2509001387
  • Open Access
  • Article

Yield of Metagenomics in Suspected Central Nervous System Infections with Negative Cerebrospinal Fluid Cultures

  • Chaowen Deng 1, *,   
  • Qingyan Yang 2,   
  • Lina Li 2,   
  • Jinyue Huang 1,   
  • Yanfei Yuan 1,   
  • Jieling Liu 1,   
  • Fanfan Xing 1, *

Received: 09 Aug 2025 | Revised: 15 Sep 2025 | Accepted: 22 Sep 2025 | Published: 25 Sep 2025

Abstract

Background: Metagenomic next-generation sequencing (mNGS) represents a promising diagnostic tool for central nervous system infections, and its clinical impact on patient management when the cerebrospinal fluid is culture-negative remains inadequately explored. Methods: We conducted a retrospective cross-sectional study involving patients who underwent culture-negative cerebrospinal fluid mNGS at a tertiary hospital from March 2019 to December 2024, aiming to assess its diagnostic efficacy and clinical implications. Results: A total of 93 culture-negative cerebrospinal fluid samples from 93 patients underwent mNGS. Positive results were observed in 58.1% (54/93) of patients, with 78 microorganisms identified, and 52.6% (41/78) were clinically relevant. Clinically relevant organisms exhibited significantly higher median sequence reads compared with clinically irrelevant microbes (95 vs. 3; p < 0.0001). mNGS results positively impacted 65.6% (61/93) of patients by confirming or excluding central nervous system infections. However, among cases with negative clinical impact, 65.6% (21/32) were clinically diagnosed with central nervous system infections. Notably, 56.3% (18/32) of the positive mNGS results were considered non-pathogenic by clinicians, suggesting that mNGS alone may not be sufficient for diagnosing or ruling out central nervous system infections. Additionally, no significant differences were observed in clinical impact between immunocompromised and immunocompetent patients (68% vs. 64.7%, p = 0.802). Conclusion: mNGS demonstrates high diagnostic yield and positive clinical impact for patients with culture-negative cerebrospinal fluid. Its clinical applications should take into account factors such as patient demographics, diagnostic performance, and the interpretation of results in conjunction with conventional testing and collaboration within multidisciplinary teams.

