2510001637
  • Open Access
  • Review

Advances and Perspectives on Mycobacterial Secretion Systems

  • Greta Segafreddo 1,*,   
  • Davide Sorze 1,   
  • Riccardo Manganelli 1,   
  • Roberta Provvedi 2,*

Received: 24 Jun 2025 | Revised: 30 Sep 2025 | Accepted: 01 Oct 2025 | Published: 04 Dec 2025

Abstract

Mycobacteria possess a uniquely complex cell envelope and rely on a diverse array of secretion systems to interact with their environment, ensure survival, and modulate host immune responses. This review provides a comprehensive overview of these secretion pathways, from the universally conserved Sec and Tat systems to the specialized ESX/type VII secretion systems, as well as lipid transporters of the MmpL family, with particular emphasis on Mycobacterium tuberculosis and other clinically relevant members of the M. tuberculosis complex and non-tuberculous mycobacteria. By integrating findings from historical literature and the most recent experimental and bioinformatic studies, we outline the genetic organization, structure, regulation, and functional interplay of these pathways. Emphasis is placed on how these systems are not isolated entities but form a highly interconnected network that coordinates protein and lipid export essential for virulence, immune modulation, and cell wall integrity. We also explore the translational potential of secreted effectors and their transport machineries, discussing their relevance as targets for therapeutic interventions, including novel inhibitors, diagnostic biomarkers, and vaccine candidates. We highlight critical knowledge gaps and propose avenues for future research, particularly those that leverage multidisciplinary approaches. By drawing connections across secretion systems and emphasizing their shared and distinct roles, this work aims to provide an integrated framework that supports both fundamental understanding and biomedical innovation in mycobacterial pathogenesis.

References 

  • 1.

    Gröschel, M.I.; Sayes, F.; Simeone, R.; et al. ESX secretion systems: Mycobacterial evolution to counter host immunity. Nat. Rev. Microbiol. 2016, 14, 677–691. https://doi.org/10.1038/nrmicro.2016.131.

  • 2.

    van Winden, V.J.C.; Houben, E.N.G.; Braunstein, M. Protein export into and across the atypical diderm cell envelope of mycobacteria. Microbiol. Spectr. 2019, 7. https://doi.org/10.1128/microbiolspec.gpp3-0043-2018.

  • 3.

    Ligon, L.S.; Hayden, J.D.; Braunstein, M. The ins and outs of Mycobacterium tuberculosis protein export. Tuberculosis 2012, 92, 121–132. https://doi.org/10.1016/j.tube.2011.11.005.

  • 4.

    Miller, B.K.; Zulauf, K.E.; Braunstein, M. The Sec Pathways and Exportomes of Mycobacterium tuberculosis. In Tuberculosis and the Tubercle Bacillus; ASM Press: Washington, DC, USA, 2017; pp. 607–625. https://doi.org/10.1128/microbiolspec.

  • 5.

    Braunstein, M.; Bensing, B.A.; Sullam, P.M. The two distinct types of SecA2-dependent export systems. Microbiol. Spectr. 2019, 7. https://doi.org/10.1128/microbiolspec.psib-0025-2018.

  • 6.

    McDonough, J.A.; McCann, J.R.; Tekippe, E.M.E.; et al. Identification of functional Tat signal sequences in Mycobacterium tuberculosis proteins. J. Bacteriol. 2008, 190, 6428–6438. https://doi.org/10.1128/JB.00749-08.

  • 7.

    Natale, P.; Brüser, T.; Driessen, A.J.M. Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane-distinct translocases and mechanisms. Biochim. Biophys. Acta (BBA)-Biomembr. 2008, 1778, 1735–1756. https://doi.org/10.1016/j.bbamem.2007.07.015.

  • 8.

    Aguiló, N.; Marinova, D.; Martín, C.; et al. ESX-1-induced apoptosis during mycobacterial infection: To be or not to be, that is the question. Front. Cell. Infect. Microbiol. 2013, 3, 88. https://doi.org/10.3389/fcimb.2013.00088.

  • 9.

    Conrad, W.H.; Osman, M.M.; Shanahan, J.K.; et al. Mycobacterial ESX-1 secretion system mediates host cell lysis through bacterium contact-dependent gross membrane disruptions. Proc. Natl. Acad. Sci. USA 2017, 114, 1371–1376. https://doi.org/10.1073/pnas.1620133114.

  • 10.

    Wong, K.-W. The Role of ESX-1 in Mycobacterium tuberculosis Pathogenesis. Microbiol. Spectr. 2017, 5. https://doi.org/10.1128/microbiolspec.tbtb2-0001-2015.

  • 11.

    Serafini, A.; Pisu, D.; Palù, G.; et al. The ESX-3 secretion system is necessary for iron and zinc homeostasis in Mycobacterium tuberculosis. PLoS ONE 2013, 8, e78351. https://doi.org/10.1371/journal.pone.0078351.

  • 12.

    Granados-Tristán, A.L.; Hernández-Luna, C.E.; González-Escalante, L.A.; et al. ESX-3 secretion system in Mycobacterium: An overview. Biochimie 2024, 216, 46–55. https://doi.org/10.1016/j.biochi.2023.10.013.

  • 13.

    Ates, L.S.; Ummels, R.; Commandeur, S.; et al. Essential role of the ESX-5 secretion system in outer membrane permeability of pathogenic mycobacteria. PLoS Genet. 2015, 11, e1005190. https://doi.org/10.1371/journal.pgen.1005190.

  • 14.

    Melly, G.; Purdy, G.E. Mmpl proteins in physiology and pathogenesis of M. Tuberculosis. Microorganisms 2019, 7, 70. https://doi.org/10.3390/microorganisms7030070.

  • 15.

    Domenech, P.; Reed, M.B.; Barry, C.E. Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance. Infect. Immun. 2005, 73, 3492–3501. https://doi.org/10.1128/IAI.73.6.3492-3501.2005.

  • 16.

    Chalut, C. MmpL transporter-mediated export of cell-wall associated lipids and siderophores in mycobacteria. Tuberculosis 2016, 100, 32–45. https://doi.org/10.1016/j.tube.2016.06.004.

  • 17.

    Saint-Joanis, B.; Demangel, C.; Jackson, M.; et al. Inactivation of Rv2525c, a substrate of the twin arginine translocation (Tat) system of Mycobacterium tuberculosis, increases β-lactam susceptibility and virulence. J. Bacteriol. 2006, 188, 6669–6679. https://doi.org/10.1128/JB.00631-06.

  • 18.

