- 1.
Bhalla, K.; Qu, X.; Kretschmer, M.; et al. The phosphate language of fungi. Trends Microbiol. 2022, 30, 338–349. https://doi.org/10.1016/j.tim.2021.08.002.
- 2.
Lev, S.; Djordjevic, J.T. Why is a functional PHO pathway required by fungal pathogens to disseminate within a phosphate-rich host: A paradox explained by alkaline pH-simulated nutrient deprivation and expanded PHO pathway function. PLoS Pathog. 2018, 14, e1007021. https://doi.org/10.1371/journal.ppat.1007021.
- 3.
Barbaric, S.; Münsterkötter, M.; Goding, C.; et al. Cooperative Pho2-Pho4 interactions at the PHO5 promoter are critical for binding of Pho4 to UASp1 and for efficient transactivation by Pho4 at UASp2. Mol. Cell. Biol. 1998, 18, 2629–2639. https://doi.org/10.1128/mcb.18.5.2629.
- 4.
Barbarić, S.; Münsterkötter, M.; Svaren, J.; et al. The homeodomain protein Pho2 and the basic-helix-loop-helix protein Pho4 bind DNA cooperatively at the yeast PHO5 promoter. Nucleic Acids Res. 1996, 24, 4479–4486. https://doi.org/10.1093/nar/24.22.4479.
- 5.
Lee, Y.S.; Mulugu, S.; York, J.D.; et al. Regulation of a cyclin-CDK-CDK inhibitor complex by inositol pyrophosphates. Science 2007, 316, 109–112. https://doi.org/10.1126/science.1139080.
- 6.
Desmarini, D.; Lev, S.; Furkert, D.; et al. IP(7)-SPX Domain interaction controls fungal virulence by stabilizing phosphate signaling machinery. mBio 2020, 11, e01920-20. https://doi.org/10.1128/mBio.01920-20.
- 7.
Gomes-Vieira, A.L.; Wideman, J.G.; Paes-Vieira, L.; et al. Evolutionary conservation of a core fungal phosphate homeostasis pathway coupled to development in Blastocladiella emersonii. Fungal Genet. Biol. 2018, 115, 20–32. https://doi.org/10.1016/j.fgb.2018.04.004.
- 8.
Carter-O’Connell, I.; Peel, M.T.; Wykoff, D.D.; et al. Genome-wide characterization of the phosphate starvation response in Schizosaccharomyces pombe. BMC Genom. 2012, 13, 697. https://doi.org/10.1186/1471-2164-13-697.
- 9.
Kerwin, C.L.; Wykoff, D.D. Candida glabrata PHO4 is necessary and sufficient for Pho2-independent transcription of phosphate starvation genes. Genetics 2009, 182, 471–479. https://doi.org/10.1534/genetics.109.101063.
- 10.
Ikeh, M.A.; Kastora, S.L.; Day, A.M.; et al. Pho4 mediates phosphate acquisition in Candida albicans and is vital for stress resistance and metal homeostasis. Mol. Biol. Cell 2016, 27, 2784–2801. https://doi.org/10.1091/mbc.E16-05-0266.
- 11.
He, B.Z.; Zhou, X.; O’Shea, E.K. Evolution of reduced co-activator dependence led to target expansion of a starvation response pathway. Elife 2017, 6, e25157. https://doi.org/10.7554/eLife.25157.
- 12.
Ikeh, M.; Ahmed, Y.; Quinn, J. Phosphate acquisition and virulence in human fungal pathogens. Microorganisms 2017, 5, 48. https://doi.org/10.3390/microorganisms5030048.
- 13.
Toh-e, A.; Ohkusu, M.; Li, H.M.; et al. Identification of genes involved in the phosphate metabolism in Cryptococcus neoformans. Fungal Genet. Biol. 2015, 80, 19–30. https://doi.org/10.1016/j.fgb.2015.04.019.
- 14.
Kang, S.; Metzenberg, R.L. Molecular analysis of nuc-1+, a gene controlling phosphorus acquisition in Neurospora crassa. Mol. Cell. Biol. 1990, 10, 5839–5848. https://doi.org/10.1128/mcb.10.11.5839-5848.1990.
- 15.
Gras, D.E.; Persinoti, G.F.; Peres, N.T.; et al. Transcriptional profiling of Neurospora crassa Δmak-2 reveals that mitogen-activated protein kinase MAK-2 participates in the phosphate signaling pathway. Fungal Genet. Biol. 2013, 60, 140–149. https://doi.org/10.1016/j.fgb.2013.05.007.
- 16.
Wu, D.; Dou, X.; Hashmi, S.B.; et al. The Pho80-like cyclin of Aspergillus nidulans regulates development independently of its role in phosphate acquisition. J. Biol. Chem. 2004, 279, 37693–37703. https://doi.org/10.1074/jbc.M403853200.
