2509001309
  • Open Access
  • Article

Molecular Dynamics Simulation to Explore Functional Regions Involving Pho4 Interaction with Co-Activator and PHO5 Promoter

  • Tanaporn Wangsanut 1,   
  • Nopawit Khamto 2,   
  • Monsicha Pongpom 1, *

Received: 20 Jun 2025 | Revised: 08 Sep 2025 | Accepted: 15 Sep 2025 | Published: 24 Sep 2025

Abstract

The PHO pathway is essential for the transcriptional response to inorganic phosphate starvation, and the core components are evolutionarily conserved across fungi. Pho4 and its co-activator Pho2 control the PHO5 gene expression and serve as a paradigm for understanding chromatin remodelling and the evolution of combinatorial transcriptional control. Protein sequence alignment and structural modelling reveal that Pho4 homologs contain a large proportion of intrinsically disordered regions (IDRs). Using molecular dynamics (MD) simulations, we monitored the behaviors of the yeast Saccharomyces cerevisiae Pho4 protein (ScPho4), which includes the DNA Binding Domain (DBD), and the Pho2 Interaction Domain (P2ID), an IDR, in complex with the PHO5 promoter (ScPHO5), both in the presence and absence of the Pho2 protein (ScPho2). The ScPho2-ScPho4 dimer formed a more stable complex at ScPHO5, as reflected by a lower RMSD and greater binding energy, compared to ScPho4 alone. This dimer also induced more structural changes in promoter DNA. Notably, the P2ID of ScPho4 adopted an open conformation when interacting with ScPho2, and a closed conformation in its absence. In human pathogenic yeast Candida glabrata, MD simulations revealed dynamic IDR movements in Pho4 homologs. Unlike other previous studies, our approach enables direct visualization and quantification of conformational changes in protein-DNA complex over simulation time. These findings highlight the value of MD simulation as a routine complement to experimental methods, advancing our knowledge of structure-motion-function.