    Huber, D.; Jamshad, M.; Hanmer, R.; et al. SecA cotranslationally interacts with nascent substrate proteins in vivo. J. Bacteriol. 2017, 199. https://doi.org/10.1128/jb.00622-16.

  • 19.

    Saha, R.; Mukherjee, S.; Singh, B.; et al. Crystal structure of a mycobacterial secretory protein Rv0398c and in silico prediction of its export pathway. Biochem. Biophys. Res. Commun. 2023, 672, 45–53. https://doi.org/10.1016/j.bbrc.2023.06.029.

  • 20.

    Dilks, K.; Rose, R.W.; Hartmann, E.; et al. Prokaryotic utilization of the twin-arginine translocation pathway: A genomic survey. J. Bacteriol. 2003, 185, 1478–1483. https://doi.org/10.1128/JB.185.4.1478-1483.2003.

  • 21.

    Almagro Armenteros, J.J.; Tsirigos, K.D.; Sønderby, C.K.; et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019, 37, 420–423. https://doi.org/10.1038/s41587-019-0036-z.

  • 22.

    Bendtsen, J.D.; Nielsen, H.; Widdick, D.; et al. Prediction of twin-arginine signal peptides. BMC Bioinform. 2005, 6, 167. https://doi.org/10.1186/1471-2105-6-167.

  • 23.

    Selengut, J.D.; Haft, D.H.; Davidsen, T.; et al. TIGRFAMs and genome properties: Tools for the assignment of molecular function and biological process in prokaryotic genomes. Nucleic Acids Res. 2007, 35, D260–D264. https://doi.org/10.1093/nar/gkl1043.

  • 24.

    Gracy, J.; Vallejos-Sanchez, K.; Cohen-Gonsaud, M. SecretoMyc, a web-based database on mycobacteria secreted proteins and structure-based homology identification using bio-informatics tools. Tuberculosis 2023, 141, 102375. https://doi.org/10.1016/j.tube.2023.102375.

  • 25.

    The Primary Mechanism of Attenuation of Bacillus Calmette-Gué Rin is a Loss of Secreted Lytic Function Required for Invasion of Lung Interstitial Tissue. 2003. Available online: www.pnas.orgcgidoi10.1073pnas.1635213100 (accessed on 5 August 2025).

  • 26.

    Stanley, S.A.; Raghavan, S.; Hwang, W.W.; et al. Acute Infection and Macrophage Subversion by Mycobacterium tuberculosis Require a Specialized Secretion System. 2003. Available online: www.pnas.org (accessed on 5 August 2025).

  • 27.

    Pym, A.S.; Brodin, P.; Brosch, R.; et al. Loss of RD1 Contributed to the Attenuation of the Live Tuberculosis Vaccines Mycobacterium Bovis BCG and Mycobacterium Microti. 2002. Available online: www.cvmbs.colostate.edu/microbiology/tb/ (accessed on 5 August 2025).

  • 28.

    Pym, A.S.; Brodin, P.; Majlessi, L.; et al. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat. Med. 2003, 9, 533–539. https://doi.org/10.1038/nm859.

  • 29.

    Bitter, W.; Houben, E.N.; Bottai, D.; et al. Systematic genetic nomenclature for type VII secretion systems. PLoS Pathog. 2009, 5, e1000507. https://doi.org/10.1371/journal.ppat.1000507.

  • 30.

    Abdallah, A.M.; Gey van Pittius, N.C.; DiGiuseppe Champion, P.A.; et al. Type VII secretion—Mycobacteria show the way. Nat. Rev. Microbiol. 2007, 5,883-891.

  • 31.

    Newton-Foot, M.; Warren, R.M.; Sampson, S.L.; et al. The plasmid-mediated evolution of the mycobacterial ESX (Type VII) secretion systems. BMC Evol. Biol. 2016, 16, 62. https://doi.org/10.1186/s12862-016-0631-2.

  • 32.

    Unnikrishnan, M.; Constantinidou, C.; Palmer, T.; et al. The enigmatic ESX proteins: Looking beyond mycobacteria. Trends Microbiol. 2017, 25, 192–204. https://doi.org/10.1016/j.tim.2016.11.004.

  • 33.

    Dumas, E.; Christina Boritsch, E.; Vandenbogaert, M.; et al. Mycobacterial pan-genome analysis suggests important role of plasmids in the radiation of type VII secretion systems. Genome Biol. Evol. 2016, 8, 387–402. https://doi.org/10.1093/gbe/evw001.

  • 34.

    Bottai, D.; Serafini, A.; Cascioferro, A.; et al. Targeting Type VII/ESX Secretion Systems for Development of Novel Antimycobac-Terial Drugs. 2014. Available online: http://www.who.int/tb/ (accessed on 5 August 2025).

  • 35.

    Vaziri, F.; Brosch, R. ESX/Type VII secretion systems—An important way out for mycobacterial proteins. Microbiol. Spectr. 2019, 7. https://doi.org/10.1128/microbiolspec.PSIB.

  • 36.

    Nicholson, K.R.; Cronin, R.M.; Prest, R.J.; et al. The antagonistic transcription factors, EspM and EspN, regulate the ESX-1 secretion system in M. marinum. mBio 2024, 15, e03357-23. https://doi.org/10.1128/mbio.03357-23.

  • 37.

    Tufariello, J.M.; Chapman, J.R.; Kerantzas, C.A.; et al. Separable roles for Mycobacterium tuberculosis ESX-3 effectors in iron acquisition and virulence. Proc. Natl. Acad. Sci. USA 2016, 113, E348–E357. https://doi.org/10.1073/pnas.1523321113.

  • 38.

    van Winden, V.J.; Ummels, R.; Piersma, S.R.; et al. Mycosins are required for the stabilization of the ESX-1 and ESX-5 type VII secretion membrane complexes. mBio 2016, 7, e01471-16. https://doi.org/10.1128/mbio.01471-16.

  • 39.

    Pajuelo, D.; Tak, U.; Zhang, L.; et al. Toxin secretion and trafficking by Mycobacterium tuberculosis. Nat. Commun. 2021, 12, 6592. https://doi.org/10.1038/s41467-021-26925-1.

  • 40.

    Wagner, J.M.; Evans, T.J.; Chen, J.; et al. Understanding specificity of the mycosin proteases in ESX/type VII secretion by structural and functional analysis. J. Struct. Biol. 2013, 184, 115–128. https://doi.org/10.1016/j.jsb.2013.09.022.

  • 41.

    Majlessi, L.; Prados-Rosales, R.; Casadevall, A.; et al. Release of mycobacterial antigens. Immunol. Rev. 2015, 264, 25–45. https://doi.org/10.1111/imr.12251.

