- 1.
Araya, J.P., Gonzlez, M., Cardinale, M., Schnell, S., Stoll, A., 2020. Microbiome dynamics associated with the Atacama flowering desert. Front. Microbiol. 10, e3160. doi:10.3389/fmicb.2019.03160.
- 2.
Balci, N., Demirel, C., 2016. Formation of carbonate nanoglobules by a mixed natural culture under hypersaline conditions. Minerals 6, 122. doi:10.3390/min6040122.
- 3.
Bender, M., Sowers, T., Labeyrie, L., 1994. The Dole effect and its variations during the last 130,000 years as measured in the Vostok ice core. Glob. Biogeochem. Cycles 8, 363–376. doi:10.1029/94GB00724.
- 4.
Benner, S.A., 2010. Defining life. Astrobiology 10, 1021–1030. doi:10.1089/ast.2010.05.
- 5.
Boyce, C.K., Fan, Y., Zwieniecki, M.A., 2017. Did trees grow up to the light, up to the wind, or down to the water? How modern high productivity colors perception of early plant evolution. New Phytol. 215, 552–557. doi:10.1111/nph.14387.
- 6.
Boyd, R.N., 2012. Amino acids and chirality, in: Boyd, R.N. (Ed.), Stardust, Supernovae and the Molecules of Life. Springer, New York, p. 87–106.
- 7.
Breecker, D.O., Retallack, G.J., 2014. Refining the pedogenic carbonate atmospheric CO2 proxy and application to Miocene CO2 . Palaeogeogr. Palaeoclimatol. Palaeoecol. 406, 1–8. doi:10.1016/j.palaeo.2014. 04.012.
- 8.
Brown, G., 2018. Dirt to Soil: One Family’s Journey Into Regenerative Agriculture. Chelsea Green, Vermont, p. 240.
- 9.
Broz, A.P., 2020. Organic matter preservation in ancient soils of Earth and Mars. Life 10, 113. doi:10.3390/life10070113.
- 10.
Bunch, T.E., Chang, S., 1980. Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes and surface conditions. Geochim. Cosmochim. Acta 44, 1543-1577. doi:10.1016/0016-7037(80)90118-0.
- 11.
Cairns-Smith, G., 1971. The Life Puzzle. University of Toronto Press, Toronto, p. 165.
- 12.
Cawood, P.A., Hawkesworth, C.J., 2019. Continental crustal volume, thickness and area, and their geodynamic implications. Gondwana Res. 66, 116-125. doi:10.1016/j.gr.2018.11.001.
- 13.
Connelly, J.N., Bizzarro, M., Krot, A.N., Nordlund, A˚., Wielandt, D., Ivanova, M.A., 2012. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651-655. doi:10.1126/science.1226919.
- 14.
Darwin, C., 1862. On the Various Contrivances by Which British and Foreign Orchids are Fertilised by Insects, and On the Good Effects of Intercrossing. Murray, London.
- 15.
Darwin, C., 1881. The Formation of Vegetable Mould Through the Action of Worms with Some Observations on Their Habits. John Murray, London, p. 326.
- 16.
Davies, N.S., Gibling, M.R., 2010. Cambrian to Devonian evolution of alluvial systems: the sedimentological impact of the earliest land plants. Earth Sci. Rev. 98, 171-200. doi:10.1016/j.earscirev.2009.11.002.
- 17.
Dietrich, W.E., Perron, J.T., 2006. The search for a topographic signature of life. Nature 439, 411-418. doi:10.1038/nature04452.
- 18.
Djokic, T., Van Kranendonk, M.J., Campbell, K.A., Walter, M.R., Ward, C.R., 2017. Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits. Nat. Commun. 8, 1-9. doi:10.1038/ncomms15263.
- 19.
Dokuchaev, V.V., 1883. Russian chernozem (Russkii Chernozem). In: Kaner, N., (translation of 1967), Collected Writings: Israel Program for Scientific Translations: Jerusalem, 14-419.
- 20.
Garwood, R.J., Oliver, H., Spencer, A.R., 2020. An introduction to the Rhynie chert. Geol. Mag. 157, 47-64. doi:10.1017/S0016756819000670.
- 21.
Gill, S., Yemane, K., 1996. Implications of a lower Pennsylvanian Ultisol for equatorial Pangean climates and early, oligotrophic, forest ecosystems. Geology 24, 905 908. doi:10.1130/0091-7613(1996) 024<0905:IOALPU>2.3.CO;2.
- 22.
Gillespie, W.H., Rothwell, G.W., Scheckler, S.E., 1981. The earliest seeds. Nature 293, 462 464. doi:10.1038/293462a0.
- 23.
