2601002819
  • Open Access
  • Communication

Indels and Host-Derived Sequences in Rat Hepatitis E Virus Genomes

  • Siu Fung Stanley Ho 1,2,*,   
  • Siddharth Sridhar 1,2,3

Received: 30 Sep 2025 | Revised: 05 Jan 2026 | Accepted: 12 Jan 2026 | Published: 20 Jan 2026

Abstract

Rat hepatitis E virus genotype 1 (rHEV) is an emerging zoonotic pathogen found globally in commensal rodents and is a significant cause of hepatitis, especially in immunocompromised populations. We systematically analyzed 99 rHEV genomes and identified multiple insertions and deletions predominantly within the macro X domain of ORF1, including a recurrent deletion of a 7−39 amino acid region in a large cluster of subtype II.b. Significant homology to human gene fragments was detected in 14% of genomes, including sequences related to transcription factors and phosphatases. This marks the first evidence of host genome-derived gene insertions in rHEV, expanding the understanding of rHEV genome plasticity, and highlights the need for further functional studies to elucidate the role of these variants in viral pathogenesis and zoonotic adaptation.

References 

  • 1.

    Johne, R.; Plenge-Bönig, A.; Hess, M.; et al. Detection of a Novel Hepatitis E-like Virus in Faeces of Wild Rats Using a Nested Broad-Spectrum RT-PCR. J. Gen. Virol. 2010, 91, 750–758. https://doi.org/10.1099/vir.0.016584-0.

  • 2.

    Sridhar, S.; Situ, J.; Cai, J.-P.; et al. Multimodal Investigation of Rat Hepatitis E Virus Antigenicity: Implications for Infection, Diagnostics, and Vaccine Efficacy. J. Hepatol. 2021, 74, 1315–1324. https://doi.org/10.1016/j.jhep.2020.12.028.

  • 3.

    Sridhar, S.; Yip, C.C.Y.; Wu, S.; et al. Rat Hepatitis E Virus as Cause of Persistent Hepatitis after Liver Transplant. Emerg. Infect. Dis. 2018, 24, 2241–2250. https://doi.org/10.3201/eid2412.180937.

  • 4.

    Purdy, M.A.; Khudyakov, Y.E. Evolutionary History and Population Dynamics of Hepatitis E Virus. PLoS ONE 2010, 5, e14376. https://doi.org/10.1371/journal.pone.0014376.

  • 5.

    Shukla, P.; Nguyen, H.T.; Torian, U.; et al. Cross-Species Infections of Cultured Cells by Hepatitis E Virus and Discovery of an Infectious Virus-Host Recombinant. Proc. Natl. Acad. Sci. USA 2011, 108, 2438–2443. https://doi.org/10.1073/pnas.1018878108.

  • 6.

    Lhomme, S.; Abravanel, F.; Dubois, M.; et al. Characterization of the Polyproline Region of the Hepatitis E Virus in Immunocompromised Patients. J. Virol. 2014, 88, 12017–12025. https://doi.org/10.1128/JVI.01625-14.

  • 7.

    Lhomme, S.; Nicot, F.; Jeanne, N.; et al. Insertions and Duplications in the Polyproline Region of the Hepatitis E Virus. Front. Microbiol. 2020, 11, 1. https://doi.org/10.3389/fmicb.2020.00001.

  • 8.

    Lo, K.H.-Y.; Ho, S.-F.S.; Shun, E.H.-K.; et al. Enhanced Surveillance, Subtyping, and Host Adaptation Analysis Reveal Genotype-Wide Zoonotic Potential of Rat Hepatitis E Virus. J. Hepatol. 2025, 84, 51–61. https://doi.org/10.1016/j.jhep.2025.07.004.

  • 9.

    Ranwez, V.; Harispe, S.; Delsuc, F.; et al. MACSE: Multiple Alignment of Coding Sequences Accounting for Frameshifts and Stop Codons. PLoS ONE 2011, 6, e22594. https://doi.org/10.1371/journal.pone.0022594.

  • 10.

    Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; et al. Jalview Version 2—A Multiple Sequence Alignment Editor and Analysis Workbench. Bioinforma. Oxf. Engl. 2009, 25, 1189–1191. https://doi.org/10.1093/bioinformatics/btp033.

  • 11.

    Kent, W.J. BLAT—The BLAST-like Alignment Tool. Genome Res. 2002, 12, 656–664. https://doi.org/10.1101/gr.229202.

  • 12.

    Katoh, K.; Misawa, K.; Kuma, K.; et al. MAFFT: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform. Nucleic Acids Res. 2002, 30, 3059–3066.

  • 13.

    Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; et al. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. https://doi.org/10.1093/molbev/msaa015.

  • 14.

    Bianchini, G.; Sánchez-Baracaldo, P. TREEVIEWER: Flexible, Modular Software to Visualise and Manipulate Phylogenetic Trees. Ecol. Evol. 2024, 14, e10873. https://doi.org/10.1002/ece3.10873.

  • 15.

    Chen, T.; Liu, Y.; Chen, T.; et al. ImageGP 2 for enhanced data visualization and reproducible analysis in biomedical research. iMeta 2024, 3, e239. https://doi.org/10.1002/imt2.239.

  • 16.

    Parvez, M.K. The Hepatitis E Virus ORF1 ‘X-Domain’ Residues Form a Putative Macrodomain Protein/Appr-1″-Pase Catalytic-Site, Critical for Viral RNA Replication. Gene 2015, 566, 47–53. https://doi.org/10.1016/j.gene.2015.04.026.

  • 17.

    Nan, Y.; Yu, Y.; Ma, Z.; et al. Hepatitis E Virus Inhibits Type I Interferon Induction by ORF1 Products. J. Virol. 2014, 88, 11924–11932. https://doi.org/10.1128/JVI.01935-14.

  • 18.

    Lhomme, S.; Garrouste, C.; Kamar, N.; et al. Influence of Polyproline Region and Macro Domain Genetic Heterogeneity on HEV Persistence in Immunocompromised Patients. J. Infect. Dis. 2025, 209, 300–303. https://doi.org/10.1093/infdis/jit438.

Share this article:
How to Cite
Ho, S. F. S.; Sridhar, S. Indels and Host-Derived Sequences in Rat Hepatitis E Virus Genomes. eMicrobe 2026, 2 (1), 5. https://doi.org/10.53941/emicrobe.2026.100005.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.