References 

  • 1.
    Bhalla, K.; Qu, X.; Kretschmer, M.; et al. The phosphate language of fungi. Trends Microbiol. 2022, 30, 338–349. https://doi.org/10.1016/j.tim.2021.08.002.
  • 2.
    Lev, S.; Djordjevic, J.T. Why is a functional PHO pathway required by fungal pathogens to disseminate within a phosphate-rich host: A paradox explained by alkaline pH-simulated nutrient deprivation and expanded PHO pathway function. PLoS Pathog. 2018, 14, e1007021. https://doi.org/10.1371/journal.ppat.1007021.
  • 3.
    Barbaric, S.; Münsterkötter, M.; Goding, C.; et al. Cooperative Pho2-Pho4 interactions at the PHO5 promoter are critical for binding of Pho4 to UASp1 and for efficient transactivation by Pho4 at UASp2. Mol. Cell. Biol. 1998, 18, 2629–2639. https://doi.org/10.1128/mcb.18.5.2629.
  • 4.
    Barbarić, S.; Münsterkötter, M.; Svaren, J.; et al. The homeodomain protein Pho2 and the basic-helix-loop-helix protein Pho4 bind DNA cooperatively at the yeast PHO5 promoter. Nucleic Acids Res. 1996, 24, 4479–4486. https://doi.org/10.1093/nar/24.22.4479.
  • 5.
    Lee, Y.S.; Mulugu, S.; York, J.D.; et al. Regulation of a cyclin-CDK-CDK inhibitor complex by inositol pyrophosphates. Science 2007, 316, 109–112. https://doi.org/10.1126/science.1139080.
  • 6.
    Desmarini, D.; Lev, S.; Furkert, D.; et al. IP(7)-SPX Domain interaction controls fungal virulence by stabilizing phosphate signaling machinery. mBio 2020, 11, e01920-20. https://doi.org/10.1128/mBio.01920-20.
  • 7.
    Gomes-Vieira, A.L.; Wideman, J.G.; Paes-Vieira, L.; et al. Evolutionary conservation of a core fungal phosphate homeostasis pathway coupled to development in Blastocladiella emersonii. Fungal Genet. Biol. 2018, 115, 20–32. https://doi.org/10.1016/j.fgb.2018.04.004.
  • 8.
    Carter-O’Connell, I.; Peel, M.T.; Wykoff, D.D.; et al. Genome-wide characterization of the phosphate starvation response in Schizosaccharomyces pombe. BMC Genom. 2012, 13, 697. https://doi.org/10.1186/1471-2164-13-697.
  • 9.
    Kerwin, C.L.; Wykoff, D.D. Candida glabrata PHO4 is necessary and sufficient for Pho2-independent transcription of phosphate starvation genes. Genetics 2009, 182, 471–479. https://doi.org/10.1534/genetics.109.101063.
  • 10.
    Ikeh, M.A.; Kastora, S.L.; Day, A.M.; et al. Pho4 mediates phosphate acquisition in Candida albicans and is vital for stress resistance and metal homeostasis. Mol. Biol. Cell 2016, 27, 2784–2801. https://doi.org/10.1091/mbc.E16-05-0266.
  • 11.
    He, B.Z.; Zhou, X.; O’Shea, E.K. Evolution of reduced co-activator dependence led to target expansion of a starvation response pathway. Elife 2017, 6, e25157. https://doi.org/10.7554/eLife.25157.
  • 12.
    Ikeh, M.; Ahmed, Y.; Quinn, J. Phosphate acquisition and virulence in human fungal pathogens. Microorganisms 2017, 5, 48. https://doi.org/10.3390/microorganisms5030048.
  • 13.
    Toh-e, A.; Ohkusu, M.; Li, H.M.; et al. Identification of genes involved in the phosphate metabolism in Cryptococcus neoformans. Fungal Genet. Biol. 2015, 80, 19–30. https://doi.org/10.1016/j.fgb.2015.04.019.
  • 14.
    Kang, S.; Metzenberg, R.L. Molecular analysis of nuc-1+, a gene controlling phosphorus acquisition in Neurospora crassa. Mol. Cell. Biol. 1990, 10, 5839–5848. https://doi.org/10.1128/mcb.10.11.5839-5848.1990.
  • 15.
    Gras, D.E.; Persinoti, G.F.; Peres, N.T.; et al. Transcriptional profiling of Neurospora crassa Δmak-2 reveals that mitogen-activated protein kinase MAK-2 participates in the phosphate signaling pathway. Fungal Genet. Biol. 2013, 60, 140–149. https://doi.org/10.1016/j.fgb.2013.05.007.
  • 16.
    Wu, D.; Dou, X.; Hashmi, S.B.; et al. The Pho80-like cyclin of Aspergillus nidulans regulates development independently of its role in phosphate acquisition. J. Biol. Chem. 2004, 279, 37693–37703. https://doi.org/10.1074/jbc.M403853200.
  • 17.
    Zhou, Y.; Yuikawa, N.; Nakatsuka, H.; et al. Core regulatory components of the PHO pathway are conserved in the methylotrophic yeast Hansenula polymorpha. Curr. Genet. 2016, 62, 595–605. https://doi.org/10.1007/s00294-016-0565-7.
