- 1.
Guo, W.; Tian, Y.; Jiang, L. Asymmetric Ion Transport through Ion-Channel-Mimetic Solid-State Nanopores. Acc. Chem. Res. 2013, 46, 2834.
- 2.
Farrington, G.C.; Briant, J.L. Fast Ionic Transport in Solids: Crystalline Solids with Liquid-like Ionic Conductivities Are Revolutionizing Solid-State Electrochemistry. Science 1979, 204, 1371.
- 3.
Ohno, S.; Banik, A.; Dewald, G.F.; et al. Materials Design of Ionic Conductors for Solid State Batteries. Prog. Energy 2020, 2, 022001.
- 4.
Angell, C. Recent Developments in Fast Ion Transport in Glassy and Amorphous Materials. Solid State Ion. 1986, 18–19, 72.
- 5.
Chen, R.; Li, Q.; Yu, X.; et al. Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. Chem. Rev. 2020, 120, 6820.
- 6.
Thomas, F.; Mahdi, L.; Lemaire, J.; et al. Technological Advances and Market Developments of Solid-State Batteries: A Review. Materials 2024, 17, 239.
- 7.
Wang, C.; Sun, X. The Promise of Solid-State Batteries for Safe and Reliable Energy Storage. Engineering 2023, 21, 32.
- 8.
Yang, F.; Santos, E.C.D.; Jia, X.; et al. A Dynamic Database of Solid-State Electrolyte (DDSE) Picturing All-Solid-state Batteries. Nano Mater. Sci. 2024, 6, 256.
- 9.
Chen, P.; Ding, B.; Dou, H.; et al. Ceramic–Polymer Composite Solid-State Electrolytes for Solid-State Lithium Metal Batteries: Mechanism, Strategy, and Prospect. Small 2025, 2503743.
- 10.
Yu, T.; Liu, Y.; Li, H.; et al. Ductile Inorganic Solid Electrolytes for All-Solid-State Lithium Batteries. Chem. Rev. 2025, 125, 3595.
- 11.
Fan, L.-Z.; He, H.; Nan, C.-W. Tailoring Inorganic–Polymer Composites for the Mass Production of Solid-State Batteries. Nat. Rev. Mater. 2021, 6, 1003.
- 12.
Wu, J.; Chen, W.; Hao, B.; et al. Garnet-Type Solid-State Electrolytes: Crystal-Phase Regulation and Interface Modification for Enhanced Lithium Metal Batteries. Small 2025, 21, 2407983.
- 13.
Zhao, Z.; Wang, J.; Lv, Z.; et al. In-situ Formed All-amorphous Poly (ethylene oxide)-based Electrolytes Enabling Solid-State Zn Electrochemistry. Chem. Eng. J. 2021, 417, 128096.
- 14.
Dai, T.; Wu, S.; Lu, Y.; et al. Inorganic Glass Electrolytes with Polymer-like Viscoelasticity. Nat. Energy 2023, 8, 1221.
- 15.
Jian, S.; Cao, Y.; Feng, W.; et al. Recent Progress in Solid Polymer Electrolytes with Various Dimensional Fillers: A Review. Mater. Today Sustain. 2022, 20, 100224.
- 16.
Xue, S.; Chen, S.; Fu, Y.; et al. Revealing the Role of Active Fillers in Li-ion Conduction of Composite Solid Electrolytes. Small 2023, 19, 2305326.
- 17.
Liu, J.; Wang, T.; Yu, J.; et al. Review of the Developments and Difficulties in Inorganic Solid-State Electrolytes. Materials 2023, 16, 2510.
- 18.
Xiao, Y.; Wang, Y.; Bo, S.-H.; et al. Understanding Interface Stability in Solid-State Batteries. Nat. Rev. Mater. 2019, 5, 105.
- 19.
Zhang, S.; Long, T.; Zhang, H.; et al. Electrolytes for Multivalent Metal-Ion Batteries: Current Status and Future Prospect. ChemSusChem 2022, 15, e202200999.
- 20.
Raza, S.; Bashir, T.; Hayat, A.; et al. Recent Progress and Fundamentals of Solid-State Electrolytes for All Solid-State Rechargeable Batteries: Mechanisms, Challenges, and Applications. J. Energy Storage 2024, 92, 112110.
- 21.
O’Donnell, L.F.; Greenbaum, S.G. Review of Multivalent Metal Ion Transport in Inorganic and Solid Polymer Electrolytes. Batteries 2020, 7, 3.
- 22.
Li, R.; Deng, R.; Wang, Z.; et al. The Challenges and Perspectives of Developing Solid-State Electrolytes for Rechargeable Multivalent Battery. J. Solid State Electrochem. 2023, 27, 1291.
