2512002589
  • Open Access
  • Article

Nanocrystalline Cookeite from Lithium Mineral Deposits of Jammu, India: A Multianalytical Characterization

  • Bhaskar J. Saikia 1,*,   
  • G. Parthasarathy 2,3,   
  • Binoy K. Saikia 4,   
  • Puja Bordoloi 4,   
  • Rashmi R. Borah 5,   
  • Pankaj K. Srivastava  6,   
  • Manavalan Satyanarayanan 7

Received: 14 Nov 2025 | Revised: 17 Dec 2025 | Accepted: 22 Dec 2025 | Published: 26 Dec 2025

Highlights

  • Integrated micro-Raman spectroscopic and nanoscale investigation of the Jammu lithium-bearing bauxite.
  • Micro-Raman spectra exhibit characteristic Al–O–Si bending and Si–O stretching vibrations diagnostic of kaolinite and cookeite.
  • Kaolinite and cookeite formed through hydrothermal alteration.

Abstract

This study presents the first integrated micro-Raman spectroscopic and nanoscale investigation of the lithium-bearing bauxite from the Reasi inlier in Jammu. Combined XRD, Raman, FTIR, and high-resolution TEM analyses reveal a mineral assemblage dominated by kaolinite and Li-rich chlorite-group minerals (cookeite), with minor carbonaceous and oxide phases. Powder XRD pattern indicates nanocrystalline intergrowths and mixed-layer domains. Micro-Raman spectra exhibit characteristic Al–O–Si bending and Si–O stretching vibrations diagnostic of kaolinite and cookeite, while FTIR spectra show distinct Si–O and Al–OH bands with broadened Li–O lattice features. HRTEM imaging reveals alternating nanocrystalline and amorphous regions, consistent with partial amorphization and structural reorganization. Energy Dispersive Spectra (EDS) data confirm enrichment of Al, Si, O, and minor Fe, supporting an aluminosilicate framework. These results suggest that kaolinite and cookeite formed through hydrothermal alterations and secondary phyllosilicate formation as a weathering product. Our study contributes to the distribution of lithium minerals which critical for both resource characterization and the development of effective processing strategies.

Graphical Abstract

References 

  • 1.

    Gielen, D. Critical Minerals for the Energy Transition; International Renewable Energy Agency: Abu Dhabi, UAE, 2021.

  • 2.

    Balaram, V.; Santosh, M.; Satyanarayanan, M.; et al. Lithium: A review of applications, occurrence, exploration, extraction, recycling, analysis, and environmental impact. Geosci. Front. 2024, 15, 101868. https://doi.org/10.1016/j.gsf.2024.101868

  • 3.

    Kesler, S.E.; Gruber, P.W.; Medina, P.A.; et al. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geol. Rev. 2012, 48, 55–69. https://doi.org/10.1016/j.oregeorev.2012.05.006

  • 4.

    Gourcerol, B.; Gloaguen, E.; Melleton, J.; et al. Re-Assessing the European lithium resource potential—A review of hard-rock resources and metallogeny. Ore Geol. Rev. 2019, 109, 494–519. https://doi.org/10.1016/j.oregeorev.2019.04.015

  • 5.

    Bowey, J.E.; Hofmeister, A.M.; Speck, A.K. Infrared spectra of pyroxenes (crystalline chain silicates) at room temperature. Mon. Not. R. Astron. Soc. 2020, 497, 3658–3677. https://doi.org/10.48550/arXiv.2007.13557

  • 6.

    Benson, T.R.; Coble, M.A.; Dilles, J.H. Hydrothermal enrichment of lithium in intracaldera illite-bearing claystones. Sci. Adv. 2023, 9, eadh8183. https://doi.org/10.1126/sciadv.adh8183

  • 7.

    Putzolu, F.; Armstrong, R.N.; Benson, T.R.; et al. Volcano-Sedimentary deposits: Overview of an emerging type of lithium resource. Econ. Geol. 2025, 120, 541–573. https://doi.org/10.5382/econgeo.5135

  • 8.

    Anthony, J.W.; Bideaux, R.A.; Bladh, K.W.; et al. Handbook of Mineralogy; Mineral Data Publishing, Mineralogical Society of America: Tucson, AZ, USA, 1995; Volume 2, p. 159.