- 17.
Zhou, Y.; Yuikawa, N.; Nakatsuka, H.; et al. Core regulatory components of the PHO pathway are conserved in the methylotrophic yeast Hansenula polymorpha. Curr. Genet. 2016, 62, 595–605. https://doi.org/10.1007/s00294-016-0565-7.
- 18.
Snyder, L.F.; O’Brien, E.M.; Zhao, J.; et al. Divergence in a eukaryotic transcription factor’s co-TF dependence involves multiple intrinsically disordered regions affecting activation and autoinhibition. Nat. Commun. 2025, 16, 5340. https://doi.org/10.1038/s41467-025-59244-w.
- 19.
Tesei, G.; Trolle, A.I.; Jonsson, N.; et al. Conformational ensembles of the human intrinsically disordered proteome. Nature 2024, 626, 897–904. https://doi.org/10.1038/s41586-023-07004-5.
- 20.
Hollingsworth, S.A.; Dror, R.O. Molecular dynamics simulation for All. Neuron 2018, 99, 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011.
- 21.
Brotzakis, Z.F.; Zhang, S.; Murtada, M.H.; et al. AlphaFold prediction of structural ensembles of disordered proteins. Nat. Commun. 2025, 16, 1632. https://doi.org/10.1038/s41467-025-56572-9.
- 22.
Lotthammer, J.M.; Ginell, G.M.; Griffith, D.; et al. Direct prediction of intrinsically disordered protein conformational properties from sequence. Nat. Methods 2024, 21, 465–476. https://doi.org/10.1038/s41592-023-02159-5.
- 23.
Mu, J.; Liu, H.; Zhang, J.; et al. Recent Force field strategies for intrinsically disordered proteins. J. Chem. Inf. Model 2021, 61, 1037–1047. https://doi.org/10.1021/acs.jcim.0c01175.
- 24.
Abramson, J.; Adler, J.; Dunger, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. https://doi.org/10.1038/s41586-024-07487-w.
- 25.
Xie, Y.; Li, H.; Luo, X.; et al. IBS 2.0: An upgraded illustrator for the visualization of biological sequences. Nucleic Acids Res. 2022, 50, W420–W426. https://doi.org/10.1093/nar/gkac373.
- 26.
Abraham, M.J.; Murtola, T.; Schulz, R.; et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25.
- 27.
Case, D.A.; Aktulga, H.M.; Belfon, K.; et al. AmberTools. J. Chem. Inf. Model 2023, 63, 6183–6191. https://doi.org/10.1021/acs.jcim.3c01153.
- 28.
Maier, J.A.; Martinez, C.; Kasavajhala, K.; et al. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255.
- 29.
Hornak, V.; Abel, R.; Okur, A.; et al. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 2006, 65, 712–725. https://doi.org/10.1002/prot.21123.
- 30.
Valdés-Tresanco, M.S.; Valdés-Tresanco, M.E.; Valiente, P.A.; et al. gmx_MMPBSA: A New tool to perform end-state free energy calculations with GROMACS. J. Chem. Theory Comput. 2021, 17, 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645.
- 31.
Bhoite, L.T.; Allen, J.M.; Garcia, E.; et al. Mutations in the pho2 (bas2) transcription factor that differentially affect activation with its partner proteins bas1, pho4, and swi5. J. Biol. Chem. 2002, 277, 37612–37618. https://doi.org/10.1074/jbc.M206125200.
- 32.
Santner, A.A.; Croy, C.H.; Vasanwala, F.H.; et al. Sweeping away protein aggregation with entropic bristles: Intrinsically disordered protein fusions enhance soluble expression. Biochemistry 2012, 51, 7250–7262. https://doi.org/10.1021/bi300653m.
- 33.
Li, M.; Cao, H.; Lai, L.; et al. Disordered linkers in multidomain allosteric proteins: Entropic effect to favor the open state or enhanced local concentration to favor the closed state? Protein Sci. 2018, 27, 1600–1610. https://doi.org/10.1002/pro.3475.
- 34.
Jamecna, D.; Polidori, J.; Mesmin, B.; et al. An intrinsically disordered region in OSBP acts as an entropic barrier to control protein dynamics and orientation at membrane contact sites. Dev. Cell 2019, 49, 220–234. https://doi.org/10.1016/j.devcel.2019.02.021.
- 35.
Brodsky, S.; Jana, T.; Mittelman, K.; et al. Intrinsically disordered regions direct transcription factor in vivo binding specificity. Mol. Cell 2020, 79, 459–471. https://doi.org/10.1016/j.molcel.2020.05.032.
- 36.