- 23.
Jeschull, F.; Hub, C.; Kolesnikov, T.I.; et al. Multivalent Cation Transport in Polymer Electrolytes—Reflections on an Old Problem. Adv. Energy Mater. 2024, 14, 2302745.
- 24.
Tian, W.; Lin, G.; Yuan, S.; et al. Competitive Coordination and Dual Interphase Regulation of MOF-Modified Solid-State Polymer Electrolytes for High-Performance Sodium Metal Batteries. Angew. Chem. Int. Ed. 2025, 64, e202423075.
- 25.
Jones, S.D.; Bamford, J.; Fredrickson, G.H.; et al. Decoupling Ion Transport and Matrix Dynamics to Make High Performance Solid Polymer Electrolytes. ACS Polym. Au 2022, 2, 430.
- 26.
Shinde, S.S.; Wagh, N.K.; Kim, S.; et al. Li, Na, K, Mg, Zn, Al, and Ca Anode Interface Chemistries Developed by Solid-State Electrolytes. Adv. Sci. 2023, 10, 2304235.
- 27.
McAlpine, J.; Bloemendal, A.; Dahl, J.E.; et al. Modulating Entropic Driving Forces to Promote High Lithium Mobility in Solid Organic Electrolytes. Chem. Mater. 2023, 35, 3545.
- 28.
Hou, Y.; Wei, Z.; Wu, Z.; et al. Regulating Dielectricity of A Polymer Electrolyte to Promote Cation Mobility for High-Performance Solid Zinc Hybrid Batteries. Energy Environ. Sci. 2024, 17, 3917.
- 29.
Wang, J.; Zhao, Z.; Lu, G.; et al. Room-temperature Fast Zinc-Ion Conduction in Molecule-Flexible Solids. Mater. Today Energy 2021, 20, 100630.
- 30.
Miao, C.; Wang, X.; Guan, D.; et al. Spatially Confined Engineering Toward Deep Eutectic Electrolyte in Metal-Organic Framework Enabling Solid-State Zinc-Ion Batteries. Angew. Chem. Int. Ed. 2024, 63, e202410208.
- 31.
Yan, S.; Lu, Y.; Liu, F.; et al. Zwitterionic Matrix with Highly Delocalized Anionic Structure as an Efficient Lithium Ion Conductor. CCS Chem. 2023, 5, 1612.
- 32.
Vélez, J.F.; Aparicio, M.; Mosa, J. Effect of Lithium Salt in Nanostructured Silica–Polyethylene Glycol Solid Electrolytes for Li-Ion Battery Applications. J. Phys. Chem. C 2016, 120, 22852.
- 33.
Di Noto, V.; Longo, D.; Münchow, V. Ion-Oligomer Interactions in Poly(ethylene glycol)400/(LiCl)x Electrolyte Complexes. J. Phys. Chem. B 1999, 103, 2636.
- 34.
Aurbach, D.; Lu, Z.; Schechter, A.; et al. Prototype Systems for Rechargeable Magnesium Batteries. Nature 2000, 407, 724.
- 35.
Lin, W.; Zhou, K.; Xing, L.; et al. Viscoelastic Soft Solid Electrolytes Enable Fast Zinc Ion Conductance and Highly Stable Zinc Metal Anode. Adv. Energy Mater. 2025, 15, 2404545.
- 36.
Martínez, L.; Andrade, R.; Birgin, E.G.; et al. PACKMOL: A Package for Building Initial Configurations for Molecular Dynamics Simulations. J. Comput. Chem. 2009, 30, 2157.
- 37.
Kaminski, G.A.; Friesner, R.A.; Tirado-Rives, J.; et al. Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides. J. Phys. Chem. B 2001, 105, 6474.
- 38.
Abraham, M.J.; Murtola, T.; Schulz, R.; et al. GROMACS: High Performance Molecular Simulations Through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19.
- 39.
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33.
- 40.
Pas, S.J.; Ingram, M.D.; Funke, K.; et al. Free Volume and Conductivity in Polymer Electrolytes. Electrochimica Acta 2005, 50, 3955.
- 41.
Miyamoto, T.; Shibayama, K. Free-Volume Model for Ionic Conductivity in Polymers. J. Appl. Phys. 1973, 44, 5372.
- 42.
Bamford, D.; Dlubek, G.; Reiche, A.; et al. The Local Free Volume, Glass Transition, and Ionic Conductivity in A Polymer Electrolyte: A Positron Lifetime Study. J. Chem. Phys. 2001, 115, 7260.
- 43.