  • 9.

    Cerny, P. Compositional variation in cookeite. Can. Mineral. 1970, 10, 636–647.

  • 10.

    Heinrich, E.W. Economic geology and mineralogy of petalite and spodumene pegmatites. Ind. J. Earth Sci. 1975, 2, 18–29.

  • 11.

    London, D.; Burt, D.M. Alteration of spodumene, montebrasite, and lithiophilite in pegmatites of the white picacho District, Arizona. Am. Mineral. 1982, 67, 97–113.

  • 12.

    Bobos, I.; Vieillard, P.; Charoy, B.; et al. Alteration of spodumene to cookeite and its pressure and temperature stability conditions in libearing aplite-pegmatites from Northern Portugal. Clays Clay Miner. 2007, 55, 295–310. https://doi.org/10.1346/CCMN.2007.0550306

  • 13.

    Novak, M.; Copjakova, R.; Dosbaba, M.; et al. Two paragenetic types of cookeite from the Doln´ı Bory–Hat˘e pegmatites, moldanubian zone, Czech Republic: Proximal and distal alteration products of li-bearing sekaninaite. Can. Mineral. 2015, 53, 1035–1048. https://doi.org/10.3749/canmin.1400090

  • 14.

    Vidal, O.; Goff´ e, B. Cookeite LiAl4(Si3Al)O10(OH)8: Experimental study and thermodynamical analysis of its compatibility relations in the Li2O–Al2O3–SiO2–H2O system. Contrib. Mineral. Petrol. 1991, 108, 72–81.

  • 15.

    Roedder, E. Fluid inclusion evidence for immiscibility in magmatic differentiation. Geochim. Cosmochim. Acta 1992, 56, 5–20.

  • 16.

    Anderson, A.J.; Clark, A.H.; Gray, S. The occurrence and origin of zabuyelite (Li2CO3) in spodumene-hosted fluid inclusions: Implications for the internal evolution of rare-element granitic pegmatites. Can. Mineral. 2001, 39, 1513–1527. https://doi.org/10.2113/gscanmin.39.6.1513

  • 17.

    Anderson, A.J.; Maccarron, T. Three-dimensional textural and chemical characterization of polyphase inclusions in spodumene using a dual focused ion beam–scanning electron microscope (FIB–SEM). Can. Mineral. 2011, 49, 541–553. https://doi.org/10.3749/canmin.49.2.541

  • 18.

    Anderson, A.J. Are silicate-rich inclusions in spodumene crystallized aliquots of boundary layer melt? Geofluids 2013, 13, 460–466. https://doi.org/10.1111/gfl.12041

  • 19.

    Ling, K.Y.; Wen, H.J.; Han, T.; et al. Lithium-rich claystone in pingguo area, guangxi, Southwest China: Precursor kaolinite controls lithium enrichment. Miner. Deposita 2023, 59, 329–340. https://doi:10.1007/s00126-023-01210-x

  • 20.

    Wang, Z.S.; Li, Y.; Algeo, T.J.; et al. Critical metal enrichment in upper carboniferous karst bauxite of the North China Craton. Miner. Deposita 2023, 59, 237–254. https://doi.org/10.1007/s00126-023-01207-6

  • 21.

    Yuan, D.E.; Wang, X.M.; Yan, D.T.; et al. Nanometer-scale mineralogical analyses of cookeite and implications for Li enrichment: No. 21 coal, Mengjin Mine, western Henan. Int. J. Coal Geol. 2024, 283, 104445.

  • 22.

    D’Argenio, B.; Mindszenty, A. Cretaceous bauxites in the tectonic framework of the mediterranean. Rend. Soc. Geol. Ital. 1987, 9, 257–262.

  • 23.

    Economou-Eliopoulos, M.; Kanellopoulos, C. Abundance and genetic significance of lithium in karst-type bauxite deposits: A comparative review. Minerals 2023, 13, 962. https://doi.org/10.3390/min13070962

  • 24.

