- 1.
Du, N.; Roy, C.; Peach, R.; et al. Anion Exchange Membrane Water Electrolyzers. Chem. Rev. 2022, 122, 11830–11895.
- 2.
Zhang, R.; Hanaoka, T. Cross-Cutting Scenarios and Strategies for Designing Decarbonization Pathways in the Transport Sector toward Carbon Neutrality. Nat. Commun. 2022, 13, 3629.
- 3.
Zou, C.; Xiong, B.; Xue, H.; et al. The Role of New Energy in Carbon Neutral. Pet. Explor. Dev. 2021, 48, 480–491.
- 4.
Kanan, M.W.; Surendranath, Y.; Nocera, D.G. Cobalt–Phosphate Oxygen-Evolving Compound. Chem. Soc. Rev. 2008, 38, 109–114.
- 5.
Suntivich, J.; May, K.J.; Gasteiger, H.A.; et al. Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. Science 2011, 334, 1383–1385.
- 6.
David, M.; Ocampo-Martínez, C.; Sánchez-Peña, R. Advances in Alkaline Water Electrolyzers: A Review. J. Energy Storage 2019, 23, 392–403.
- 7.
Sebbahi, S.; Assila, A.; Alaoui Belghiti, A.; et al. A Comprehensive Review of Recent Advances in Alkaline Water Electrolysis for Hydrogen Production. Int. J. Hydrogen Energy 2024, 82, 583–599.
- 8.
Xu, Y.; Cai, S.; Chi, B.; et al. Technological Limitations and Recent Developments in a Solid Oxide Electrolyzer Cell: A Review. Int. J. Hydrogen Energy 2024, 50, 548–591.
- 9.
Lin, C.; Li, J.-L.; Li, X.; et al. In-Situ Reconstructed Ru Atom Array on α-MnO2 with Enhanced Performance for Acidic Water Oxidation. Nat. Catal. 2021, 4, 1012–1023.
- 10.
Wu, Z.Y.; Chen, F.Y.; Li, B.; et al. Non-Iridium-Based Electrocatalyst for Durable Acidic Oxygen Evolution Reaction in Proton Exchange Membrane Water Electrolysis. Nat. Mater. 2023, 22, 100–108.
- 11.
King, L.A.; Hubert, M.A.; Capuano, C.; et al. A Non-Precious Metal Hydrogen Catalyst in a Commercial Polymer Electrolyte Membrane Electrolyser. Nat. Nanotechnol. 2019, 14, 1071–1074.
- 12.
Li, G.; Yu, Y.; Wang, C.; et al. Core-Shell Structured V-Doped CoPx@FeOOH for Efficient Seawater Electrolysis. ChemCatChem 2025, 17, e00850.
- 13.
Henkensmeier, D.; Cho, W.C.; Jannasch, P.; et al. Separators and Membranes for Advanced Alkaline Water Electrolysis. Chem. Rev. 2024, 124, 6393–6443.
- 14.
Niether, C.; Faure, S.; Bordet, A.; et al. Improved Water Electrolysis Using Magnetic Heating of FeC–Ni Core–Shell Nanoparticles. Nat. Energy 2018, 3, 476–483.
- 15.
Wang, J.; Gao, Y.; Kong, H.; et al. Non-Precious-Metal Catalysts for Alkaline Water Electrolysis: Operando Characterizations, Theoretical Calculations, and Recent Advances. Chem. Soc. Rev. 2020, 49, 9154–9196.
- 16.
Tang, Z.; Wu, B.; Yan, K.; et al. Long-Term Stability for Anion Exchange Membrane Water Electrolysis: Recent Development and Future Perspectives. Future Batter. 2025, 5, 100024.
- 17.
Li, W.; Li, F.; Yang, H.; et al. A Bio-Inspired Coordination Polymer as Outstanding Water Oxidation Catalyst via Second Coordination Sphere Engineering. Nat. Commun. 2019, 10, 5074.
- 18.
Park, S.; Liu, L.; Demirkır, Ç.; et al. Solutal Marangoni Effect Determines Bubble Dynamics during Electrocatalytic Hydrogen Evolution. Nat. Chem. 2023, 15, 1532–1540.
- 19.
Zheng, W.; He, L.; Tang, T.; et al. Poly(Dibenzothiophene-Terphenyl Piperidinium) for High-Performance Anion Exchange Membrane Water Electrolysis. Angew. Chem. 2024, 63, e202405738.
- 20.
Kumar, R.; Singh, R.; Dutta, S. Review and Outlook of Hydrogen Production through Catalytic Processes. Energy Fuels 2024, 38, 2601–2629.
- 21.
Vincent, I.; Bessarabov, D. Low Cost Hydrogen Production by Anion Exchange Membrane Electrolysis: A Review. Renew. Sustain. Energy Rev. 2018, 81, 1690–1704.