Halat, D.M.; Snyder, R.L.; Sundararaman, S.; Choo, Y.; et al. Modifying Li+ and Anion Diffusivities in Polyacetal Electrolytes: A Pulsed-Field-Gradient NMR Study of Ion Self-Diffusion+. Chem. Mater. 2021, 33, 4915.
- 44.
Kost, B.; Basko, M.; Kaźmierski, S.; et al. Polyacetals of Higher Cyclic Formals: Synthesis, Properties and Application as Polymer Electrolytes. Polym. Chem. 2025, 16, 598.
- 45.
Ramya, P.; Ranganathaiah, C.; Williams, J.F. Experimental Determination of Interface Widths in Binary Polymer Blends from Free Volume Measurements. Polymer 2012, 53, 4539.
- 46.
Mor, J.; Pandey, K.L.; Sharma, S.K. Correlation Between Free Volume Structure and Ionic Conductivity of A Poly(ethylene oxide) and Dendritic Fibrous Nanosilica Composite-based Electrolyte: An Investigation Using Positron Annihilation and Broadband Dielectric Spectroscopy. Phys. Chem. Chem. Phys. 2025, 27, 10082.
- 47.
Utpalla, P.; Sharma, S.K.; Sudarshan, K.; et al. Free Volume Correlation with AC Conductivity and Thermo-Mechanical Properties of Poly (ethylene oxide)-silica Nanocomposites. Eur. Polym. J. 2019, 117, 10.
- 48.
Zhan, Y.; Fu, W.; Xing, Y.; et al. Advances in Versatile Anti-Swelling Polymer Hydrogels. Mater. Sci. Eng. C 2021, 127, 112208.
- 49.
Brogly, M.; Bistac, S.; Bindel, D. Adsorption and Structuration of PEG Thin Films: Influence of the Substrate Chemistry. Polymers 2024, 16, 1244.
- 50.
Rocco, A.M.; Moreira, D.P.; Pereira, R.P. Specific Interactions in Blends of Poly(ethylene oxide) and Poly(bisphenol A-co-epichlorohydrin): FTIR and Thermal Study. Eur. Polym. J. 2003, 39, 1925.
- 51.
Brooks, D.J.; Merinov, B.V.; Goddard, W.A.; et al. Atomistic Description of Ionic Diffusion in PEO–LiTFSI: Effect of Temperature, Molecular Weight, and Ionic Concentration. Macromolecules 2018, 51, 8987.
- 52.
Gao, Y.; Nolan, A.M.; Du, P.; et al. Classical and Emerging Characterization Techniques for Investigation of Ion Transport Mechanisms in Crystalline Fast Ionic Conductors. Chem. Rev. 2020, 120, 5954.
- 53.
He, X.; Zhu, Y.; Mo, Y. Origin of Fast Ion Diffusion in Super-Ionic Conductors. Nat. Commun. 2017, 8, 15893.
- 54.
Sharon, D.; Deng, C.; Bennington, P.; et al. Critical Percolation Threshold for Solvation-Site Connectivity in Polymer Electrolyte Mixtures. Macromolecules 2022, 55, 7212.
- 55.
Yang, X.; Jiang, M.; Gao, X.; et al. Determining the Limiting Factor of the Electrochemical Stability Window for PEO-based Solid Polymer Electrolytes: Main Chain or Terminal –OH Group? Energy Environ. Sci. 2020, 13, 1318.
- 56.
Rong, Z.; Sun, Y.; Yang, M.; et al. How the PEG Terminals Affect the Electrochemical Properties of Polymer Electrolytes in Lithium Metal Batteries. Energy Storage Mater. 2023, 63, 103066.
- 57.
Yan, K.; Fan, Y.; Hu, F.; et al. A “Polymer-in-Salt” Solid Electrolyte Enabled by Fast Phase Transition Route for Stable Zn Batteries. Adv. Funct. Mater. 2024, 34, 2307740.
- 58.
Lv, Z.; Kang, Y.; Chen, J.; et al. Stable Solid-State Zinc–Iodine Batteries Enabled by an Inorganic ZnPS3 Solid Electrolyte with Interconnected Zn2+ Migration Channels. Adv. Funct. Mater. 2024, 34, 2310476.
- 59.
Zhou, C.; Wang, Z.; Nan, Q.; et al. Simultaneous Inhibition of Vanadium Dissolution and Zinc Dendrites by Mineral-Derived Solid-State Electrolyte for High-Performance Zinc Metal Batteries. Angew. Chem. Int. Ed. 2024, 136, e202412006.
- 60.
Chen, Z.; Huang, Z.; Wang, C.; et al. Supramolecular Crystals based Fast Single Ion Conductor for Long-Cycling Solid Zinc Batteries. Angew. Chem. Int. Ed. 2024, 63, e202406683.