- 1.
Guo. H.Y.; Tan, Z.W.; Li, H.Y.; et al. Dynamic characteristics analysis of metallurgical waste heat radiative drying of thin layers of sewage sludge. Processes 2023, 11, 2535.
- 2.
Feng, J.I.; Burke, T.; Chen, X.; et al. Assessing metal contamination and speciation in sewage sludge: Implications for soil application and environmental risk. Rev. Environ. Sci. Bio. 2023, 22, 1037–1058.
- 3.
Wang, L.P.; Chang, Y.Z.; Li, A. Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review. Renew. Sust. Energ. Rev. 2019, 108, 423–440.
- 4.
Li, Y.D.; Yang, D.; Zhou, X.H.; et al. Heavy metal migration characteristics of co-combustion between sewage sludge and high alkaline coal on circulating fluidized bed. J. Therm. Sci. 2022, 31, 2178–2188.
- 5.
Nwankwo, N.C.; Madougou, S.; Inoussa, M.M.; et al. Review of Nigeria’s renewable energy policies with focus on biogas technology penetration and adoption. Discov. Energy 2024, 4, 14.
- 6.
Li, Q.; Zhong, Z.Q.; Du, H.R.; et al. Co-pyrolysis of municipal sludge and papermaking sludge: Pyrolysis behaviors and heavy metals immobilizations. J. Anal. Appl. Pyrol. 2024, 181, 106595.
- 7.
Jiang, S.Y.; Du, Y.; Li, Y.J.; et al. Crystal facet effect of the support in Ni/La2O2CO3 catalysts for toluene steam reforming. Fuel 2025, 387, 134388.
- 8.
Ji, X.L.; Yang, Q.Y.; Huang, X.Y.; et al. Combustion characteristics and NOx release of sludge combustion with coal in a 660 MW boiler. Appl. Therm. Eng. 2024, 258C, 124749.
- 9.
Cheng, D.M.; Xiong, J.S.; Chen, J.Y.; et al. Effect of biochar addition on antibiotic and heavy metal resistance genes during sewage sludge composting. J. Environ. Chem. Eng. 2025, 13, 115732.
- 10.
Jin, F.Y.; Lu, J.X.; Sun, F.; et al. Application and development of sludge-based materials for environmental pollution remediation: A bibliometric review from 2004 to 2024. RSC Adv. 2025, 15, 8072–8087.
- 11.
Mian, M.M.; Ao, W.Y.; Deng, S.B. Sludge-based biochar adsorbent: Pore tuning mechanisms, challenges, and role in carbon sequestration. Biochar 2023, 5, 83.
- 12.
Laghari, A.A.; Leghari, A.; Kumar, A.; et al. A parametric study of particle size influence on sewage sludge-derived hydrochar and coal char co-gasification: Reactivity and carbon conversion analysis. Biomass Bioenergy 2025, 196, 107715.
- 13.
Quan, L.M.; Kamyab, H.; Yuzir, A.; et al. Review of the application of gasification and combustion technology and waste-to-energy technologies in sewage sludge treatment. Fuel 2022, 316, 123199.
- 14.
Jiang, Y.F.; Gao, F.Y.; Peng, G.D.; et al. Effect of carbon to nitrogen ratios of municipal sludge on its dehydration property. Energ. Source Part A 2023, 45, 2509–2522.
- 15.
Zhang, K.B.; Yu, A.B.; He, X.H.; et al. Process simulation and techno-economic analysis of 400 t/d pilot plant for municipal sewage sludge drying and combustion. Process Saf. Environ. 2025, 196, 106833.
- 16.
Mariusz, K.; Tomasz, K. Increase in efficiency of separating pollution from sewage sludge through the pressure filtration process. Desalin. Water Treat. 2023, 301, 181–189.
- 17.
Wang, G.Y.; Wu, W.F.; Qiao, F.X.; et al. Research on an electric energy-saving grain drying system with internal circulation of the drying medium. J. Food Process Eng. 2020, 43, e13476.
- 18.
Papastefanakis, N.; Daliakopoulos, I.N.; Maragkaki, A.E.; et al. Application of solar drying as a pre-treatment method for storing wet feedstocks prior to use in anaerobic digesters: Effect on methane production and digestate composition. Fuel 2023, 348, 128477.
- 19.
Yao, L.S.; Song, Z.L.; Sun, C.G.; et al. Study on the evolution of internal and external water of lignite during microwave drying and the moisture reabsorption characteristics of dried lignite. Energy Source Part A 2025, 47, 3284–3301.
- 20.
Idris, A.; Khalid, K.; Omar, W. Drying of silica sludge using microwave heating. Appl. Therm. Eng. 2004, 24, 905–918.
- 21.
Savvakis, N.; Tournaki, S.; Tarasi, D.; et al. Environmental effects from the use of traditional biomass for heating in rural areas: A case study of Anogeia, Crete. Environ. Dev. Sustain. 2022, 4, 5473–5495.
- 22.
Savvakis, N.; Sifakis, N.; Kotakidis, X.; et al. Multiple energy resources integration in the food industry: A technoeconomic analysis. J. Clean Prod. 2023, 426, 139055.
- 23.
Guo, X.J.; Hao, Q.D.; Qiao, X.G.; et al. An evaluation of different pretreatment methods of hot-air drying of garlic: Drying characteristics, energy consumption and quality properties. LWT-Food Sci. Technol. 2023, 180, 114685.
- 24.
Martynenko, A.; Bashkir, I.; Kudra, T. The energy efficiency of electrohydrodynamic (EHD) drying of foods. Trends Food Sci. Tech. 2021, 118A, 744–764.
