2509001557
  • Open Access
  • Article

Guidelines for testing hypotheses: A case study of episodic crustal production versus supercontinent-linked selective preservation

  • Stephen J. Puetz *

Received: 12 Mar 2025 | Revised: 29 Mar 2025 | Accepted: 02 Apr 2025 | Published: 04 Apr 2025

Abstract

From a big picture perspective, the major components of scientific research include metaphysics, scientific paradigms, scientific hypotheses, scientific data, and tolerance toward various ideas. Based on these components, six guidelines are established for conducting geological research: awareness of underlying assumptions, development of falsifiable hypotheses, testing hypotheses, tolerance of competing hypotheses, replicating results, and obtaining representative sampling. Using these guidelines, a case study follows, which reviews empirical tests of the episodic crustal production hypothesis and the supercontinentlinked selective preservation hypothesis. The results support the episodic crustal production hypothesis while falsifying two key postulates of the selective preservation hypothesis.

References 

  • 1.
    Arndt, N., Davaille, A., 2013. Episodic earth evolution. Tectonophysics 609, 661–674. doi:10.1016/j.tecto.2013.07.002.
  • 2.
    Borchardt, G., 2004. The Ten Assumptions of Science: Toward a New Scientific Worldview. iUniverse, p. 125.
  • 3.

    Borchardt, G., 2007. The Scientific Worldview: Beyond Newton and Einstein. iUniverse.

  • 4.
    Chen, E.D., 2020. Newton’s early metaphysics of body: impenetrability, action at a distance, and essential gravity. Studies in History and Phi- losophy of Science Part B: Studies in History and Philosophy of Modern Physics 72, 192–204. doi:10.1016/j.shpsb.2020.06.003.
  • 5.
    Collingwood, R.G., 1940. An Essay on Metaphysics. Oxford University Press.
  • 6.
    Condie, K.C., 1998. Episodic continental growth and supercontinents: a mantle avalanche connection? Earth and Planetary Science Letters 163, 97–108. doi:10.1016/S0012-821X(98)00178-2.
  • 7.
    Conniff, R., 2012. When continental drift was considered pseudo-science. Smithsonian Magazine 6-15-2012, 1–3. URL: https://www.smithsonianmag.com/science-nature/when-continental-drift-was-considered-pseudoscience-90353214/.
  • 8.
    Dhuime, B., Hawkesworth, C.J., Storey, C.D., Cawood, P.A., 2011. From sediments to their source rocks: Hf and Nd isotopes in recent river sediments. Geology 39, 407–410. doi:10.1130/G31785.1.
  • 9.
    Ducheyne, S., 2011. Newton on action at a distance and the cause of gravity. Studies in History and Philosophy of Science Part A 42, 154–159. doi:10.1016/j.shpsa.2010.11.003.
  • 10.

    Hargittai, I., 2011. Dan Shechtman’s quasicrystal discovery in perspective. Israel Journal of Chemistry 51, 1144–2252. doi:10.1002/ijch. 201100137.

  • 11.
    Harrison, T.M., 2020. Hadean Earth. Springer International, p. 291. doi:10.1007/978-3-030-46687-9.
  • 12.
    Hawkesworth, C., Cawood, P.A., Dhuime, B., 2019. Rates of generation and growth of the continental crust. Geoscience Frontiers 10, 165–173. doi:10.1016/j.gsf.2018.02.004.
  • 13.
    Hawkesworth, C., Cawood, P., Kemp, T., Storey, C., Dhuime, B., 2009. A matter of preservation. Science 323, 49–50. doi:10.1126/science.1168549. 2252.
  • 14.
    Hawkesworth, C.J., Dhuime, B., Pietranik, A.B., Cawood, P.A., Kemp, A.I.S., Storey, C.D., 2010. The generation and evolution of the continental crust. Journal of the Geological Society 167, 229–248. doi:10.1144/0016-76492009-072.
  • 15.
    Hess, H.H., 1962. History of ocean basins. Peterologic studies: a volume in honor of A. F. Buddington. GSA , 599–520.
  • 16.

    Hollinger, D.A., 1973. T.S. Kuhn’s theory of science and its implications for history. American Historical Review 78, 370–393. doi:10.2307/1861173.

  • 17.

    Keller, C., Schoene, B., 2012. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago. Nature 485, 490–493. doi:10.1038/nature11024.

  • 18.

    Kuhn, T.S., 1963. The function of dogma in scientific research, in: Crombie, A.C. (Ed.), Scientific Change: Historical Studies in the Intellectual, Social and Technical Conditions for Scientific Discovery and Technical Invention, from Antiquity to the Present. Heinemann, London, p. 347–369.

  • 19.
    Kuhn, T.S., 1970. The Structure of Scientific Revolutions. 3rd ed., University of Chicago Press, Chicago, Illinois.
  • 20.
    Ladyman, J., 2012. Science, metaphysics and method. Philosophical Studies 160, 31–51. doi:10.1007/s11098-012-9910-y.
  • 21.
    Lakatos, I., 1978. The Methodology of Scientific Research Programmes: Philosophical Papers, Worrall, J., Currie, G. (Eds.), Cambridge University Press. volume 1.
  • 22.

    Lo, C.P., Watson, L.J., 1998. The influence of geographic sampling methods on vegetation map accuracy evaluation in a swampy environment. Photogrammetric Engineering & Remote Sensing 64, 1189–1200.

  • 23.
    Mitchell, R.N., Zhang, N., Salminen, J., Liu, Y., Spencer, C.J., et al., 2021. The supercontinent cycle. Nature Reviews Earth & Environment 2, 358–374. doi:10.1038/s43017-021-00160-0.
  • 24.