  • 42.

    Mendum, T.A.; Wu, H.; Kierzek, A.M.; et al. Lipid metabolism and type VII secretion systems dominate the genome scale virulence profile of Mycobacterium tuberculosis in human dendritic cells. BMC Genom. 2015, 16, 372. https://doi.org/10.1186/s12864-015-1569-2.

  • 43.

    Sankey, N.; Merrick, H.; Singh, P.; et al. Role of the Mycobacterium tuberculosis ESX-4 secretion system in heme iron utilization and pore formation by PPE proteins. mSphere 2023, 8, e00573-22. https://doi.org/10.1128/msphere.00573-22.

  • 44.

    Wagner, J.M.; Chan, S.; Evans, T.J.; et al. Structures of EccB1 and EccD1 from the core complex of the mycobacterial ESX-1 type VII secretion system. BMC Struct. Biol. 2016, 16, 5. https://doi.org/10.1186/s12900-016-0056-6.

  • 45.

    Saxena, A.K.; Chandra, A.; Srivastava, S.; et al. Structural analysis of M. tuberculosis EccC1 and its complex with EsxAB virulence factor using X-ray crystallography, molecular docking, and dynamics simulation techniques. Int. J. Biol. Macromol. 2025, 319, 145279. https://doi.org/10.1016/j.ijbiomac.2025.145279.

  • 46.

    Ates, L.S.; Brosch, R. Discovery of the type VII ESX-1 secretion needle? Mol. Microbiol. 2017, 103, 7–12. https://doi.org/10.1111/mmi.13579.

  • 47.

    Soler-Arnedo, P.; Sala, C.; Zhang, M.; et al. Polarly localized EccE1 is required for ESX-1 function and stabilization of ESX-1 membrane proteins in Mycobacterium tuberculosis. J. Bacteriol. 2020, 202. https://doi.org/10.1128/JB.00662-19.

  • 48.

    Rosenberg, O.S.; Dovey, C.; Tempesta, M.; et al. EspR, a key regulator of Mycobacterium tuberculosis virulence, adopts a unique dimeric structure among helix-turn-helix proteins. Proc. Natl. Acad. Sci. USA 2011, 108, 13450–13455 https://doi.org/10.1073/pnas.1110242108.

  • 49.

    Teena; Kumari, S.; Singh, R.; et al. Biophysical characterization and interaction study of WhiB6 protein of Mycobacterium tuberculosis with espA. FEBS J. 2025, early access. https://doi.org/10.1111/febs.70202.

  • 50.

    Luna, M.J.; Oluoch, P.O.; Miao, J.; et al. Frequently arising ESX-1-associated phase variants influence Mycobacterium tuberculosis fitness in the presence of host and antibiotic pressures. mBio 2025, 16, e03762-24. https://doi.org/10.1128/mbio.03762-24.

  • 51.

    Zhang, M.; Chen, J.M.; Sala, C.; et al. EspI regulates the ESX-1 secretion system in response to ATP levels in Mycobacterium tuberculosis. Mol. Microbiol. 2014, 93, 1057–1065. https://doi.org/10.1111/mmi.12718.

  • 52.

    Chen, J.M.; Boy-Röttger, S.; Dhar, N.; et al. EspD is critical for the virulence-mediating ESX-1 secretion system in Mycobacterium tuberculosis. J. Bacteriol. 2012, 194, 884–893. https://doi.org/10.1128/JB.06417-11.

  • 53.

    Ohol, Y.M.; Goetz, D.H.; Chan, K.; et al. Mycobacterium tuberculosis MycP1 protease plays a dual role in regulation of ESX-1 secretion and virulence. Cell Host Microbe 2010, 7, 210–220. https://doi.org/10.1016/j.chom.2010.02.006.

  • 54.

    Korotkova, N.; Piton, J.; Wagner, J.M.; et al. Structure of EspB, a secreted substrate of the ESX-1 secretion system of Mycobacterium tuberculosis. J. Struct. Biol. 2015, 191, 236–244. https://doi.org/10.1016/j.jsb.2015.06.003.

  • 55.

    Sengupta, N.; Padmanaban, S.; Dutta, S. Cryo-EM reveals the membrane-binding phenomenon of EspB, a virulence factor of the mycobacterial type VII secretion system. J. Biol. Chem. 2023, 299, 104589. https://doi.org/10.1016/j.jbc.2023.104589.

  • 56.

    Zhang, L.; Fang, F.; Liu, D.; et al. Early secretory antigen target of 6-kDa of Mycobacterium tuberculosis inhibits macrophage apoptosis and host defense via TLR2. Respir. Res. 2025, 26, 131. https://doi.org/10.1186/s12931-025-03210-z.

  • 57.

    Augenstreich, J.; Arbues, A.; Simeone, R.; et al. ESX-1 and phthiocerol dimycocerosates of Mycobacterium tuberculosis act in concert to cause phagosomal rupture and host cell apoptosis. Cell. Microbiol. 2017, 19, e12726. https://doi.org/10.1111/cmi.12726.

  • 58.

    Toniolo, C.; Dhar, N.; McKinney, J.D. Uptake-independent killing of macrophages by extracellular Mycobacterium tuberculosis aggregates. EMBO J. 2023, 42, e113490. https://doi.org/10.15252/embj.2023113490.

  • 59.

    Zheng, W.; Borja, M.; Dorman, L.C.; et al. Single-cell analysis reveals Mycobacterium tuberculosis ESX-1–mediated accumulation of permissive macrophages in infected mouse lungs. Sci. Adv. 2025, 11, eadq8158.

  • 60.

    Kim, B.J.; Cha, G.Y.; Kim, B.R.; et al. Insights from the genome sequence of Mycobacterium paragordonae, a potential novel live vaccine for preventing mycobacterial infections: The putative role of type VII secretion systems for an intracellular lifestyle within free-living environmental predators. Front. Microbiol. 2019, 10, 1524. https://doi.org/10.3389/fmicb.2019.01524.

  • 61.

    Tateishi, Y.; Ozeki, Y.; Nishiyama, A.; et al. Comparative genomic analysis of Mycobacterium intracellulare: Implications for clinical taxonomic classification in pulmonary Mycobacterium avium-intracellulare complex disease. BMC Microbiol. 2021, 21, 103. https://doi.org/10.1186/s12866-021-02163-9.

  • 62.

    Mehra, A.; Zahra, A.; Thompson, V.; et al. Mycobacterium tuberculosis type VII secreted effector EsxH targets host ESCRT to impair trafficking. PLoS Pathog. 2013, 9, e1003734. https://doi.org/10.1371/journal.ppat.1003734.

