- 1.
Woo, P.C. Rigorous analysis of microbes and infectious diseases using an expanding range of robust in silico Technologies. eMicrobe 2025, 1, 1.
- 2.
Bera, K.; Braman, N.; Gupta, A.; et al. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat. Rev. Clin. Oncol. 2022, 19, 132–146.
- 3.
Goyal, M.; Knackstedt, T.; Yan, S.; et al. Artificial intelligence-based image classification methods for diagnosis of skin cancer: Challenges and opportunities. Comput. Biol. Med. 2020, 127, 104065.
- 4.
Försch, S.; Klauschen, F.; Hufnagl, P.; et al. Artificial intelligence in pathology. Dtsch. Ärzteblatt Int. 2021, 118, 199.
- 5.
Shafi, S.; Parwani, A.V. Artificial intelligence in diagnostic pathology. Diagn. Pathol. 2023, 18, 109.
- 6.
Tsang, C.C.; Zhao, C.; Liu, Y.; et al. Automatic identification of clinically important Aspergillus species by artificial intelligence-based image recognition: Proof-of-concept study. Emerg. Microbes Infect. 2025, 14, 2434573.
- 7.
Theodosiou, A.A.; Read, R.C. Artificial intelligence, machine learning and deep learning: Potential resources for the infection clinician. J. Infect. 2023, 87, 287–294.
- 8.
Kumar, S.; Arif, T.; Alotaibi, A.S.; et al. Advances towards automatic detection and classification of parasites microscopic images using deep convolutional neural network: Methods, models and research directions. Arch. Comput. Methods Eng. 2023, 30, 2013–2039.
- 9.
Wang, Z.; Zhang, L.; Zhao, M.; et al. Deep neural networks offer morphologic classification and diagnosis of bacterial vaginosis. J. Clin. Microbiol. 2021, 59, 10-1128.
- 10.
Song, Y.; He, L.; Zhou, F.; et al. Segmentation, splitting, and classification of overlapping bacteria in microscope images for automatic bacterial vaginosis diagnosis. IEEE J. Biomed. Health Inform. 2016, 21, 1095–1104.
- 11.
Van Noorden, R.; Webb, R. ChatGPT and science: The AI system was a force in 2023−−for good and bad. Nature 2023, 624, 509.
- 12.
Dave, T.; Athaluri, S.A.; Singh, S. ChatGPT in medicine: An overview of its applications, advantages, limitations, future prospects, and ethical considerations. Front. Artif. Intell. 2023, 6, 1169595.
- 13.
Garg, R.K.; Urs, V.L.; Agarwal, A.A.; et al. Exploring the role of ChatGPT in patient care (diagnosis and treatment) and medical research: A systematic review. Health Promot. Perspect. 2023, 13, 183.
- 14.
Yan, M.; Cerri, G.G.; Moraes, F.Y. ChatGPT and medicine: How AI language models are shaping the future and health related careers. Nat. Biotechnol. 2023, 41, 1657–1658.
- 15.
Mahmoud, R.; Shuster, A.; Kleinman, S.; et al. Evaluating artificial intelligence chatbots in oral and maxillofacial surgery board exams: Performance and potential. J. Oral Maxillofac. Surg. 2025, 83, 382–389.
- 16.
Mayo-Yáñez, M.; Lechien, J.R.; Maria-Saibene, A.; et al. Examining the performance of ChatGPT 3.5 and microsoft copilot in otolaryngology: A comparative study with otolaryngologists’ evaluation. Indian J. Otolaryngol. Head Neck Surg. 2024, 76, 3465–3469.
- 17.
Wang, C.S.; Hsiao, Y.; Tsou, C.H.; et al. Chatbots are just as good as professors in both factual recall and clinical scenario analysis: Emergence of a new tool in clinical microbiology and infectious disease. J. Infect. 2024, 89, 106274.
- 18.
Tsang, C.C.; Lau, S.K.P.; Woo, P.C.Y. Sixty years from Segretain’s description: What have we learned and should learn about the basic mycology of Talaromyces marneffei? Mycopathologia 2019, 184, 721–729.
- 19.
Woo, P.C.Y.; Zhen, H.; Cai, J.J.; et al. The mitochondrial genome of the thermal dimorphic fungus Penicillium marneffei is more closely related to those of molds than yeasts. FEBS Lett. 2003, 555, 469–477.
- 20.
Tam, E.W.; Tsang, C.C.; Lau, S.K.P.; et al. Comparative mitogenomic and phylogenetic characterization on the complete mitogenomes of Talaromyces (Penicillium) marneffei. Mitochondrial DNA Part B 2016, 1, 941–942.
- 21.
Yuen, K.Y.; Woo, P.C.Y.; Ip, M.S.; et al. Stage-specific manifestation of mold infections in bone marrow transplant recipients: Risk factors and clinical significance of positive concentrated smears. Clin. Infect. Dis. 1997, 25, 37–42.
- 22.
Chan, J.F.W.; Lau, S.K.P.; Wong, S.C.Y.; et al. A 10-year study reveals clinical and laboratory evidence for the ‘semi-invasive’ properties of chronic pulmonary aspergillosis. Emerg. Microbes Infect. 2016, 5, 1–7.
- 23.
Chan, J.F.W.; Chan, T.S.Y.; Gill, H.; et al. Disseminated infections with Talaromyces marneffei in non-AIDS patients given monoclonal antibodies against CD20 and kinase inhibitors. Emerg. Infect. Dis. 2015, 21, 1101.
- 24.
Chan, J.F.; Lau, S.K.P.; Yuen, K.Y.; et al. Talaromyces (Penicillium) marneffei infection in non-HIV-infected patients. Emerg. Microbes Infect. 2016, 5, 1–9.
- 25.
Narayanasamy, S.; Dat, V.Q.; Thanh, N.T.; et al. A global call for talaromycosis to be recognised as a neglected tropical disease. Lancet Glob. Health 2021, 9, e1618–e1622.
- 26.
Lau, S.K.; Lam, C.S.; Ngan, A.H.; et al. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for rapid identification of mold and yeast cultures of Penicillium marneffei. BMC Microbiol. 2016, 16, 1–9.
- 27.
Lau, S.K.P.; Tang, B.S.; Curreem, S.O.; et al. Matrix-assisted laser desorption ionization–time of flight mass spectrometry for rapid identification of Burkholderia pseudomallei: Importance of expanding databases with pathogens endemic to different localities. J. Clin. Microbiol. 2012, 50, 3142–3143.
- 28.
Tang, B.S.; Lau, S.K.P.; Teng, J.L.; et al. Matrix-assisted laser desorption ionisation–time of flight mass spectrometry for rapid identification of Laribacter hongkongensis. J. Clin. Pathol. 2013, 66, 1081–1083.