    Nance, R.D., Murphy, J.B., Santosh, M., 2014. The supercontinent cycle: a retrospective essay. Gondwana Research 25, 4–29. doi:10.1016/j.gr.2012.12.026.

  • 25.
    NobelPrize.org, 2011. 2011 Nobel Prize in Chemistry. The Royal Swedish Academy of Sciences. https://www.nobelprize.org/prizes/chemistry/2011/press-release/.
  • 26.
    Parman, S.W., 2015. Time-lapse zirconography: imaging punctuated continental evolution. Geochemical Perspective Letters 1, 43–52. doi:10.7185/geochemlet.1505.
  • 27.
    Pauling, L., 1985. Apparent icosahedral symmetry is due to directed multiple twinning of cubic crystals. Nature 317, 512–514. doi:10.1038/317512a0.
  • 28.
    Popper, K.R., 1959. The Logic of Scientific Discovery. Hutchinson & Company.
  • 29.
    Popper, K.R., 1963. Conjectures and Refutations: The Growth of Scientific Knowledge. Routledge, London.
  • 30.
    Puetz, S.J., 2022. The infinitely fractal universe paradigm and consupponibility. Chaos, Solitons & Fractals 158, 112065. doi:10.1016/j.chaos.2022.112065.
  • 31.

    Puetz, S.J., Condie, K.C., 2019. Time series analysis of mantle cycles part i: periodicities and correlations among seven global isotopic databases. Geoscience Frontiers 10, 1305–1326. doi:10.1016/j.gsf.2019.04.002.

  • 32.

    Puetz, S.J., Condie, K.C., 2021. Applying Popperian falsifiability to geo-dynamic hypotheses: empirical testing of the episodic crustal/zircon production hypothesis and selective preservation hypothesis. International Geology Review 63, 1920–1950. doi:10.1080/00206814.2020.1818143.

  • 33.
    Puetz, S.J., Condie, K.C., Boulila, S., Cheng, Q., 2025. Are global U-Pb detrital zircon age distributions valid proxies for global igneous activity? Geoscience Frontiers, In review.
  • 34.

    Puetz, S.J., Condie, K.C., Pisarevsky, S., Davaille, A., Schwarz, C.J., Ganade, C.E., 2017. Quantifying the evolution of the continental and oceanic crust. Earth-Science Reviews 164, 63–83. doi:10.1016/j.earscirev.2016.10.011.

  • 35.
    Puetz, S.J., Condie, K.C., Sundell, K., Roberts, N.M.W., Spencer, C.J., Boulila, S., Qiuming Cheng, Q., 2024a. The replication crisis and its relevance to Earth science studies: case studies and recommendations. Geoscience Frontiers 15, 101821. doi:10.1016/j.gsf.2024.101821.
  • 36.

    Puetz, S.J., Spencer, C.J., 2023. Evaluating U-Pb accuracy and precision by comparing zircon ages from 12 standards using TIMS and LA-ICP-MS methods. Geosystems and Geoenvironment 2, 100177. doi:10.1016/j.geogeo.2022.100177.

  • 37.

    Puetz, S.J., Spencer, C.J., Condie, K.C., Roberts, N.M.W., 2024b. Enhanced U-Pb detrital zircon, Lu-Hf zircon, δ18O zircon, and Sm-Nd whole rock global databases. Scientific Data 11, 56. doi:10.1038/s41597-023-02902-9.

  • 38.

    Russell, B., 1948. BBC broadcast transcript. Skepticism and tolerance. The Listener 452–453. https://users.drew.edu/~jlenz/br-on-tolerance.html.

  • 39.
    Shechtman, D., Blech, I., Gratias, D., Cahn, J.W., 1984. Metallic phase with long-range orientational order and no translational symmetry. Physical Review Letters 53, 1951. doi:10.1103/PhysRevLett.53. 1951.
  • 40.

    Stehman, S.V., Selkowitz, D.J., 2010. A spatially stratified, multi-stage cluster sampling design for assessing accuracy of the Alaska (USA) National Land Cover Database (NLCD). International Journal of Remote Sensing 31, 1877–1896. doi:10.1080/01431160902927945.

  • 41.
    Stein, M., Hofmann, A.W., 1994. Mantle plumes and episodic crustal growth. Nature 372, 63–68. doi:10.1038/372063a0.
  • 42.
    Van Noorden, R., 2011. Persistence pays off for crystal chemist. Nature 478, 165–166. doi:10.1038/478165a.
  • 43.

    Verlinde, E., 2011. On the origin of gravity and the laws of Newton. Journal of High Energy Physics 2011, Article 29, doi:10.1007/JHEP04(2011)029.

  • 44.
    Walzer, U., Hendel, R., 2017. Continental crust formation: numerical modelling of chemical evolution and geological implications. Lithos 278-281, 215–228. doi:10.1016/j.lithos.2016.12.014.
  • 45.

    Wegener, A., 1912. The formation of the large forms of the earth’s crust (continents and oceans), on a geophysical basis (in German). Petermann’s Geographical Communications 63, 185–195.

  • 46.
    Wilson, J.T., 1966. Did the Atlantic close and then re-open? Nature 211, 676–681. doi:10.1038/211676a0.
Share this article:
How to Cite
Puetz, S. J. (2025). Guidelines for testing hypotheses: A case study of episodic crustal production versus supercontinent-linked selective preservation. Habitable Planet, 1(1&2), 10–19. https://doi.org/10.63335/j.hp.2025.0002
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.