  • 63.

    Portal-Celhay, C.; Tufariello, J.M.; Srivastava, S.; et al. Mycobacterium tuberculosis EsxH inhibits ESCRT-dependent CD4+ T-cell activation. Nat. Microbiol. 2016, 2, 16232. https://doi.org/10.1038/nmicrobiol.2016.232.

  • 64.

    Mittal, E.; Skowyra, M.L.; Uwase, G.; et al. Mycobacterium tuberculosis type VII secretion system effectors differentially impact the ESCRT endomembrane damage response. mBio 2018, 9. https://doi.org/10.1128/mbio.01765-18.

  • 65.

    Williamson, Z.A.; Chaton, C.T.; Ciocca, W.A.; et al. PE5–PPE4–EspG3 heterotrimer structure from mycobacterial ESX-3 secretion system gives insight into cognate substrate recognition by ESX systems. J. Biol. Chem. 2020, 295, 12706–12715. https://doi.org/10.1074/jbc.ra120.012698.

  • 66.

    Ilghari, D.; Lightbody, K.L.; Veverka, V.; et al. Solution structure of the Mycobacterium tuberculosis Esxg•EsxH complex: Functional implications and comparisons with other M. tuberculosis ESX family complexes. J. Biol. Chem. 2011, 286, 29993–30002. https://doi.org/10.1074/jbc.M111.248732.

  • 67.

    Wang, L.; Asare, E.; Shetty, A.C.; et al. Multiple genetic paths including massive gene amplification allow Mycobacterium tuberculosis to overcome loss of ESX-3 secretion system substrates. Proc. Natl. Acad. Sci. USA 2022 119, e2112608119. https://doi.org/10.1073/pnas.2112608119/-/DCSupplemental.

  • 68.

    Fang, Z.; Newton-Foot, M.; Sampson, S.L.; et al. Two promoters in the ESX-3 gene cluster of Mycobacterium smegmatis respond inversely to different iron concentrations in vitro. BMC Res. Notes 2017, 10, 426. https://doi.org/10.1186/s13104-017-2752-0.

  • 69.

    Rodriguez, G.M.; Voskuil, M.I.; Gold, B.; et al. ideR, an essential gene in Mycobacterium tuberculosis: Role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect. Immun. 2002, 70, 3371–3381. https://doi.org/10.1128/IAI.70.7.3371-3381.2002.

  • 70.

    Maciag, A.; Dainese, E.; Rodriguez, G.M.; et al. Global analysis of the Mycobacterium tuberculosis Zur (FurB) regulon. J. Bacteriol. 2007, 189, 730–740. https://doi.org/10.1128/JB.01190-06.

  • 71.

    Mycobacterial Esx-3 Is Required for Mycobactin-Mediated Iron Acquisition. 2009. Available online: www.pnas.orgcgidoi10.1073pnas.0900589106 (accessed on 5 August 2025).

  • 72.

    Zhang, L.; Hendrickson, R.C.; Meikle, V.; et al. Comprehensive analysis of iron utilization by Mycobacterium tuberculosis. PLoS Pathog. 2020, 16, e1008337. https://doi.org/10.1371/journal.ppat.1008337.

  • 73.

    Tinaztepe, E.; Wei, J.R.; Raynowska, J.; et al. Role of metal-dependent regulation of ESX-3 secretion in intracellular survival of Mycobacterium tuberculosis. Infect. Immun. 2016, 84, 2255–2263. https://doi.org/10.1128/IAI.00197-16.

  • 74.

    Fang, Z.; Schubert, W.D.; van Pittius, N.C.G. Expression and production of soluble Mycobacterium tuberculosis H37Rv mycosin-3. Biochem. Biophys. Rep. 2016, 5, 448–452. https://doi.org/10.1016/j.bbrep.2016.02.005.

  • 75.

    Arbing, M.A.; Kaufmann, M.; Phan, T.; et al. The crystal structure of the Mycobacterium tuberculosis Rv3019c-Rv3020c ESX complex reveals a domain-swapped heterotetramer. Protein Sci. 2010, 19, 1692–1703. https://doi.org/10.1002/pro.451.

  • 76.

    Famelis, N.; Rivera-Calzada, A.; Degliesposti, G.; et al. Architecture of the mycobacterial type VII secretion system. Nature 2019, 576, 321–325. https://doi.org/10.1038/s41586-019-1633-1.

  • 77.

    Lagune, M.; Petit, C.; Sotomayor, F.V.; et al. Conserved and specialized functions of type VII secretion systems in non-tuberculous mycobacteria. Microbiology 2021, 167, 001054. https://doi.org/10.1099/MIC.0.001054.

  • 78.

    Lagune, M.; Le Moigne, V.; Johansen, M.D.; et al. The ESX-4 substrates, EsxU and EsxT, modulate Mycobacterium abscessus fitness. PLoS Pathog. 2022, 18, e1010771. https://doi.org/10.1371/journal.ppat.1010771.

  • 79.

    Gcebe, N.; Michel, A.; van Pittius, N.C.G.; et al. Comparative genomics and proteomic analysis of four non-tuberculous Mycobacterium species and Mycobacterium tuberculosis complex: Occurrence of shared immunogenic proteins. Front. Microbiol. 2016, 7, 795. https://doi.org/10.3389/fmicb.2016.00795.

  • 80.

    Uplekar, S.; Heym, B.; Friocourt, V.; et al. Comparative genomics of ESX genes from clinical isolates of Mycobacterium tuberculosis provides evidence for gene conversion and epitope variation. Infect. Immun. 2011, 79, 4042–4049. https://doi.org/10.1128/IAI.05344-11.

  • 81.

    Pandey, H.; Fatma, F.; Yabaji, S.M.; et al. Biophysical and immunological characterization of the ESX-4 system ESAT-6 family proteins Rv3444c and Rv3445c from Mycobacterium tuberculosis H37Rv. Tuberculosis 2018, 109, 85–96. https://doi.org/10.1016/j.tube.2018.02.002.

  • 82.

    Laencina, L.; Dubois, V.; Le Moigne, V.; et al. Identification of genes required for Mycobacterium abscessus growth in vivo with a prominent role of the ESX-4 locus. Proc. Natl. Acad. Sci. USA 2018, 115, E1002–E1011. https://doi.org/10.1073/pnas.1713195115.

  • 83.

    Daher, W.; Le Moigne, V.; Tasrini, Y.; et al. Deletion of ESX-3 and ESX-4 secretion systems in Mycobacterium abscessus results in highly impaired pathogenicity. Commun. Biol. 2025, 8, 166. https://doi.org/10.1038/s42003-025-07572-4.