- 25.
Al Katsaprakakis, D.; Moschovos, T.; Michopoulos, A; et al. Feasibility for the introduction of decentralised combined heat and power plants in agricultural processes. A case study for the heating of algae cultivation ponds. Sustain. Energy Technol. 2022, 53, 102757.
- 26.
Arnaoutakis, G.E.; Papadakis, N.; Al Katsaprakakis, D; et al. CombiCSP: A python routine for dynamic modeling of concentrating solar power plants. Softw. Impacts 2022, 13, 100367.
- 27.
Arnaoutakis, G.E.; Katsaprakakis, D.A.; Christakis, D.G. Dynamic modeling of combined concentrating solar tower and parabolic trough for increased day-to-day performance. Appl. Energy 2022, 323, 119450.
- 28.
Ahmad, F.Z.; Kashif, M.; Zhao, W.K.; et al. Microwave Heating Performances of Eucalyptus Camaldulensis Leaves with Silicon Carbide for Biofuel Upgrading. Green Energy Fuel Res. 2025, 2, 1–12.
- 29.
Alfiya, P.V.; Jayashree, E.; Anees, K. Techno-economic, environmental impact and exergy analysis of microwave assisted drying of nutmeg mace. Environ. Prog. Sustain. 2025, 44, e14550.
- 30.
Wang, J.; Wen, M.Y.; Ren, J.R.; et al. Tailoring microwave frequencies for high-efficiency hydrogen production from biomass, Energy 2024, 297, 131337.
- 31.
Ahmad, F.; Zhang, Y.N.; Fu, W.M.; et al. Microwave-assisted chemical looping gasification of sugarcane bagasse biomass using Fe3O4 as oxygen carrier for H2/CO-rich syngas production. Chem. Eng. J. 2024, 501, 157675.
- 32.
Ozdemir, M.; Sakine, K. Effects of microwave drying on physicochemical characteristics, microstructure, and antioxidant properties of propolis extract. J. Sci. Food. Agric. 2023, 104, 2189–2197.
- 33.
Carvalho, G.R.; Monteiro, R.L.; Laurindo, J.B.; et al. Microwave and microwave-vacuum drying as alternatives to convective drying in barley malt processing. Innov. Food Sci. Emerg. 2021, 73, 102770.
- 34.
Wang, G.Y.; Zhang, K.; Huang, B.C.; et al. Microwave Drying of Sewage Sludge: Process Performance and Energy Consumption. Processes 2024, 12, 432.
- 35.
Slezak, M.; Migas, P.; Bernasowski, M. The use of microwave treatment as a sustainable technology for the drying of metallurgical sludge. Materials 2024, 17, 6207.
- 36.
Wulyapash, W.; Phongphiphat, A.; Towprayoon, S. Comparative study of hot air drying and microwave drying for dewatered sludge. Clean Technol. Environ. 2022, 24, 423–436.
- 37.
Liu, C.Y.; Liu, Z.H.; Zhang, M.; et al. Drying of industrial sludge using microwave: Heating performance, mass loss, and energy analysis. Biomass Bioenergy 2025, 197, 107794.
- 38.
Kodom, P.; Aragón-Barroso, A.J.; Koledzi, E.K.; et al. Microwave Treatment of Three Different Types of Sewage Sludge Based on Their Solar Drying Exposure Time: Effect on Microorganisms, Water Content and Agronomic Aspects. Water 2024, 16, 321.
- 39.
Kocbek, E.; Garcia, H.A.; Hooijmans, C.M.; et al. Effects of the sludge physical-chemical properties on its microwave drying performance, Sci. Total. Environ. 2022, 828, 154142.
- 40.
Li, L.Z.; Jiang, X.W.; Qin, X.M.; et al. Experimental study and energy analysis on microwave-assisted lignite drying. Dry Technol. 2019, 37, 962–975.
- 41.
Guo, J.L.; Zheng, L.; Li, Z.F. Microwave drying behavior, energy consumption, and mathematical modeling of sewage sludge in a novel pilot-scale microwave drying system. Sci. Total Environ. 2021, 777, 146109.
- 42.
Jie, E.; Zhao, X.; Liu, G.; et al. Effects analysis on optimal microwave energy consumption in the heating process of composite regeneration for the diesel particulate filter. Appl. Energy 2019, 254, 113736.
- 43.
Ke, C.F.; Liu, T.; Zhang, Y.N.; et al. Energy absorption performances of silicon carbide particles during microwave heating process. Chem. Eng. Process 2022, 172, 108796.
- 44.
Gong, Z.Q.; Zhang, H.T.; Liu, C. et al. Co-Pyrolysis Characteristics and Kinetic Analysis of Oil Sludge with Different Additives. J. Therm. Sci. 2021, 30, 1452–1467.
- 45.
Liu, Q.W.; Liu, M.M.; Zhao, K.; et al. Microwave Application in Biomass Conversion: A Review. ChemBioEng Rev. 2024, 11, e202400020.
- 46.
Ito, S.; Huang, H.Y.; Watanabe, F.J.; et al. Heat transfer during microwave-assisted desorption of water vapor from zeolite packed bed. Dry Technol. 2012, 30, 1707–1713.
- 47.
Luo, R.; Tu, C.Z. Actual diffusivities and diffusion paths of water vapor in asphalt mixtures. Constr. Build. Mater. 2019, 207, 145–157.
- 48.
Guan, B.W.; Cao, X.H.; Wang, A.P.; et al. Investigation on void connectivity characteristics of steel slag asphalt mixture subjected to dry-wet cycles and microwave heating utilizing computed tomography technology. Mater. Struct. 2025, 58, 47.