  • 18.
    Snyder, L.F.; O’Brien, E.M.; Zhao, J.; et al. Divergence in a eukaryotic transcription factor’s co-TF dependence involves multiple intrinsically disordered regions affecting activation and autoinhibition. Nat. Commun. 2025, 16, 5340. https://doi.org/10.1038/s41467-025-59244-w.
  • 19.
    Tesei, G.; Trolle, A.I.; Jonsson, N.; et al. Conformational ensembles of the human intrinsically disordered proteome. Nature 2024, 626, 897–904. https://doi.org/10.1038/s41586-023-07004-5.
  • 20.
    Hollingsworth, S.A.; Dror, R.O. Molecular dynamics simulation for All. Neuron 2018, 99, 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011.
  • 21.
    Brotzakis, Z.F.; Zhang, S.; Murtada, M.H.; et al. AlphaFold prediction of structural ensembles of disordered proteins. Nat. Commun. 2025, 16, 1632. https://doi.org/10.1038/s41467-025-56572-9.
  • 22.
    Lotthammer, J.M.; Ginell, G.M.; Griffith, D.; et al. Direct prediction of intrinsically disordered protein conformational properties from sequence. Nat. Methods 2024, 21, 465–476. https://doi.org/10.1038/s41592-023-02159-5.
  • 23.
    Mu, J.; Liu, H.; Zhang, J.; et al. Recent Force field strategies for intrinsically disordered proteins. J. Chem. Inf. Model 2021, 61, 1037–1047. https://doi.org/10.1021/acs.jcim.0c01175.
  • 24.
    Abramson, J.; Adler, J.; Dunger, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. https://doi.org/10.1038/s41586-024-07487-w.
  • 25.
    Xie, Y.; Li, H.; Luo, X.; et al. IBS 2.0: An upgraded illustrator for the visualization of biological sequences. Nucleic Acids Res. 2022, 50, W420–W426. https://doi.org/10.1093/nar/gkac373.
  • 26.
    Abraham, M.J.; Murtola, T.; Schulz, R.; et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25.
  • 27.
    Case, D.A.; Aktulga, H.M.; Belfon, K.; et al. AmberTools. J. Chem. Inf. Model 2023, 63, 6183–6191. https://doi.org/10.1021/acs.jcim.3c01153.
  • 28.
    Maier, J.A.; Martinez, C.; Kasavajhala, K.; et al. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255.
  • 29.
    Hornak, V.; Abel, R.; Okur, A.; et al. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 2006, 65, 712–725. https://doi.org/10.1002/prot.21123.
  • 30.
    Valdés-Tresanco, M.S.; Valdés-Tresanco, M.E.; Valiente, P.A.; et al. gmx_MMPBSA: A New tool to perform end-state free energy calculations with GROMACS. J. Chem. Theory Comput. 2021, 17, 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645.
  • 31.
    Bhoite, L.T.; Allen, J.M.; Garcia, E.; et al. Mutations in the pho2 (bas2) transcription factor that differentially affect activation with its partner proteins bas1, pho4, and swi5. J. Biol. Chem. 2002, 277, 37612–37618. https://doi.org/10.1074/jbc.M206125200.
  • 32.
    Santner, A.A.; Croy, C.H.; Vasanwala, F.H.; et al. Sweeping away protein aggregation with entropic bristles: Intrinsically disordered protein fusions enhance soluble expression. Biochemistry 2012, 51, 7250–7262. https://doi.org/10.1021/bi300653m.
  • 33.
    Li, M.; Cao, H.; Lai, L.; et al. Disordered linkers in multidomain allosteric proteins: Entropic effect to favor the open state or enhanced local concentration to favor the closed state? Protein Sci. 2018, 27, 1600–1610. https://doi.org/10.1002/pro.3475.
  • 34.
    Jamecna, D.; Polidori, J.; Mesmin, B.; et al. An intrinsically disordered region in OSBP acts as an entropic barrier to control protein dynamics and orientation at membrane contact sites. Dev. Cell 2019, 49, 220–234. https://doi.org/10.1016/j.devcel.2019.02.021.
  • 35.
    Brodsky, S.; Jana, T.; Mittelman, K.; et al. Intrinsically disordered regions direct transcription factor in vivo binding specificity. Mol. Cell 2020, 79, 459–471. https://doi.org/10.1016/j.molcel.2020.05.032.
  • 36.
    Ferrie, J.J.; Karr, J.P.; Tjian, R.; et al. “Structure”-function relationships in eukaryotic transcription factors: The role of intrinsically disordered regions in gene regulation. Mol. Cell 2022, 82, 3970–3984. https://doi.org/10.1016/j.molcel.2022.09.021.
  • 37.