  • 84.

    Shah, S.; Briken, V. Modular organization of the ESX-5 secretion system in Mycobacterium tuberculosis. Front. Cell. Infect. Microbiol. 2016, 6, 49. https://doi.org/10.3389/fcimb.2016.00049.

  • 85.

    Elliott, S.R.; Tischler, A.D. Phosphate responsive regulation provides insights for ESX-5 function in Mycobacterium tuberculosis. Curr. Genet. 2016, 62, 759–763. https://doi.org/10.1007/s00294-016-0604-4.

  • 86.

    Elliott, S.R.; Tischler, A.D. Phosphate starvation: A novel signal that triggers ESX-5 secretion in Mycobacterium tuberculosis. Mol. Microbiol. 2016, 100, 510–526. https://doi.org/10.1111/mmi.13332.

  • 87.

    Elliott, S.R.; White, D.W.; Tischler, A.D. Mycobacterium tuberculosis requires regulation of ESX-5 secretion for virulence in Irgm1-deficient mice. Infect. Immun. 2019, 87. https://doi.org/10.1128/iai.00660-18.

  • 88.

    Bunduc, C.M.; Ummels, R.; Bitter, W.; et al. Species-specific secretion of ESX-5 type VII substrates is determined by the linker 2 of EccC5. Mol. Microbiol. 2020, 114, 66–76. https://doi.org/10.1111/mmi.14496.

  • 89.

    Phan, T.H.; Ummels, R.; Bitter, W.; et al. Identification of a substrate domain that determines system specificity in mycobacterial type VII secretion systems. Sci. Rep. 2017, 7, 42704. https://doi.org/10.1038/srep42704.

  • 90.

    Chen, X.; Cheng, H.F.; Zhou, J.; et al. Structural basis of the PE–PPE protein interaction in Mycobacterium tuberculosis. J. Biol. Chem. 2017, 292, 16880–16890. https://doi.org/10.1074/jbc.M117.802645.

  • 91.

    Ceballos-Zúñiga, F.; Menéndez, M.; Pérez-Dorado, I. New insights into the domain of unknown function (DUF) of EccC5, the pivotal ATPase providing the secretion driving force to the ESX-5 secretion system. Acta Crystallogr. D Struct. Biol. 2024, 80, 397–409. https://doi.org/10.1107/S2059798324004248.

  • 92.

    Daleke, M.H.; Cascioferro, A.; De Punder, K.; et al. Conserved Pro-Glu (PE) and Pro-Pro-Glu (PPE) protein domains target LipY lipases of pathogenic mycobacteria to the cell surface via the ESX-5 pathway. J. Biol. Chem. 2011, 286, 19024–19034, May. https://doi.org/10.1074/jbc.M110.204966.

  • 93.

    Cascioferro, A.; Daleke, M.H.; Ventura, M.; et al. Functional dissection of the pe domain responsible for translocation of PE_PGRS33 across the mycobacterial cell wall. PLoS ONE 2011, 6, e27713. https://doi.org/10.1371/journal.pone.0027713.

  • 94.

    Ehtram, A.; Shariq, M.; Quadir, N.; et al. Deciphering the functional roles of PE18 and PPE26 proteins in modulating Mycobacterium tuberculosis pathogenesis and immune response. Front. Immunol. 2025, 16, 1517822. https://doi.org/10.3389/fimmu.2025.1517822.

  • 95.

    Bunduc, C.M.; Ding, Y.; Kuijl, C.; et al. Reconstitution of a minimal ESX-5 type VII secretion system suggests a role for PPE proteins in the outer membrane transport of proteins. mSphere 2023, 8, e00402-23. https://doi.org/10.1128/msphere.00402-23.

  • 96.

    Di Luca, M.; Bottai, D.; Batoni, G.; et al. The ESX-5 associated eccB5-eccC5 locus is essential for Mycobacterium tuberculosis viability. PLoS ONE, 2012, 7, e52059. https://doi.org/10.1371/journal.pone.0052059.

  • 97.

    Abdallah, A.M.; Bestebroer, J.; Savage, N.D.; et al. Mycobacterial secretion systems ESX-1 and ESX-5 play distinct roles in host cell death and inflammasome activation. J. Immunol. 2011, 187, 4744–4753. https://doi.org/10.4049/jimmunol.1101457.

  • 98.

    Yan, L.; Lai, H.Y.; Leung, T.C.N.; et al. PE/PPE proteome and ESX-5 substrate spectrum in Mycobacterium marinum. Int. J. Mol. Sci. 2024, 25, 9550. https://doi.org/10.3390/ijms25179550.

  • 99.

    Bailo, R.; Bhatt, A.; Aínsa, J.A. Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development. Biochem. Pharmacol. 2015, 96, 159–167. https://doi.org/10.1016/j.bcp.2015.05.001.

  • 100.

    Yamamoto, K.; Nakata, N.; Mukai, T.; et al. Coexpression of MmpS5 and MmpL5 contributes to both efflux transporter MmpL5 trimerization and drug resistance in Mycobacterium tuberculosis. mSphere 2021, 6, e00518-20. https://doi.org/10.1128/msphere.00518-20.

  • 101.

    Khan, M.T.; Khan, T.A.; Ahmad, I.; et al. Diversity and novel mutations in membrane transporters of Mycobacterium tuberculosis. Brief. Funct. Genom. 2023, 22, 168–179. https://doi.org/10.1093/bfgp/elac018.

  • 102.

    Walters, S.B.; Dubnau, E.; Kolesnikova, I.; et al. The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol. Microbiol. 2006, 60, 312–330. https://doi.org/10.1111/j.1365-2958.2006.05102.x.

  • 103.

    Zhang, S.; Chen, J.; Cui, P.; et al. Identification of novel mutations associated with clofazimine resistance in Mycobacterium tuberculosis. J. Antimicrob. Chemother. 2015, 70, 2507–2510. https://doi.org/10.1093/jac/dkv150.

  • 104.

    Andries, K. et al. Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PLoS ONE 2014, 9, e102135. https://doi.org/10.1371/journal.pone.0102135.

  • 105.

    Rodriguez, R.; Campbell-Kruger, N.; Camba, J.G.; et al. MarR-dependent transcriptional regulation of mmpSL5 induces ethionamide resistance in Mycobacterium abscessus. Antimicrob. Agents Chemother. 2023, 67, e01350-22. https://doi.org/10.1128/aac.01350-22.

  • 106.