- 22.
Niu, H.J.; Ran, N.; Zhou, W.; et al. Synergistic Atomic Environment Optimization of Nickel-Iron Dual Sites by Co Doping and Cr Vacancy for Electrocatalytic Oxygen Evolution. J. Am. Chem. Soc. 2025, 147, 2607–2615.
- 23.
Gong, M.; Li, Y.; Wang, H.; et al. An Advanced Ni-Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.
- 24.
Abellán, G.; Carrasco, J.A.; Coronado, E.; et al. Alkoxide-Intercalated CoFe-Layered Double Hydroxides as Precursors of Colloidal Nanosheet Suspensions: Structural, Magnetic and Electrochemical Properties. J. Mater. Chem. C 2014, 2, 3723–3731.
- 25.
Carrasco, J.A.; Sanchis-Gual, R.; Silva, A.S.-D.; et al. Influence of the Interlayer Space on the Water Oxidation Performance in a Family of Surfactant-Intercalated NiFe-Layered Double Hydroxides. Chem. Mater. 2019, 31, 6798–6807.
- 26.
Zhao, Y.; Zhang, X.; Jia, X.; et al. Sub-3 nm Ultrafine Monolayer Layered Double Hydroxide Nanosheets for Electrochemical Water Oxidation. Adv. Energy Mater. 2018, 8, 1703585.
- 27.
Song, F.; Hu, X. Exfoliation of Layered Double Hydroxides for Enhanced Oxygen Evolution Catalysis. Nat. Commun. 2014, 5, 4477.
- 28.
Tang, J.; Xu, X.; Tang, T.; et al. Perovskite-Based Electrocatalysts for Cost-Effective Ultrahigh-Current-Density Water Splitting in Anion Exchange Membrane Electrolyzer Cell. Small Methods 2022, 6, 2201099.
- 29.
Dekel, D.R. Review of Cell Performance in Anion Exchange Membrane Fuel Cells. J. Power Sources 2018, 375, 158–169.
- 30.
Couture, G.; Alaaeddine, A.; Boschet, F.; et al. Polymeric Materials as Anion-Exchange Membranes for Alkaline Fuel Cells. Prog. Polym. Sci. 2011, 36, 1521–1557.
- 31.
Villagra, A.; Millet, P. An Analysis of PEM Water Electrolysis Cells Operating at Elevated Current Densities. Int. J. Hydrogen Energy 2019, 44, 9708–9717.
- 32.
Park, Y.S.; Jeong, J.-Y.; Jang Myeong, M.J.; et al. Ternary Layered Double Hydroxide Oxygen Evolution Reaction Electrocatalyst for Anion Exchange Membrane Alkaline Seawater Electrolysis. J. Energy Chem. 2022, 75, 127–134.
- 33.
Vincent, I.; Kruger, A.; Bessarabov, D. Development of Efficient Membrane Electrode Assembly for Low Cost Hydrogen Production by Anion Exchange Membrane Electrolysis. Int. J. Hydrogen Energy 2017, 42, 10752–10761.
- 34.
Li, W.; Ding, Y.; Zhao, Y.; et al. Zwitterion-Modified NiFe OER Catalyst Achieving Ultrastable Anion Exchange Membrane Water Electrolysis via Dynamic Alkaline Microenvironment Engineering. Angew. Chem. 2025, 64, e202505924.
- 35.
Koper, M.T.M. Thermodynamic Theory of Multi-Electron Transfer Reactions: Implications for Electrocatalysis. J. Electroanal. Chem. 2011, 660, 254–260.
- 36.
Lin, G.; Dong, A.; Li, Z.; et al. An Interlayer Anchored NiMo/MoO2 Electrocatalyst for Hydrogen Evolution Reaction in Anion Exchange Membrane Water Electrolysis at High Current Density. Adv. Mater. 2025, 37, 2507525.
- 37.
Vincent, I.; Lee, E.-C.; Kim, H.-M. Highly Cost-Effective Platinum-Free Anion Exchange Membrane Electrolysis for Large Scale Energy Storage and Hydrogen Production. RSC Adv. 2020, 10, 37429–37438.
- 38.
Grigoriev, S.A.; Fateev, V.N.; Bessarabov, D.G.; et al. Current Status, Research Trends, and Challenges in Water Electrolysis Science and Technology. Int. J. Hydrogen Energy 2020, 45, 26036–26058.
- 39.
Du, J.; Li, Z.; Wang, L.; et al. Anion Exchange Membrane Seawater Electrolysis at 1.0 A cm−2 With an Anode Catalyst Stable for 9000 H. Adv. Sci. 2025, 12, e2416661.
- 40.
Zhang, J.; Zhang, X.; Ma, Z.; et al. POM-Intercalated NiFe-LDH as Enhanced OER Catalyst for Highly Efficient and Durable Water Electrolysis at Ampere-Scale Current Densities. ACS Catal. 2025, 15, 6486–6496.