    Ferrie, J.J.; Karr, J.P.; Graham, T.G.W.; et al. p300 is an obligate integrator of combinatorial transcription factor inputs. Mol. Cell 2024, 84, 234–243. https://doi.org/10.1016/j.molcel.2023.12.004.
  • 38.
    Ji, D.; Shao, C.; Yu, J.; et al. FOXA1 forms biomolecular condensates that unpack condensed chromatin to function as a pioneer factor. Mol. Cell 2024, 84, 244–260. https://doi.org/10.1016/j.molcel.2023.11.020.
  • 39.
    Krois, A.S.; Dyson, H.J.; Wright, P.E. Long-range regulation of p53 DNA binding by its intrinsically disordered N-terminal transactivation domain. Proc. Natl. Acad. Sci. USA 2018, 115, e11302–e11310. https://doi.org/10.1073/pnas.1814051115.
  • 40.
    Mindel, V.; Brodsky, S.; Cohen, A.; et al. Intrinsically disordered regions of the Msn2 transcription factor encode multiple functions using interwoven sequence grammars. Nucleic Acids Res. 2024, 52, 2260–2272. https://doi.org/10.1093/nar/gkad1191.
  • 41.
    Wangsanut, T.; Tobin, J.M.; Rolfes, R.J. Functional mapping of transcription factor Grf10 that regulates adenine-responsive and filamentation genes in Candida albicans. mSphere 2018, 3. https://doi.org/10.1128/mSphere.00467-18.
  • 42.
    Pongpom, M.; Khamto, N.; Sukantamala, P.; et al. Identification of homeobox transcription factors in a dimorphic fungus Talaromyces marneffei and protein-protein interaction prediction of RfeB. J. Fungi 2024, 10, 687. https://doi.org/10.3390/jof10100687.
  • 43.
    Brown, C.R.; Mao, C.; Falkovskaia, E.; et al. Linking stochastic fluctuations in chromatin structure and gene expression. PLoS Biol. 2013, 11, e1001621. https://doi.org/10.1371/journal.pbio.1001621.
  • 44.
    Korber, P.; Barbaric, S. The yeast PHO5 promoter: From single locus to systems biology of a paradigm for gene regulation through chromatin. Nucleic Acids Res. 2014, 42, 10888–10902. https://doi.org/10.1093/nar/gku784.
  • 45.
    Wolff, M.R.; Schmid, A.; Korber, P.; et al. Effective dynamics of nucleosome configurations at the yeast PHO5 promoter. Elife 2021, 10, e58394. https://doi.org/10.7554/eLife.58394.
  • 46.
    Kharerin, H.; Bhat, P.J.; Marko, J.F.; et al. Role of transcription factor-mediated nucleosome disassembly in PHO5 gene expression. Sci. Rep. 2016, 6, 20319. https://doi.org/10.1038/srep20319.
  • 47.
    Chan-Yao-Chong, M.; Chan, J.; Kono, H. Benchmarking of force fields to characterize the intrinsically disordered R2-FUS-LC region. Sci. Rep. 2023, 13, 14226. https://doi.org/10.1038/s41598-023-40801-6.
  • 48.
    Liu, X.; Chen, J. Residual structures and transient long-range interactions of p53 transactivation domain: Assessment of explicit solvent protein force fields. J. Chem. Theory Comput. 2019, 15, 4708–4720. https://doi.org/10.1021/acs.jctc.9b00397.
  • 49.
    Ouyang, Y.; Zhao, L.; Zhang, Z. Characterization of the structural ensembles of p53 TAD2 by molecular dynamics simulations with different force fields. Phys. Chem. Chem. Phys. 2018, 20, 8676–8684. https://doi.org/10.1039/c8cp00067k.
  • 50.
    Bonomi, M.; Camilloni, C.; Cavalli, A.; et al. Metainference: A Bayesian inference method for heterogeneous systems. Sci. Adv. 2016, 2, e1501177. https://doi.org/10.1126/sciadv.1501177.
  • 51.
    Kmiecik, S.; Gront, D.; Kolinski, M.; et al. Coarse-grained protein models and their applications. Chem. Rev. 2016, 116, 7898–7936.
  • 52.
    Pang, Y.T.; Yang, L.; Gumbart, J.C. From simple to complex: Reconstructing all-atom structures from coarse-grained models using cg2all. Structure 2024, 32, 5–7. https://doi.org/10.1016/j.str.2023.12.004.
  • 53.
    Heo, L.; Feig, M. One bead per residue can describe all-atom protein structures. Structure 2024, 32, 97–111. https://doi.org/10.1016/j.str.2023.10.013.
Share this article:
How to Cite
Wangsanut, T.; Khamto, N.; Pongpom, M. Molecular Dynamics Simulation to Explore Functional Regions Involving Pho4 Interaction with Co-Activator and PHO5 Promoter. eMicrobe 2025, 1 (1), 5. https://doi.org/10.53941/emicrobe.2025.100005.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.