    Chen, Y.; Chen, J.; Zhang, S.; et al. Novel mutations associated with clofazimine resistance in Mycobacterium abscessus. Antimicrob. Agents Chemother. 2018, 62. https://doi.org/10.1128/aac.00544-18.

  • 107.

    Le, N.H.; Locard-Paulet, M.; Stella, A.; et al. The protein kinase PknB negatively regulates biosynthesis and trafficking of mycolic acids in mycobacteria. J. Lipid Res. 2020, 61, 1180–1191. https://doi.org/10.1194/JLR.RA120000747.

  • 108.

    Melly, G.C.; Stokas, H.; Davidson, P.M.; et al. Identification of residues important for M. tuberculosis MmpL11 function reveals that function is modulated by phosphorylation in the C-terminal domain. Mol. Microbiol. 2021, 115, 208–221. https://doi.org/10.1111/mmi.14611.

  • 109.

    Belardinelli, J.M.; Stevens, C.M.; Li, W.; et al. The MmpL3 interactome reveals a complex crosstalk between cell envelope biosynthesis and cell elongation and division in mycobacteria. Sci. Rep. 2019, 9, 10728. https://doi.org/10.1038/s41598-019-47159-8.

  • 110.

    Carel, C.; Nukdee, K.; Cantaloube, S.; et al. Mycobacterium tuberculosis proteins involved in mycolic acid synthesis and transport localize dynamically to the old growing pole and septum. PLoS ONE 2014, 9, e97148. https://doi.org/10.1371/journal.pone.0097148.

  • 111.

    Su, C.C.; Klenotic, P.A.; Bolla, J.R.; et al. MmpL3 is a lipid transporter that binds trehalose monomycolate and phosphatidylethanolamine. Proc. Natl. Acad. Sci. USA 2019, 166, 11241–11246. https://doi.org/10.1073/pnas.1901346116.

  • 112.

    Su, C.C.; Klenotic, P.A.; Cui, M.; et al. Structures of the mycobacterial membrane protein MmpL3 reveal its mechanism of lipid transport. PLoS Biol. 2021, 19, e3001370. https://doi.org/10.1371/journal.pbio.3001370.

  • 113.

    Berkowitz, N.; MacMillan, A.; Simmons, M.B.; et al. Structural modeling and characterization of the Mycobacterium tuberculosis MmpL3 C-terminal domain. FEBS Lett. 2024, 598, 2734–2747. https://doi.org/10.1002/1873-3468.15007.

  • 114.

    Li, W.; Upadhyay, A.; Fontes, F.L.; et al. Novel insights into the mechanism of inhibition of MmpL3, a target of multiple pharmacophores in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2014, 58, 6413–6423. https://doi.org/10.1128/AAC.03229-14.

  • 115.

    Li, W.; Stevens, C.M.; Pandya, A.N.; et al. Direct inhibition of MmpL3 by novel antitubercular compounds. ACS Infect. Dis. 2019, 5, 1001–1012. https://doi.org/10.1021/acsinfecdis.9b00048.

  • 116.

    Bolla, J.R. Targeting MmpL3 for anti-tuberculosis drug development. Biochem. Soc. Trans. 2020, 48, 1463–1472. https://doi.org/10.1042/BST20190950.

  • 117.

    Adams, O.; Deme, J.C.; Parker, J.L.; et al. Cryo-EM structure and resistance landscape of M. tuberculosis MmpL3: An emergent therapeutic target. Structure 2021, 29, 1182–1191. https://doi.org/10.1016/j.str.2021.06.013.

  • 118.

    Carbone, J.; Paradis, N.J.; Bennet, L.; et al. Inhibition mechanism of anti-TB drug SQ109: Allosteric inhibition of TMM translocation of Mycobacterium tuberculosis MmpL3 transporter. J. Chem. Inf. Model. 2023, 63, 5356–5374. https://doi.org/10.1021/acs.jcim.3c00616.

  • 119.

    Chaitra, R.; Gandhi, R.; Jayanna, N.; et al. Computational design of MmpL3 inhibitors for tuberculosis therapy. Mol. Divers. 2023, 27, 357–369. https://doi.org/10.1007/s11030-022-10436-2.

  • 120.

    Maharjan, R.; Zhang, Z.; Klenotic, P.A.; et al. Structures of the mycobacterial MmpL4 and MmpL5 transporters provide insights into their role in siderophore export and iron acquisition. PLoS Biol. 2024, 22, e3002874. https://doi.org/10.1371/journal.pbio.3002874.

  • 121.

    Sandhu, P.; Akhter, Y. Siderophore transport by MmpL5-MmpS5 protein complex in Mycobacterium tuberculosis. J Inorg. Biochem. 2017, 170, 75–84. https://doi.org/10.1016/j.jinorgbio.2017.02.013.

  • 122.

    Zhang, Z.; Maharjan, R.; Gregor, W.D.; et al. Structures of MmpL complexes reveal the assembly and mechanism of this family of transporters. 2025. Available online: https://www.science.org (accessed on 5 August 2025).

  • 123.

    Maharjan, R.; Zhang, Z.; Klenotic, P.A.; et al. Cryo-EM structure of the Mycobacterium smegmatis MmpL5-AcpM complex. mBio 2024, 15, e03035-24. https://doi.org/10.1128/mbio.03035-24.

  • 124.

    Ly, A.; Liu, J. Mycobacterial virulence factors: Surface-exposed lipids and secreted proteins. Int. J. Mol. Sci. 2020, 21, 3985. https://doi.org/10.3390/ijms21113985.

  • 125.

    Moolla, N.; Weaver, H.; Bailo, R.; et al. The role of ABC transporter DrrABC in the export of PDIM in Mycobacterium tuberculosis. Cell Surf. 2024, 12, 100132. https://doi.org/10.1016/j.tcsw.2024.100132.

  • 126.

    Sulzenbacher, G.; Canaan, S.; Bordat, Y.; et al. LppX is a lipoprotein required for the translocation of phthiocerol dimycocerosates to the surface of Mycobacterium tuberculosis. EMBO J. 2006, 25, 1436–1444. https://doi.org/10.1038/sj.emboj.7601048.

  • 127.

    Jain, M.; Cox, J.S. Interaction between polyketide synthase and transporter suggests coupled synthesis and export of virulence lipid in M. tuberculosis. PLoS Pathog. 2005, 1, e2. https://doi.org/10.1371/journal.ppat.0010002.

  • 128.

    Moolla, N.; Bailo, R.; Marshall, R.; et al. Structure-function analysis of MmpL7-mediated lipid transport in mycobacteria. Cell Surf. 2021, 7, 100062. https://doi.org/10.1016/j.tcsw.2021.100062.