- 41.
Cui, X.; Ding, Y.; Tang, T.; et al. Hierarchical NiFeMoO4 Precatalyst Reconstructed NiFeOOH Anodes for Efficient and Durable Anion-Exchange Membrane Water Electrolysis. ACS Appl. Mater. Interfaces 2025, 17, 29659–29668.
- 42.
Mirabella, F.; Müllner, M.; Touzalin, T.; et al. Ni-Modified Fe3O4(001) Surface as a Simple Model System for Understanding the Oxygen Evolution Reaction. Electrochim. Acta 2021, 389, 138638.
- 43.
Oener, S.Z.; Foster, M.J.; Boettcher, S.W. Accelerating Water Dissociation in Bipolar Membranes and for Electrocatalysis. Science 2020, 369, 1099–1103.
- 44.
Zeng, K.; Zhang, D. Recent Progress in Alkaline Water Electrolysis for Hydrogen Production and Applications. Prog. Energy Combust. Sci. 2010, 36, 307–326.
- 45.
Ma, X.; Zhao, J.; Shou, D.; et al. A Highly-Flexible and Breathable Photo-Thermo-Electric Membrane for Energy Harvesting. Adv. Energy Mater. 2024, 14, 2470067.
- 46.
Jiang, T.; Jiang, X.; Jiang, C.; et al. Novel Fe-Modulating Raney-Ni Electrodes toward High-Efficient and Durable AEM Water Electrolyzer. Adv. Energy Mater. 2025, 15, 2501634.
- 47.
Trasatti, S. Electrocatalysis in the Anodic Evolution of Oxygen and Chlorine. Electrochim. Acta 1984, 29, 1503–1512.
- 48.
Seh, Z.W.; Kibsgaard, J.; Dickens, C.F.; et al. Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design. Science 2017, 355, 4998.
- 49.
McCrory, C.C.L.; Jung, S.; Peters, J.C.; et al. Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.
- 50.
Lamy, C.; Millet, P. A Critical Review on the Definitions Used to Calculate the Energy Efficiency Coefficients of Water Electrolysis Cells Working under Near Ambient Temperature Conditions. J. Power Sources 2020, 447, 227350.
- 51.
Wang, T.; Xie, H.; Chen, M.; et al. Precious Metal-Free Approach to Hydrogen Electrocatalysis for Energy Conversion: From Mechanism Understanding to Catalyst Design. Nano. Energy 2017, 42, 69–89.
- 52.
Wang, M.; Yan, C.; Liu, T.; et al. Enhancing Built-In Electric Field via Balancing Interfacial Atom Orbit Hybridization at Boride@Sulfide Heterostructure for Hydrogen Evolution Reaction. Angew. Chem., Int. Ed. 2025, 64, e202425657.
- 53.
Li, J.; Zheng, G. One-Dimensional Earth-Abundant Nanomaterials for Water-Splitting Electrocatalysts. Adv. Sci. 2017, 4, 1600380.
- 54.
Lei, C.; Wang, Y.; Hou, Y.; et al. Efficient Alkaline Hydrogen Evolution on Atomically Dispersed Ni–Nx Species Anchored Porous Carbon with Embedded Ni Nanoparticles by Accelerating Water Dissociation Kinetics. Energy Environ. Sci. 2019, 12, 149–156.
- 55.
Zhu, J.; Hu, L.; Zhao, P.; et al. Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chem. Rev. 2020, 120, 851–918.
- 56.
Shi, Y.; Zhang, B. Recent Advances in Transition Metal Phosphide Nanomaterials: Synthesis and Applications in Hydrogen Evolution Reaction. Chem. Soc. Rev. 2016, 45, 1529–1541.
- 57.
Li, Y.; Pei, W.; He, J.; et al. Hybrids of PtRu Nanoclusters and Black Phosphorus Nanosheets for Highly Efficient Alkaline Hydrogen Evolution Reaction. ACS Catal. 2019, 9, 10870–10875.
- 58.
Nsanzimana, J.M.V.; Cai, L.; Djire, A.; et al. Tailoring Chemical Microenvironment of Iron-Triad Electrocatalysts for Hydrogen Production by Water Electrolysis. Adv. Energy Mater. 2025, 15, 2501686.
- 59.
Park, H.J.; Lee, S.Y.; Lee, T.K.; et al. N3-butyl Imidazolium-Based Anion Exchange Membranes Blended with Poly (vinyl alcohol) for Alkaline Water Electrolysis. J. Membr. Sci. 2020, 611, 118355.
- 60.
Ursua, A.; Gandia, L.M.; Sanchis, P. Hydrogen Production from Water Electrolysis: Current Status and Future Trends. Proc. IEEE 2012, 100, 410–426.
- 61.