    Franceschelli, M.; Puxeddu, M.; Memmi, I. Li-, B-rich rhaetian metabauxite, Tuscany, Italy: Reworking of older bauxites and igneous rocks. Chem. Geol. 1998, 144, 221–242. https://doi.org/10.1016/S0009-2541(97)00133-2

  • 25.

    Tourtelot, H.A.; Brenner-Tourtelot, E.F. Lithium: A preliminary survey of its mineral occurrence in flint clay and related rock types in the United States. In Lithium Needs and Resources; Pergamon: Oxford, UK, 1978; pp. 263–272. https://doi.org/10.1016/B978-0-08-022733-7.50010-1

  • 26.

    Wang, R.; Ramanaidou, E.; Kirkland, C.L.; et al. Genesis of cookeite, the primary lithium mineral in the late carboniferous strata of the North China craton. Ore Geol. Rev. 2025, 186, 106903. https://doi.org/10.1016/j.oregeorev.2025.106903

  • 27.

    Sharma, R.; Mir, S.A.; Misra, P.S.; et al. Metallogenic environment for lithium mineralisation in bauxite from the Salal–Haimna area, Reasi, North West Himalaya of Jammu–Kashmir, India. Discov. Geosci. 2025, 3, 124. https://doi.org/10.1007/s44288-025-00240-4

  • 28.

    Acharya, S.K.; Saha, P. Himalayan paleogene foreland basin: Collision-induced early volcanic history and failed rift initiation. J. Asian Earth Sci. 2018, 162, 3–12. https://doi.org/10.1016/J.JSEAES.2018.04.031

  • 29.

    Downs, R.T. The RRUFF project: An integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. In Proceedings of the 19th General Meeting of the International Mineralogical Association, Kobe, Japan, 23–28 July 2006; pp. 3–13.

  • 30.

    Saikia, B.J.; Parthasarathy, G.; Borah, R.R. Nanodiamonds and silicate minerals in ordinary chondrites as determined by micro-Raman spectroscopy. Meteorit. Planet. Sci. 2017, 52, 1146–1154. https://doi.org/10.1111/maps.12850

  • 31.

    Medlicott, H.B. Note upon the sub-Himalayan series in the Jammu (Jammoo) hills. Rec. Geol. Surv. India 1876, 9, 49–57.

  • 32.

    Middlemiss, C.S. Bauxite Deposits of Jammu Province, Jammu; Mineral Survey Report; Government of Jammu and Kashmir: Srinagar, India. 1928; p. 60.

  • 33.

    Raha, P.K.; Shastry, M.V.A. Stromatolites from Jammu limestone, Udhampur district, J & K State, their stratigraphic and palaeogeographic significances. Himal. Geol. 1973, 3, 135–147.

  • 34.

    Thappa, B.D.; Shali, A.K. Geology of the sirban limestone inliers in Vaishno Devi, Ramsuh–Kalakote and Dansal–Sawalakot Section, Udhampur, Rajori and Doda District, J & K. Rec. Geol. Surv. India 1994, 126, 24–25.

  • 35.

    Raha, P.K.; Candy, K.C.; Balasubrahmanyan, M.N. Geochronology of the Jammu limestone, Udhampur District, J & K State. J. Geol. Soc. India 1978, 19, 221–223.

  • 36.

    Venkatachala, B.S.; Kumar, A. Fossil microbiota from Vaishnodevi limestone, Himalayan foothills, Jammu: Age and palaeoenvironmental implications. J. Geol. Soc. India 1998, 52, 529–536.

  • 37.

    Banerjee, P.K. A reconnaissance survey of the distribution of some trace elements in Indian Bauxite. Miner. Deposita 1975, 10, 177–188.

  • 38.

    Lal, M.; Jamwal, J.S.; Nanda, M.M. Bauxite deposits of Jammu, India. In Laterisation Processes; Oxford & IBH Publishing Co.: New Delhi, India, 1981; pp. 190–192.

  • 39.

    Kalsotra, M.R. Strategic and precious metals in the Jammu Himalaya. Rec. Geol. Surv. India 1992, 12, 6–9.

  • 40.

    Siddaiah, N.S.; Shukla, M.K. Occurrence of rhyolite in jngalgali formation, Jammu and Kashmir, Northwest Himalaya, India. Curr. Sci. 2012, 103, 817–821.