  • 129.

    Domenech, P.; Reed, M.B.; Dowd, C.S.; et al. The role of MmpL8 in sulfatide biogenesis and virulence of Mycobacterium tuberculosis. J. Biol. Chem. 2004, 279, 21257–21265. https://doi.org/10.1074/JBC.M400324200.

  • 130.

    Dubois, V.; Viljoen, A.; Laencina, L.; et al. MmpL8MAB controls Mycobacterium abscessus virulence and production of a previously unknown glycolipid family. Proc. Natl. Acad. Sci. USA 2018, 115, E10147–E10156. https://doi.org/10.1073/pnas.1812984115.

  • 131.

    Wright, C.C.; Hsu, F.F.; Arnett, E.; et al. The Mycobacterium tuberculosis MmpL11 cell wall lipid transporter is important for biofilm formation, intracellular growth, and nonreplicating persistence. Infect. Immun. 2017, 85. https://doi.org/10.1128/iai.00131-17.

  • 132.

    Pacheco, S.A.; Hsu, F.F.; Powers, K.M.; et al. MmpL11 protein transports mycolic acid-containing lipids to the mycobacterial cell wall and contributes to biofilm formation in Mycobacterium smegmatis. J. Biol. Chem. 2013, 288, 24213–24222. https://doi.org/10.1074/jbc.M113.473371.

  • 133.

    Chim, N.; Torres, R.; Liu, Y.; et al. The Structure and interactions of periplasmic domains of crucial MmpL membrane proteins from Mycobacterium tuberculosis. Chem. Biol. 2015, 22, 1098–1107. https://doi.org/10.1016/j.chembiol.2015.07.013.

  • 134.

    Gaur, R.L.; Ren, K.; Blumenthal, A.; et al. LprG-mediated surface expression of lipoarabinomannan is essential for virulence of Mycobacterium tuberculosis. PLoS Pathog. 2014, 10, e1004376. https://doi.org/10.1371/journal.ppat.1004376.

  • 135.

    Wang, Y.; Tang, Y.; Lin, C.; et al. Crosstalk between the ancestral type VII secretion system ESX-4 and other T7SS in Mycobacterium marinum. iScience 2022, 25, 103585. https://doi.org/10.1016/j.isci.2021.103585.

  • 136.

    Ma, S.; Huang, Y.; Xie, F.; et al. Transport mechanism of Mycobacterium tuberculosis MmpL/S family proteins and implications in pharmaceutical targeting. Biol. Chem. 2020, 401, 331–348. https://doi.org/10.1515/hsz-2019-0326.

  • 137.

    Gupta, S.; Bhagavathula, M.; Sharma, V.; et al. Dynamin-like proteins mediate extracellular vesicle secretion in Mycobacterium tuberculosis. EMBO Rep. 2023, 24, e55593. https://doi.org/10.15252/embr.202255593.

  • 138.

    Prados-Rosales, R.; Baena, A.; Martinez, L.R.; et al. Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. J. Clin. Investig. 2011, 121, 1471–1483. https://doi.org/10.1172/JCI44261.

  • 139.

    Damen, M.P.M.; Phan, T.H.; Ummels, R.; et al. Modification of a PE/PPE substrate pair reroutes an ESX substrate pair from the mycobacterial ESX-1 type VII secretion system to the ESX-5 system. J. Biol. Chem. 2020, 295, 5960–5969. https://doi.org/10.1074/jbc.RA119.011682.

  • 140.

    Sun, H.; Sheng, G.; Xu, Y.; et al. Efflux pump Rv1258c activates novel functions of the oxidative stress and via the VII secretion system ESX-3-mediated iron metabolic pathway in Mycobacterium tuberculosis. Microbes Infect. 2024, 26, 105239. https://doi.org/10.1016/j.micinf.2023.105239.

  • 141.

    Li, B.; He, S.; Tan, Z.; et al. Impaired ESX-3 induces bedaquiline persistence in Mycobacterium abscessus growing under iron-limited conditions. Small Methods 2023, 7, 2300183. https://doi.org/10.1002/smtd.202300183.

  • 142.

    Xander, C.; Rajagopalan, S.; Jacobs, W.R.; et al. The SapM phosphatase can arrest phagosome maturation in an ESX-1 independent manner in Mycobacterium tuberculosis and BCG. Infect. Immun. 2024, 92, e00217-24. https://doi.org/10.1128/iai.00217-24.

  • 143.

    D’Souza, C.; Kishore, U.; Tsolaki, A.G. The PE-PPE family of Mycobacterium tuberculosis: Proteins in disguise. Immunobiology 2023, 228, 152321. https://doi.org/10.1016/J.IMBIO.2022.152321.

  • 144.

    Bonnett, S.A.; Ollinger, J.; Chandrasekera, S.; et al. A target-based whole cell screen approach to identify potential inhibitors of Mycobacterium tuberculosis signal peptidase. ACS Infect. Dis. 2016, 2, 893–902. https://doi.org/10.1021/acsinfecdis.6b00075.

  • 145.

    Quan, D.H.; Wang, T.; Martinez, E.; et al. Beta-lactam combination treatment overcomes rifampicin resistance in Mycobacterium tuberculosis. Eur. J. Clin. Microbiol. Infect. Dis. 2025, 44, 1279–1284. https://doi.org/10.1007/s10096-025-05062-3.

  • 146.

    Nantongo, M.; Nguyen, D.C.; Bethel, C.R.; et al. Durlobactam, a diazabicyclooctane β-lactamase inhibitor, inhibits BlaC and peptidoglycan transpeptidases of Mycobacterium tuberculosis. ACS Infect. Dis. 2024, 10, 1767–1779. https://doi.org/10.1021/acsinfecdis.4c00119.

  • 147.

    Tiwari, S.; Casey, R.; Goulding, C.W.; et al. Infect and inject: How Mycobacterium tuberculosis exploits its major virulence-associated type VII secretion system, ESX-1. Microbiol. Spectr. 2019, 7. https://doi.org/10.1128/microbiolspec.bai-0024-2019.

  • 148.

    Rybniker, J.; Chen, J.M.; Sala, C.; et al. Anticytolytic screen identifies inhibitors of mycobacterial virulence protein secretion. Cell Host Microbe 2014, 16, 538–548. https://doi.org/10.1016/j.chom.2014.09.008.

  • 149.

    Jia, P.; Zhang, Y.; Xu, J.; et al. IMB-BZ as an inhibitor targeting ESX-1 secretion system to control mycobacterial infection. J. Infect. Dis. 2022, 225, 608–616. https://doi.org/10.1093/infdis/jiab486.