Naughton, M.S.; Brushett, F.R.; Kenis, P.J.A. Carbonate Resilience of Flowing Electrolyte-Based Alkaline Fuel Cells. J. Power Sources 2011, 196, 1762–1768.
- 62.
Miller, H.A.; Bouzek, K.; Hnat, J.; et al. Green Hydrogen from Anion Exchange Membrane Water Electrolysis: A Review of Recent Developments in Critical Materials and Operating Conditions. Sustain. Energy Fuels 2020, 4, 2114–2133.
- 63.
Pushkareva, I.V.; Pushkarev, A.S.; Grigoriev, S.A.; et al. Comparative Study of Anion Exchange Membranes for Low-Cost Water Electrolysis. Int. J. Hydrogen Energy 2020, 45, 26070–26079.
- 64.
Ham, K.; Bae, S.; Lee, J. Classification and Technical Target of Water Electrolysis for Hydrogen Production. J. Energy Chem. 2024, 95, 554–576.
- 65.
Felgenhauer, M.; Hamacher, T. State-of-the-Art of Commercial Electrolyzers and on-Site Hydrogen Generation for Logistic Vehicles in South Carolina. Int. J. Hydrogen Energy 2015, 40, 2084–2090.
- 66.
Navarro, R.M.; Guil, R.; Fierro, J.L.G. Introduction to Hydrogen Production. In Compendium of Hydrogen Energy; Subramani, V., Basile, A., Veziroğlu, T.N., Eds.; Woodhead Publishing: Oxford, UK, 2015; pp. 21–61.
- 67.
Motealleh, B.; Liu, Z.; Masel, R.I.; et al. Next-Generation Anion Exchange Membrane Water Electrolyzers Operating for Commercially Relevant Lifetimes. Int. J. Hydrogen Energy 2021, 46, 3379–3386.
- 68.
Dau, H.; Limberg, C.; Reier, T.; et al. The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis. ChemCatChem 2010, 2, 724–761.
- 69.
Li, J. Oxygen Evolution Reaction in Energy Conversion and Storage: Design Strategies Under and Beyond the Energy Scaling Relationship. Nano Micro Lett. 2022, 14, 112.
- 70.
Cui, X.; Ren, P.; Deng, D.; et al. Single Layer Graphene Encapsulating Non-Precious Metals as High-Performance Electrocatalysts for Water Oxidation. Energy Environ. Sci. 2016, 9, 123–129.
- 71.
Craig, M.J.; Coulter, G.; Dolan, E.; et al. Universal Scaling Relations for the Rational Design of Molecular Water Oxidation Catalysts with Near-Zero Overpotential. Nat. Commun. 2019, 10, 4993.
- 72.
Zhang, L.; Zhu, H.; Hao, J.; et al. Integrating the Cationic Engineering and Hollow Structure Engineering into Perovskites Oxides for Efficient and Stable Electrocatalytic Oxygen Evolution. Electrochim. Acta 2019, 327, 135033.
- 73.
Liu, H.J.; Chiang, C.Y.; Wu, Y.S.; et al. Breaking the Relation between Activity and Stability of the Oxygen-Evolution Reaction by Highly Doping Ru in Wide-Band-Gap SrTiO3 as Electrocatalyst. ACS Catal. 2022, 12, 6132–6142.
- 74.
Qi, J.; Zhang, Y.; Liu, H.; et al. Strain Modified Oxygen Evolution Reaction Performance in Epitaxial, Freestanding, and Van Der Waals Manganite Thin Films. Nano Lett. 2022, 22, 7066–7072.
- 75.
Song, J.; Wei, C.; Huang, Z.F.; et al. A Review on Fundamentals for Designing Oxygen Evolution Electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196–2214.
- 76.
Grimaud, A.; Diaz-Morales, O.; Han, B.; et al. Activating Lattice Oxygen Redox Reactions in Metal Oxides to Catalyse Oxygen Evolution. Nat. Chem. 2017, 9, 457–465.
- 77.
Hwang, J.; Rao, R.R.; Giordano, L.; et al. Perovskites in Catalysis and Electrocatalysis. Science 2017, 358, 751–756.
- 78.
Hardin, W.G.; Mefford, J.T.; Slanac, D.A.; et al. Tuning the Electrocatalytic Activity of Perovskites through Active Site Variation and Support Interactions. Chem. Mater. 2014, 26, 3368–3376.
- 79.
Huang, Z.-F.; Song, J.; Du, Y.; et al. Chemical and Structural Origin of Lattice Oxygen Oxidation in Co–Zn Oxyhydroxide Oxygen Evolution Electrocatalysts. Nat. Energy 2019, 4, 329–338.
- 80.
Siahrostami, S.; Villegas, S.J.; Bagherzadeh Mostaghimi, A.H.; et al. A Review on Challenges and Successes in Atomic-Scale Design of Catalysts for Electrochemical Synthesis of Hydrogen Peroxide. ACS Catal. 2020, 10, 7495–7511.