References 

  • 1.
    Forrester, J.V.; McMenamin, P.G.; Dando, S.J. CNS infection and immune privilege. Nat. Rev. Neurosci. 2018, 19, 655–671. https://doi.org/10.1038/s41583-018-0070-8.
  • 2.
    Batool, M.; Galloway-Peña, J. Clinical metagenomics-challenges and future prospects. Front. Microbiol. 2023, 14, 1186424. https://doi.org/10.3389/fmicb.2023.1186424.
  • 3.
    Ramachandran, P.S.; Wilson, M.R. Metagenomics for neurological infections-expanding our imagination. Nat. Rev. Neurol. 2020, 16, 547–556. https://doi.org/10.1038/s41582-020-0374-y.
  • 4.
    Xing, F.; Deng, C.; Huang, J.; et al. Usefulness of next-generation sequencing for laboratory diagnosis of rickettsiosis. PLoS Negl. Trop. Dis. 2024, 18, e0012546. https://doi.org/10.1371/journal.pntd.0012546.
  • 5.
    Xing, F.F.; Chiu, K.H.; Deng, C.W.; et al. Post-COVID-19 Pandemic Rebound of Macrolide-Resistant Mycoplasma pneumoniae Infection: A Descriptive Study. Antibiotics 2024, 13, 262. https://doi.org/10.3390/antibiotics13030262.
  • 6.
    Deng, C.; Lo, S.K.F.; Chiu, K.H.Y.; et al. Nocardia Detection in Respiratory Samples Using Targeted Next-Generation Sequencing: Cautious Interpretation Is Necessary for Timely Discovery. Infect. Microbes Dis. 2025, 7, 101–110. https://doi.org/10.1097/im9.0000000000000179.
  • 7.
    Xing, F.; Yang, Q.; Deng, C.; et al. Clinical impact of next-generation sequencing on laboratory diagnosis of suspected culture-negative meningitis and encephalitis. J. Infect. 2022, 85, 573–607. https://doi.org/10.1016/j.jinf.2022.08.026.
  • 8.
    Bharucha, T.; Oeser, C.; Balloux, F.; et al. STROBE-metagenomics: A STROBE extension statement to guide the reporting of metagenomics studies. Lancet Infect. Dis. 2020, 20, e251–e260. https://doi.org/10.1016/s1473-3099(20)30199-7.
  • 9.
    Deng, C.; Yang, Q.; Li, L.; et al. Eosinophilic Meningitis in a Patient With Early HIV Infection, Latent Syphilis and Herpes Simplex Virus 2 Meningitis. Infect. Microbes Dis. 2024, 6, 210–212. https://doi.org/10.1097/im9.0000000000000164.
  • 10.
    Zhao, Y.; Zhang, W.; Zhang, X. Application of metagenomic next-generation sequencing in the diagnosis of infectious diseases. Front. Cell Infect. Microbiol. 2024, 14, 1458316. https://doi.org/10.3389/fcimb.2024.1458316.
  • 11.
    Zhao, X.; Duan, M.X.; Lu, Y.Y.; et al. Short-term prognostic analysis of patients with systemic lupus erythematosus co-infection and comparison of mNGS and conventional microbiological test results. Front. Cell Infect. Microbiol. 2023, 13, 1131258. https://doi.org/10.3389/fcimb.2023.1131258.
  • 12.
    Fan, S.; Si, M.; Xu, N.; et al. Metagenomic next-generation sequencing-guided antimicrobial treatment versus conventional antimicrobial treatment in early severe community-acquired pneumonia among immunocompromised patients (MATESHIP): A study protocol. Front. Microbiol. 2022, 13, 927842. https://doi.org/10.3389/fmicb.2022.927842.
  • 13.
    Tang, H.; Chen, Y.; Tang, X.; et al. Yield of clinical metagenomics: Insights from real-world practice for tissue infections. EBioMedicine 2025, 111, 105536. https://doi.org/10.1016/j.ebiom.2024.105536.
  • 14.
    Han, D.; Yu, F.; Zhang, D.; et al. Applicability of Bronchoalveolar Lavage Fluid and Plasma Metagenomic Next-Generation Sequencing Assays in the Diagnosis of Pneumonia. Open Forum Infect. Dis. 2024, 11, ofad631. https://doi.org/10.1093/ofid/ofad631.
  • 15.
    Chiu, C.Y.; Miller, S.A. Clinical metagenomics. Nat. Rev. Genet. 2019, 20, 341–355. https://doi.org/10.1038/s41576-019-0113-7.
  • 16.
    Wilson, M.R.; Sample, H.A.; Zorn, K.C.; et al. Clinical Metagenomic Sequencing for Diagnosis of Meningitis and Encephalitis. N. Engl. J. Med. 2019, 380, 2327–2340. https://doi.org/10.1056/NEJMoa1803396.
  • 17.
    Chan, J.F.; Yuan, S.; Kok, K.H.; et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020, 395, 514–523. https://doi.org/10.1016/s0140-6736(20)30154-9.
  • 18.
    Shean, R.C.; Garrett, E.; Malleis, J.; et al. A retrospective observational study of mNGS test utilization to examine the role of diagnostic stewardship at two academic medical centers. J. Clin. Microbiol. 2024, 62, e0060524. https://doi.org/10.1128/jcm.00605-24.