Ferrie, J.J.; Karr, J.P.; Tjian, R.; et al. “Structure”-function relationships in eukaryotic transcription factors: The role of intrinsically disordered regions in gene regulation. Mol. Cell 2022, 82, 3970–3984. https://doi.org/10.1016/j.molcel.2022.09.021.
- 37.
Ferrie, J.J.; Karr, J.P.; Graham, T.G.W.; et al. p300 is an obligate integrator of combinatorial transcription factor inputs. Mol. Cell 2024, 84, 234–243. https://doi.org/10.1016/j.molcel.2023.12.004.
- 38.
Ji, D.; Shao, C.; Yu, J.; et al. FOXA1 forms biomolecular condensates that unpack condensed chromatin to function as a pioneer factor. Mol. Cell 2024, 84, 244–260. https://doi.org/10.1016/j.molcel.2023.11.020.
- 39.
Krois, A.S.; Dyson, H.J.; Wright, P.E. Long-range regulation of p53 DNA binding by its intrinsically disordered N-terminal transactivation domain. Proc. Natl. Acad. Sci. USA 2018, 115, e11302–e11310. https://doi.org/10.1073/pnas.1814051115.
- 40.
Mindel, V.; Brodsky, S.; Cohen, A.; et al. Intrinsically disordered regions of the Msn2 transcription factor encode multiple functions using interwoven sequence grammars. Nucleic Acids Res. 2024, 52, 2260–2272. https://doi.org/10.1093/nar/gkad1191.
- 41.
Wangsanut, T.; Tobin, J.M.; Rolfes, R.J. Functional mapping of transcription factor Grf10 that regulates adenine-responsive and filamentation genes in Candida albicans. mSphere 2018, 3. https://doi.org/10.1128/mSphere.00467-18.
- 42.
Pongpom, M.; Khamto, N.; Sukantamala, P.; et al. Identification of homeobox transcription factors in a dimorphic fungus Talaromyces marneffei and protein-protein interaction prediction of RfeB. J. Fungi 2024, 10, 687. https://doi.org/10.3390/jof10100687.
- 43.
Brown, C.R.; Mao, C.; Falkovskaia, E.; et al. Linking stochastic fluctuations in chromatin structure and gene expression. PLoS Biol. 2013, 11, e1001621. https://doi.org/10.1371/journal.pbio.1001621.
- 44.
Korber, P.; Barbaric, S. The yeast PHO5 promoter: From single locus to systems biology of a paradigm for gene regulation through chromatin. Nucleic Acids Res. 2014, 42, 10888–10902. https://doi.org/10.1093/nar/gku784.
- 45.
Wolff, M.R.; Schmid, A.; Korber, P.; et al. Effective dynamics of nucleosome configurations at the yeast PHO5 promoter. Elife 2021, 10, e58394. https://doi.org/10.7554/eLife.58394.
- 46.
Kharerin, H.; Bhat, P.J.; Marko, J.F.; et al. Role of transcription factor-mediated nucleosome disassembly in PHO5 gene expression. Sci. Rep. 2016, 6, 20319. https://doi.org/10.1038/srep20319.
- 47.
Chan-Yao-Chong, M.; Chan, J.; Kono, H. Benchmarking of force fields to characterize the intrinsically disordered R2-FUS-LC region. Sci. Rep. 2023, 13, 14226. https://doi.org/10.1038/s41598-023-40801-6.
- 48.
Liu, X.; Chen, J. Residual structures and transient long-range interactions of p53 transactivation domain: Assessment of explicit solvent protein force fields. J. Chem. Theory Comput. 2019, 15, 4708–4720. https://doi.org/10.1021/acs.jctc.9b00397.
- 49.
Ouyang, Y.; Zhao, L.; Zhang, Z. Characterization of the structural ensembles of p53 TAD2 by molecular dynamics simulations with different force fields. Phys. Chem. Chem. Phys. 2018, 20, 8676–8684. https://doi.org/10.1039/c8cp00067k.
- 50.
Bonomi, M.; Camilloni, C.; Cavalli, A.; et al. Metainference: A Bayesian inference method for heterogeneous systems. Sci. Adv. 2016, 2, e1501177. https://doi.org/10.1126/sciadv.1501177.
- 51.
Kmiecik, S.; Gront, D.; Kolinski, M.; et al. Coarse-grained protein models and their applications. Chem. Rev. 2016, 116, 7898–7936.
- 52.
Pang, Y.T.; Yang, L.; Gumbart, J.C. From simple to complex: Reconstructing all-atom structures from coarse-grained models using cg2all. Structure 2024, 32, 5–7. https://doi.org/10.1016/j.str.2023.12.004.
- 53.
Heo, L.; Feig, M. One bead per residue can describe all-atom protein structures. Structure 2024, 32, 97–111. https://doi.org/10.1016/j.str.2023.10.013.