- 81.
Ling, T.; Yan, D.Y.; Jiao, Y.; et al. Engineering Surface Atomic Structure of Single-Crystal Cobalt (II) Oxide Nanorods for Superior Electrocatalysis. Nat. Commun. 2016, 7, 12876.
- 82.
Zhuang, L.; Ge, L.; Yang, Y.; et al. Ultrathin Iron-Cobalt Oxide Nanosheets with Abundant Oxygen Vacancies for the Oxygen Evolution Reaction. Adv. Mater. 2017, 29, 1606793.
- 83.
Petrie, J.R.; Cooper, V.R.; Freeland, J.W.; et al. Enhanced Bifunctional Oxygen Catalysis in Strained LaNiO3 Perovskites. J. Am. Chem. Soc. 2016, 138, 2488–2491.
- 84.
Kuai, C.; Liu, L.; Hu, A.; et al. Dissolved Fe Species Enable a Cooperative Solid–Molecular Mechanism for the Oxygen Evolution Reaction on NiFe-Based Catalysts. Nat. Catal. 2025, 8, 523–535.
- 85.
Shi, G.; Li, J.; Lu, T.; et al. Lattice O–O Ligands in Fe-Incorporated Hydroxides Enhance Water Oxidation Electrocatalysis. Nat. Chem. 2025, 17, 1607–1614.
- 86.
Pan, Y.; Xu, X.; Zhong, Y.; et al. Direct Evidence of Boosted Oxygen Evolution over Perovskite by Enhanced Lattice Oxygen Participation. Nat. Commun. 2020, 11, 2002.
- 87.
Xu, X.; Pan, Y.; Zhong, Y.; et al. New Undisputed Evidence and Strategy for Enhanced Lattice-Oxygen Participation of Perovskite Electrocatalyst through Cation Deficiency Manipulation. Adv. Sci. 2022, 9, 2200530.
- 88.
Seijas-Da Silva, A.; Hartert, A.; Oestreicher, V.; et al. Scalable Synthesis of NiFe-Layered Double Hydroxide for Efficient Anion Exchange Membrane Electrolysis. Nat. Commun. 2025, 16, 6138.
- 89.
Abellán, G.; Coronado, E.; Martí-Gastaldo, C.; et al. Hexagonal Nanosheets from the Exfoliation of Ni2+-Fe3+ LDHs: A Route towards Layered Multifunctional Materials. J. Mater. Chem. 2010, 20, 7451–7455.
- 90.
Carrasco, J.A.; Romero, J.; Varela, M.; et al. Alkoxide-Intercalated NiFe-Layered Double Hydroxides Magnetic Nanosheets as Efficient Water Oxidation Electrocatalysts. Inorg. Chem. Front. 2016, 3, 478–487.
- 91.
Jaramillo-Hernández, C.; Seijas-Da Silva, A.; Abellán, G. Crystallographic Phase-Dependent Electrochemical Properties of Layered Hydroxides for Energy Applications. Eur. J. Inorg. Chem. 2025, 28, e202400754.
- 92.
Zhang, D.; Ou, S.; Chang, X. Synergistic Effect of Defect Engineering and Crystalline/Amorphous Interfaces in NiFe Layered Double Hydroxides for Efficient Oxygen Evolution. J. Alloy Compd. 2025, 1036, 182010.
- 93.
Guo, D.; Yu, H.; Chi, J.; et al. Cu2S@NiFe Layered Double Hydroxides Nanosheets Hollow Nanorod Arrays Self-Supported Oxygen Evolution Reaction Electrode for Efficient Anion Exchange Membrane Water Electrolyzer. Int. J. Hydrogen Energy 2023, 48, 17743–17757.
- 94.
Wei, Z.; Guo, M.; Zhang, Q. Scalable Electrodeposition of NiFe-Based Electrocatalysts with Self-Evolving Multi-Vacancies for High-Performance Industrial Water Electrolysis. Appl. Catal. B Environ. 2023, 322, 122101.
- 95.
He, Z.; Zhang, J.; Gong, Z.; et al. Activating Lattice Oxygen in NiFe-Based (oxy)Hydroxide for Water Electrolysis. Nat. Commun. 2022, 13, 2191.
- 96.
Wang, X.; Pi, W.; Hu, S.; et al. Boosting Oxygen Evolution Reaction Performance on NiFe-Based Catalysts Through d-Orbital Hybridization. Nano Micro Lett. 2025, 17, 11.
- 97.
Wu, L.; Ning, M.; Xing, X.; et al. Boosting Oxygen Evolution Reaction of (Fe,Ni)OOH via Defect Engineering for Anion Exchange Membrane Water Electrolysis Under Industrial Conditions. Adv. Mater. 2023, 35, 2306097.