  • 150.

    Gries, R.; Chhen, J.; van Gumpel, E.; et al. Discovery of dual-active ethionamide boosters inhibiting the Mycobacterium tuberculosis ESX-1 secretion system. Cell Chem. Biol. 2024, 31, 699–711. https://doi.org/10.1016/j.chembiol.2023.12.007.

  • 151.

    Ho, V.Q.; Rong, M.K.; Habjan, E.; et al. Dysregulation of Mycobacterium marinum ESX-5 secretion by novel 1,2,4-oxadiazoles. Biomolecules 2023, 13, 211. https://doi.org/10.3390/biom13020211.

  • 152.

    Granados-Tristán, A.L.; Carrillo-Tripp, M.; Hernández-Luna, C.E.; et al. Mycobacterium susceptibility to ivermectin by inhibition of eccD3, an ESX-3 secretion system component. PLoS Comput. Biol. 2025, 21, e1012936. https://doi.org/10.1371/journal.pcbi.1012936.

  • 153.

    Couston, J.; Feuillard, J.; Ancelin, A.; et al. A coiled-coil domain triggers oligomerization of MmpL10, the mycobacterial transporter of trehalose polyphleate precursor. FEBS Lett. 2025, 599, 1682–1697. https://doi.org/10.1002/1873-3468.70085.

  • 154.

    Degiacomi, G.; Belardinelli, J.M.; Pasca, M.R.; et al. Promiscuous targets for antitubercular drug discovery: The paradigm of DprE1 and MmpL3. Appl. Sci. 2020, 10, 623. https://doi.org/10.3390/app10020623.

  • 155.

    Mori, T.; Sakatani, M.; Yamagishi, F.; et al. Specific detection of tuberculosis infection. Am. J. Respir. Crit. Care Med. 2004, 170, 59–64. https://doi.org/10.1164/rccm.200402-179oc.

  • 156.

    Pal, R.; Bisht, M.K.; Mukhopadhyay, S. Secretory proteins of Mycobacterium tuberculosis and their roles in modulation of host immune responses: Focus on therapeutic targets. FEBS J. 2022, 289, 4146–4171. https://doi.org/10.1111/febs.16369.

  • 157.

    Mousavian, Z.; Källenius, G.; Sundling, C. From simple to complex: Protein-based biomarker discovery in tuberculosis. Eur. J. Immunol. 2023, 53, 2350485. https://doi.org/10.1002/eji.202350485.

  • 158.

    Martinez-Olivares, C.E.; Hernández-Pando, R.; Mixcoha, E. In silico EsxG EsxH rational epitope selection: Candidate epitopes for vaccine design against pulmonary tuberculosis. PLoS ONE 2023, 18, e0284264. https://doi.org/10.1371/journal.pone.0284264.

  • 159.

    Wang, X.; Li, M.; Liu, G.; et al. Using TBAg/PHA ratio for monitoring TB treatment: A prospective multicenter study. J. Clin. Med. 2022, 11, 3780. https://doi.org/10.3390/jcm11133780.

  • 160.

    Rotherham, L.S.; Maserumule, C.; Dheda, K.; et al. Selection and application of ssDNA aptamers to detect active TB from sputum Samples. PLoS ONE 2012, 7, e46862. https://doi.org/10.1371/journal.pone.0046862.

  • 161.

    Zhang, H.; Wang, S.; Zhang, Y.; et al. Mutations in the transcriptional regulator MAB_2885 confer tedizolid and linezolid resistance through the MmpS-MmpL efflux pumps MAB_2302-MAB_2303 in Mycobacterium abscessus. PLoS Pathog. 2025, 21, e1013190. https://doi.org/10.1371/journal.ppat.1013190.

  • 162.

    Villarreal, D.O.; Walters, J.; Laddy, D.J.; et al. Multivalent TB vaccines targeting the esx gene family generate potent and broad cell-mediated immune responses superior to BCG. Hum. Vaccines Immunother. 2014, 10, 2188–2198. https://doi.org/10.4161/hv.29574.

  • 163.

    Stylianou, E.; Pinpathomrat, N.; Sampson, O.; et al. A five-antigen Esx-5a fusion delivered as a prime-boost regimen protects against M.tb challenge. Front. Immunol. 2023, 14, 1263457. https://doi.org/10.3389/fimmu.2023.1263457.

  • 164.

    Arbues, A.; Aguilo, J.I.; Gonzalo-Asensio, J.; et al. Construction, characterization and preclinical evaluation of MTBVAC, the first live-attenuated M. tuberculosis-based vaccine to enter clinical trials. Vaccine 2013, 31, 4867–4873. https://doi.org/10.1016/j.vaccine.2013.07.051.

  • 165.

    Lacámara, S.; Martin, C. MTBVAC: A tuberculosis vaccine candidate advancing towards clinical efficacy trials in TB prevention. Arch. DeBronconeumol. 2023, 59, 821–828. https://doi.org/10.1016/j.arbres.2023.09.009.

  • 166.

    Broset, E.; Seral, J.C.; Arnal, C.; et al. Engineering a new vaccine platform for heterologous antigen delivery in live-attenuated Mycobacterium tuberculosis. Comput. Struct. Biotechnol. J. 2021, 19, 4273–4283. https://doi.org/10.1016/j.csbj.2021.07.035.

  • 167.

    Strong, E.J.; West, N.P. Use of soluble extracellular regions of MmpL (SERoM) as vaccines for tuberculosis. Sci. Rep. 2018, 8, 5604. https://doi.org/10.1038/s41598-018-23893-3.

  • 168.

    Ishwarlall, T.Z.; Adeleke, V.T.; Maharaj, L.; et al. Multi-epitope vaccine candidates based on mycobacterial membrane protein large (MmpL) proteins against Mycobacterium ulcerans. Open Biol. 2023, 13, 230330. https://doi.org/10.1098/rsob.230330.

  • 169.

    Tzfadia, O.; Gijsbers, A.; Vujkovic, A.; et al. Single nucleotide variation catalog from clinical isolates mapped on tertiary and quaternary structures of ESX-1-related proteins reveals critical regions as putative Mtb therapeutic targets. Microbiol. Spectr. 2024, 12, e03816-23. https://doi.org/10.1128/spectrum.03816-23.

Share this article:
How to Cite
Segafreddo, G.; Sorze, D.; Manganelli, R.; Provvedi, R. Advances and Perspectives on Mycobacterial Secretion Systems. eMicrobe 2026, 2 (1), 3. https://doi.org/10.53941/emicrobe.2026.100003.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.