dissociation–association mechanism. J. Mater. Chem. A 2024, 12, 6733–6746.