- 98.
Wu, F.; Tian, F.; Li, M.; et al. Engineering Lattice Oxygen Regeneration of NiFe Layered Double Hydroxide Enhances Oxygen Evolution Catalysis Durability. Angew. Chem. 2025, 64, e202413250.
- 99.
Zhang, R.; Ji, X.; Fan, Y.; et al. Local Coordination Engineering of NiFe-LDH Catalyst with Carboxylate and Sodium for Durable Seawater Oxygen Evolution. Appl. Catal. B Environ. Energy 2026, 381, 125850.
- 100.
Luo, J.; Im, J.-H.; Mayer, M.T.; et al. Water Photolysis at 12.3% Efficiency via Perovskite Photovoltaics and Earth-Abundant Catalysts. Science 2014, 345, 1593–1596.
- 101.
Anderson, G.C.; Pivovar, B.S.; Alia, S.M. Establishing Performance Baselines for the Oxygen Evolution Reaction in Alkaline Electrolytes. J. Electrochem. Soc. 2020, 167, 044503.
- 102.
Anantharaj, S.; Kundu, S. Do the Evaluation Parameters Reflect Intrinsic Activity of Electrocatalysts in Electrochemical Water Splitting? ACS Energy Lett. 2019, 4, 1260–1264.
- 103.
Anantharaj, S.; Karthik, P.E.; Noda, S. The Significance of Properly Reporting Turnover Frequency in Electrocatalysis Research. Angew. Chem. 2021, 60, 23051–23067.
- 104.
Tsotridis, G.; Pilenga, A. EU Harmonized Protocols for Testing of Low Temperature Water Electrolysis; Publications Office of the European Union: Luxembourg, 2021.
- 105.
Fang, Y.-H.; Liu, Z.-P. Tafel Kinetics of Electrocatalytic Reactions: From Experiment to First-Principles. ACS Catal. 2014, 4, 4364–4376.
- 106.
Anantharaj, S.; Noda, S.; Driess, M.; et al. The Pitfalls of Using Potentiodynamic Polarization Curves for Tafel Analysis in Electrocatalytic Water Splitting. ACS Energy Lett. 2021, 6, 1607–1611.
- 107.
Lyons, M.E.G.; Floquet, S. Mechanism of Oxygen Reactions at Porous Oxide Electrodes. Part 2—Oxygen Evolution at RuO2, IrO2 and IrxRu1−xO2 Electrodes in Aqueous Acid and Alkaline Solution. Phys. Chem. Chem. Phys. 2011, 13, 5314–5335.
- 108.
Chen, J.; Ren, L.; Chen, X.; et al. Well-defined Nanostructures of High Entropy Alloys for Electrocatalysis. Exploration 2025, 5, 20230036.
- 109.
Geiger, S.; Kasian, O.; Ledendecker, M.; et al. The Stability Number as a Metric for Electrocatalyst Stability Benchmarking. Nat. Catal. 2018, 1, 508–515.
- 110.
Trotochaud, L.; Young, S.L.; Ranney, J.K.; et al. Nickel–Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.
- 111.
Corrigan, D.A. The Catalysis of the Oxygen Evolution Reaction by Iron Impurities in Thin Film Nickel Oxide Electrodes. J. Electrochem. Soc. 1987, 134, 377.
- 112.
Wu, D.; Hu, L.; Liu, X.; et al. Time-Resolved Spectroscopy Uncovers Deprotonation-Induced Reconstruction in Oxygen-Evolution NiFe-Based (Oxy)Hydroxides. Nat. Commun. 2025, 16, 726.
- 113.
Friebel, D.; Louie, M.W.; Bajdich, M.; et al. Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.
- 114.
Wang, F.; Zou, P.; Zhang, Y.; et al. Activating Lattice Oxygen in High-Entropy LDH for Robust and Durable Water Oxidation. Nat. Commun. 2023, 14, 6019.
- 115.
Zhao, S.; Tan, C.; He, C.T.; et al. Structural Transformation of Highly Active Metal–Organic Framework Electrocatalysts during the Oxygen Evolution Reaction. Nat. Energy 2020, 5, 881–890.
- 116.
Wu, T.; Sun, S.; Song, J.; et al. Iron-Facilitated Dynamic Active-Site Generation on Spinel CoAl2O4 with Self-Termination of Surface Reconstruction for Water Oxidation. Nat. Catal. 2019, 2, 763–772.
- 117.
Xiao, H.; Shin, H.; Goddard, W.A. Synergy between Fe and Ni in the Optimal Performance of (Ni,Fe)OOH Catalysts for the Oxygen Evolution Reaction. Proc. Natl. Acad. Sci. USA 2018, 115, 5872–5877.
- 118.