  • 19.
    Han, D.; Yu, F.; Zhang, D.; et al. The Real-World Clinical Impact of Plasma mNGS Testing: An Observational Study. Microbiol. Spectr. 2023, 11, e0398322. https://doi.org/10.1128/spectrum.03983-22.
  • 20.
    Rossoff, J.; Chaudhury, S.; Soneji, M.; et al. Noninvasive Diagnosis of Infection Using Plasma Next-Generation Sequencing: A Single-Center Experience. Open Forum Infect. Dis. 2019, 6, ofz327. https://doi.org/10.1093/ofid/ofz327.
  • 21.
    Stratton, C.W.; Schutzbank, T.E.; Tang, Y.W. Use of Metagenomic Next-Generation Sequencing in the Clinical Microbiology Laboratory: A Step Forward, but Not an End-All. J. Mol. Diagn. 2021, 23, 1415–1421. https://doi.org/10.1016/j.jmoldx.2021.09.003.
  • 22.
    Olthoff, M.; Kobayashi, T.; Parsons, M.G.; et al. Impact of metagenomic next-generation sequencing on clinical decision-making at an academic medical center, a retrospective study, Iowa, 2020–2022. Antimicrob. Steward. Healthc. Epidemiol. 2024, 4, e39. https://doi.org/10.1017/ash.2024.31.
  • 23.
    Hogan, C.A.; Yang, S.; Garner, O.B.; et al. Clinical Impact of Metagenomic Next-Generation Sequencing of Plasma Cell-Free DNA for the Diagnosis of Infectious Diseases: A Multicenter Retrospective Cohort Study. Clin. Infect. Dis. 2021, 72, 239–245. https://doi.org/10.1093/cid/ciaa035.
  • 24.
    Rodino, K.G.; Toledano, M.; Norgan, A.P.; et al. Retrospective Review of Clinical Utility of Shotgun Metagenomic Sequencing Testing of Cerebrospinal Fluid from a U.S. Tertiary Care Medical Center. J. Clin. Microbiol. 2020, 58, 10–1128. https://doi.org/10.1128/jcm.01729-20.
  • 25.
    Langelier, C.; Zinter, M.S.; Kalantar, K.; et al. Metagenomic Sequencing Detects Respiratory Pathogens in Hematopoietic Cellular Transplant Patients. Am. J. Respir. Crit. Care Med. 2018, 197, 524–528.
  • 26.
    Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for illumina sequence data. Bioinformatics 2014, 30, 2114–2120.
  • 27.
    Bittinger, K.; Charlson, E.S.; Loy, E.; et al. Improved characterization of medically relevant fungi in the human respiratory tract using next-generation sequencing. Genome Biol. 2014, 15, 487.
  • 28.
    Schlaberg, R.; Chiu, C.Y.; Miller, S.; et al. Validation of Metagenomic Next-Generation Sequencing Tests for Universal Pathogen Detection. Arch. Pathol. Lab. Med. 2017, 141, 776–786.
  • 29.
    Doughty, E.L.; Sergeant, M.J.; Adetifa, I.; et al. Culture-independent detection and characterisation of Mycobacterium tuberculosis and M. africanum in sputum samples using shotgun metagenomics on a benchtop sequencer. PeerJ. 2014, 2, e585.
  • 30.
    Simner, P.J.; Miller, S.; Carroll, K.C. Understanding the Promises and Hurdles of Metagenomic Next-Generation Sequencing as a Diagnostic Tool for Infectious Diseases. Clin. Infect. Dis. 2018, 66, 778–788.
  • 31.
    Özçolpan, O.O.; Sürücüoğlu, S.; Özkütük, N.; et al. Distribution of nontuberculous mycobacteria isolated from clinical specimens and identified with DNA sequence analysis. Mikrobiyoloji Bul. 2015, 49, 484–493.
  • 32.
    Van Ingen, J.; Kohl, T.A.; Kranzer, K.; et al. Global outbreak of severe Mycobacterium chimaera disease after cardiac surgery: a molecular epidemiological study. Lancet Infect. Dis. 2017, 17, 1033–1041.
  • 33.
    Chen, S.; Zhou, Y.; Chen, Y.; et al. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–890.
  • 34.
    Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009, 25, 1754–1760.
  • 35.
    Miller, S.; Naccache, S.N.; Samayoa, E.; et al. Laboratory validation of a clinical metagenomic sequencing assay for pathogen detection in cerebrospinal fluid. Genome Res. 2019, 29, 831–842.
  • 36.
    Naccache, S.N.; Federman, S.; Veeraraghavan, N.; et al. A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples. Genome Res. 2014, 24, 1180–1192.
Share this article:
How to Cite
Deng, C.; Yang, Q.; Li, L.; Huang, J.; Yuan, Y.; Liu, J.; Xing, F. Yield of Metagenomics in Suspected Central Nervous System Infections with Negative Cerebrospinal Fluid Cultures. eMicrobe 2025, 1 (1), 6. https://doi.org/10.53941/emicrobe.2025.100006.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.