  • 41.

    Saikia, B.J.; Parthasarathy, G.; Saikia, B.K.; et al. First observation of coexisting crystalline and amorphous mineral phases in the bhawad LL6 Chondrite: Evidence from micro-Raman spectroscopic studies. Geosci. Front. 2026, 17, 102236. https://doi.org/10.1016/j.gsf.2025.102236

  • 42.

    Dunham, E.T.; Sheikh, A.; Opara, D.; et al. Calcium–aluminumrich inclusions in non-carbonaceous chondrites: Abundances, sizes, and mineralogy. Meteorit. Planet. Sci. 2023, 58, 643–671. https://doi.org/10.1111/maps.13975

  • 43.

    Baruah, P.; Das, B.K.; Bora, M.; et al. Hydrothermally prepared sugar-derived carbon spheres for all-solid-state symmetric electrochemical capacitors. Mater. Today Commun. 2022, 33, 104219. https://doi.org/10.1016/j.mtcomm.2022.104219

  • 44.

    Tomioka, N.; Miyahara, M. High-pressure minerals in shocked meteorites. Meteorit. Planet. Sci. 2017, 52, 2017–2039. https://doi.org/10.1111/maps.12902

  • 45.

    Thompson, S.P.; Parker, J.E.; Tang, C.C. The 10 μm band in amorphous MgSiO3: Influence of medium-range structure, defects and thermal processing. Astron. Astrophys. 2012, 545, A60. https://doi.org/10.1051/0004-6361/201219356

  • 46.

    Lenhardt, K.R.; Breitzke, H.; Buntkowsky, G.; et al. Synthesis of short-range ordered aluminosilicates at ambient conditions. Sci. Rep. 2021, 11, 1–13. https://doi.org/10.1038/s41598-021-83643-w

  • 47.

    Aidid, A.R.; Shishir, M.K.H.; Rahaman, M.A.; et al. Powder xray line diffraction pattern profiling of anatase–quartz binary oxide: A crystallographic investigation. Next Mater. 2025, 8, 100571. https://doi.org/10.1016/j.nxmate.2025.100571

  • 48.

    Garc´ıa-Vicente, A.; Garc´ıa-Gonz´ alez, A.; Lorenzo, A.; et al. Field spectroscopy applied to the kaolinite polytypes identification. Environ. Sci. Proc. 2021, 6, 16. https://doi.org/10.3390/iecms2021-09353

  • 49.

    Chernyshova, I.V.; Ponnurangam, S.; Somasundaran, P. Linking interfacial chemistry of CO2 to surface structures of hydrated metal oxide nanoparticles: Hematite. Phys. Chem. Chem. Phys. 2013, 15, 6953–6964. https://doi.org/10.1039/C3CP44264K

  • 50.

    Abass, M.M.R. Increasing the D-spacing of kaolinite to intercalate PMMA/Kaolinite nanocomposites. IOSR J. Appl. Chem. 2011, 3, 01–14. https://doi.org/10.9790/4861-1103010114

  • 51.

    Li, J.; Chou, I.-M. Occurrence of metastable cristobalite in spodumene-hosted crystal-rich inclusions from jiajika pegmatite deposit, China. J. Geochem. Explor. 2016, 171, 29–36. https://doi.org/10.1016/j.gexplo.2015.10.012

  • 52.

    Ding, X.; Li, J.; Chou, I.-M.; et al. Raman spectroscopic identification of cookeite in the crystal-rich inclusions in spodumene from the jiajika lithium pegmatite deposit, China, and its geological implications. Eur. J. Mineral. 2020, 32, 67–75. https://doi.org/10.5194/ejm-32-67-2020

Share this article:
How to Cite
Saikia, B. J.; Parthasarathy, G.; Saikia, B. K.; Bordoloi, P.; Borah, R. R.; Srivastava , P. K.; Satyanarayanan, M. Nanocrystalline Cookeite from Lithium Mineral Deposits of Jammu, India: A Multianalytical Characterization. Earth Systems, Resources, and Sustainability 2026, 1 (1), 97–109.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.