Zheng, X.; Zhang, B.; De Luna, P.; et al. Theory-Driven Design of High-Valence Metal Sites for Water Oxidation Confirmed Using in Situ Soft X-Ray Absorption. Nat. Chem. 2018, 10, 149–154.
- 119.
Li, Y.F.; Li, J.L.; Liu, Z.P. Structure and Catalysis of NiOOH: Recent Advances on Atomic Simulation. J. Phys. Chem. C 2021, 125, 27033–27045.
- 120.
Zhang, H.; Zeng, Z.; Cheng, S.; et al. Recent Progress and Perspective on Lithium Metal Battery with Nickel-Rich Layered Oxide Cathode. eScience, 2024, 4, 100265.
- 121.
Molina-Muriel, M.; Campagna Zignani, S.; Goberna-Ferrón, S.; et al. Efficient NiFe-Layered Double Hydroxide Electrocatalyst Synthesized via a Solvent-Free Mechanochemical Method for Oxygen Evolution Reaction. ACS Omega 2025, 10, 22671–22678.
- 122.
Jin, L.; Sun, Y.; Zhou, X.; et al. One-Step Synthesis of Layered Double Hydroxides by a Solvent-Free Method. ACS Sustain. Chem. Eng. 2022, 10, 12955–12961.
- 123.
Li, G.; Li, L.; Zhang, J.; et al. Enhance the Proportion of Fe3+ in NiFe-Layered Double Hydroxides by Utilizing Citric Acid to Improve the Efficiency and Durability of the Oxygen Evolution Reaction. ChemSusChem 2025, 18, e202401582.
- 124.
Hayes, D.; Alia, S.; Pivovar, B.; et al. Targeted Synthesis, Characterization, and Electrochemical Analysis of Transition-Metal-Oxide Catalysts for the Oxygen Evolution Reaction. Chem Catal. 2024, 4, 100905.
- 125.
Dai, J.; Zhang, Y.; Song, H.; et al. NiFe Layered-Double-Hydroxide Nanosheet Arrays Grown in situ on Ni Foam for Efficient Oxygen Evolution Reaction. Int. J. Hydrogen Energy 2024, 87, 130–137.
- 126.
Liu, Z.Y.; Wang, Q.Y.; Hu, J.M. Introducing Carbon Dots to NiFe-LDH via a Mild Coprecipitation–Aging Method to Construct a Heterojunction for Effective Oxygen Evolution. Catal. Sci. Technol. 2024, 14, 110–118.
- 127.
Li, Z.; Wei, P.; Wang, G. Recent Advances on Perovskite Electrocatalysts for Water Oxidation in Alkaline Medium. Energy Fuels 2022, 36, 11724–11744.
- 128.
Chen, M.; Kitiphatpiboon, N.; Feng, C.; et al. Recent Progress in Transition-Metal-Oxide-Based Electrocatalysts for the Oxygen Evolution Reaction in Natural Seawater Splitting: A Critical Review. eScience, 2023, 3, 100111.
- 129.
Wang, X.; Yu, M.; Feng, X. Electronic structure regulation of noble metal-free materials toward alkaline oxygen electrocatalysis. eScience, 2023, 3, 100141.
- 130.
Li, D.; Park, E.J.; Zhu, W.; et al. Highly Quaternized Polystyrene Ionomers for High Performance Anion Exchange Membrane Water Electrolysers. Nat. Energy 2020, 5, 378–385.
- 131.
Li, H.; Kraglund, M.R.; Reumert, A.K.; et al. Poly(Vinyl Benzyl Methylpyrrolidinium) Hydroxide Derived Anion Exchange Membranes for Water Electrolysis. J. Mater. Chem. A 2019, 7, 17914–17922.
- 132.
Sankar, S.; Roby, S.; Kuroki, H.; et al. High-Performing Anion Exchange Membrane Water Electrolysis Using Self-Supported Metal Phosphide Anode Catalysts and an Ether-Free Aromatic Polyelectrolyte. ACS Sustain. Chem. Eng. 2023, 11, 854–865.
- 133.
Park, Y.S.; Lee, J.; Jang, M.J.; et al. High-Performance Anion Exchange Membrane Alkaline Seawater Electrolysis. J. Mater. Chem. A 2021, 9, 9586–9592.
- 134.
Zhang, J.; Zhao, S.; Chen, B.; et al. Sulfidation of CoCuOx Supported on Nickel Foam to Form a Heterostructure and Oxygen Vacancies for a High-Performance Anion-Exchange Membrane Water Electrolyzer. ACS Appl. Mater. Interfaces 2023, 15, 45756–45763.
- 135.
Lee, J.; Jung, H.; Park, Y.S.; et al. High-Efficiency Anion-Exchange Membrane Water Electrolyzer Enabled by Ternary Layered Double Hydroxide Anode. Small 2021, 17, 2100639.
- 136.
Choi, W.-S.; Jang, M.J.; Park, Y.S.; et al. Three-Dimensional Honeycomb-Like Cu0.81Co2.19O4 Nanosheet Arrays Supported by Ni Foam and Their High Efficiency as Oxygen Evolution Electrodes. ACS Appl. Mater. Interfaces 2018, 10, 38663–38668.
- 137.
Woo, J.; Han, S.; Yoon, J. Mn-Doped Sequentially Electrodeposited Co-Based Oxygen Evolution Catalyst for Efficient Anion Exchange Membrane Water Electrolysis. ACS Appl. Mater. Interfaces 2024, 16, 23288–23295.
- 138.
Wang, H.; Sun, H.; Cao, S.; et al. Amorphous-Crystalline Interface Coupling Induced Highly Active Ultrathin NiFe Oxy-Hydroxide Design towards Accelerated Alkaline Oxygen Evolution. J. Catal. 2024, 430, 115354.
- 139.
Park, Y.S.; Yang, J.; Lee, J.; et al. Superior Performance of Anion Exchange Membrane Water Electrolyzer: Ensemble of Producing Oxygen Vacancies and Controlling Mass Transfer Resistance. Appl. Catal. B Environ. 2020, 278, 119276.
- 140.
Zhu, Y.; Chen, Y.; Feng, Y.; et al. Constructing Ru-O-TM Bridge in NiFe-LDH Enables High Current Hydrazine-assisted H2 Production. Adv. Mater. 2024, 36, 2401694.
- 141.
Li, Z.; Chen, G.; Gou, S.; et al. NiFe-LDH and PPy-Reinforced PVA Conductive Hydrogels for All-in-One High-Performance Supercapacitors. J. Alloy Compd. 2024, 1009, 176850.
- 142.
Guo, L.; Xie, J.; Chen, S.; et al. Self-Supported Crystalline-Amorphous Composites of Metal Phosphate and NiS for High-Performance Water Electrolysis under Industrial Conditions. Appl. Catal. B Environ. 2024, 340, 123252.
- 143.
Hu, Y.; Shen, T.; Wu, Z.; et al. Coordination Stabilization of Fe by Porphyrin-Intercalated NiFe-LDH Under Industrial-Level Alkaline Conditions for Long-Term Electrocatalytic Water Oxidation. Adv. Funct. Mater. 2025, 35, 2413533.
- 144.
Inamdar, A.I.; Chavan, H.S.; Seok, J.H.; et al. Optimal Rule-of-Thumb Design of NiFeMo Layered Double Hydroxide Nanoflakes for Highly Efficient and Durable Overall Water-Splitting at Large Currents. J. Mater. Chem. A 2022, 10, 20497–20508.
- 145.
Yang, Y.; Lie, W.H.; Unocic, R.R.; et al. Defect-Promoted Ni-Based Layer Double Hydroxides with Enhanced Deprotonation Capability for Efficient Biomass Electrooxidation. Adv. Mater. 2023, 35, 2305573.
- 146.
Guo, W.; Yan, X.; Lu, Q.; et al. Mo-Modified NiFe LDH Nanoflower Anode Catalyst Synthesized via a Top-down Etching Method for Anion Exchange Membrane Water Electrolysis. Int. J. Hydrogen Energy 2025, 145, 237–249.
- 147.
Ha, J.S.; Park, Y.; Jeong, J.-Y.; et al. Solar-Powered AEM Electrolyzer via PGM-Free (Oxy)Hydroxide Anode with Solar to Hydrogen Conversion Efficiency of 12.44%. Adv. Sci. 2024, 11, 2401782.
- 148.
Zhao, T.; Wang, S.; Li, Y.; et al. Heterostructured V-Doped Ni2P/Ni12P5 Electrocatalysts for Hydrogen Evolution in Anion Exchange Membrane Water Electrolyzers. Small 2022, 18, 2204758.
- 149.
Han, Y.; Wang, J.; Liu, Y.; et al. Stability Challenges and Opportunities of NiFe-Based Electrocatalysts for Oxygen Evolution Reaction in Alkaline Media. Carbon Neutraliz. 2024, 3, 172–198.
- 150.
He, L.; Zhou, Y.; Wang, M.; et al. Recent Progress on Stability of Layered Double Hydroxide-Based Catalysts for Oxygen Evolution Reaction. Nanomaterials 2024, 14,1533.
- 151.
Iqbal, S.; Ehlers, J.C.; Hussain, I.; et al. Trends and Industrial Prospects of NiFe-Layered Double Hydroxide for the Oxygen Evolution Reaction. Chem. Eng. J. 2024, 499, 156219.
- 152.
Xu, H.; Yao, B. Industrial Applications of Layered Double Hydroxide (LDH) Catalysts in High-Current Density Water Electrolysis. Int. J. Hydrogen Energy 2025, 162, 150714.