Greenspoon, L., Krieger, E., Sender, R., Rosenberg, Y., Bar-On, Y.M., Moran, U., Antman, T., Meiri, S., Roll, U., Noor, E., Milo, R., 2023. The global biomass of wild mammals. Proc. Natl. Acad. Sci. USA 120, e2204892120. doi:10.1073/pnas.2204892120.
- 24.
Hartemink, A.E., 2016. The definition of soil since the early 1800s. Adv. Agron. 137, 73 126. doi:10.1016/bs.agron.2015.12.001.
- 25.
Heiken, G.H., Morris, R.V., McKay, D.S., Fruland, R.M., 1976. Petrographic and ferromagnetic resonance studies of the Apollo 15 deep drill core. Lunar Sci. Conf. Proc. 7, 93-111.
- 26.
Hoffman, P.F., Abbot, D.S., Ashkenazy, Y., Benn, D.I., Brocks, J.J., Cohen, P.A., Cox, G.M., Creveling, J.R., Donnadieu, Y., Erwin, D.H., Fairchild, I.J., 2017. Snowball Earth climate dynamics and Cryogenian geologygeobiology. Sci. Adv. 3, e1600983. doi:10.1126/sciadv.1600983.
- 27.
Jabr, F., 2024. Becoming Earth: How our Planet Came to Life. Random House New York, p. 304.
- 28.
Janis, C.M., 1989. A climatic explanation for patterns of evolutionary diversity in ungulate mammals. Palaeontology 32, 463-481.
- 29.
John, J., Sarada, S., 2012. Role of phenolics in allelopathic interactions. Allelopathy J. 29, 215-229.
- 30.
Kovalevsky, W., 1873. Sur Anchitherium aurelianense Cuv. et sur l'histoire paleontologique des chevaux. Mm. Acad. Sci. St. Ptersbourg (VII) 20, 1 73.
- 31.
Kricher, J., 2011. Tropical Ecology. Princeton University Press, Princeton, p. 632.
- 32.
Lauretta, D.S., DellaGiustina, D.N., Bennett, C.A., Golish, D.R., Becker, K.J., Balram-Knutson, S.S., Barnouin, O.S., Becker, T.L., Bottke, W.F., Boynton, W.V., Campins, H., 2019. The unexpected surface of asteroid (101955) Bennu. Nature 568, 55 60. doi:10.1038/s41586-019-1033-6.
- 33.
Leeuwis, T., Peel, M., De Boer, W.F., 2018. Complexity in African savannas: direct, indirect, and cascading effects of animal densities, rainfall and vegetation availability. PLoS One 13, e0197149. doi:10.1371/journal.pone.0197149.
- 34.
Martin, W., Baross, J., Kelley, D., Russell, M.J., 2008. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6, 805-814. doi:10.1038/nrmicro1991.
- 35.
Matange, K., Rajaei, V., Capera-Aragones, P., Costner, J.T., Robertson, A., Kim, J.S., Petrov, A.S., Bowman, J.C., Williams, L.D., FrenkelPinter, M., 2025. Evolution of complex chemical mixtures reveals combinatorial compression and population synchronicity. Nat. Chem. 17, 1 8. doi:10.1038/s41557-025-01734-x.
- 36.
McNaughton, S.J., 1979. Grazing as an optimization process: grassungulate relationships in the Serengeti. Am. Nat. 113, 691-703. doi:10.1086/283426.
- 37.
Monod, J., 1971. Chance and Necessity (translated by A. Wainhouse). Knopf, New York, p. 199.
- 38.
Montanez, I.P., McElwain, J.C., Poulsen, C.J., White, J.D., DiMichele, W.A., Wilson, J.P., Griggs, G., Hren, M.T., 2016. Climate, pCO2 and terrestrial carbon cycle linkages during late palaeozoic glacial interglacial cycles. N. Geosci. 9, 824 828. doi:10.1038/ngeo2822.
- 39.
Neilson, J.W., Califf, K., Cardona, C., Copeland, A., Van Treuren, W., Josephson, K.L., Knight, R., Gilbert, J.A., Quade, J., Caporaso, J.G., Maier, R.M., 2017. Significant impacts of increasing aridity on the arid soil microbiome. MSystems 2, e00195 16. doi:10.1128/msystems. 00195-16.
- 40.
Peret, J., Bada, J.L., Lazcano, A., 2009. Charles Darwin and the origin of life. Orig. Life Evol. Biosph. 39, 395 406. doi:10.1007/s11084-009-9172-7.
- 41.
Retallack, G.J., 1992. Middle Miocene fossil plants from Fort Ternan (Kenya) and evolution of African grasslands. Paleobiology 18, 383-400. doi:10.1017/S0094837300010964.
- 42.
Retallack, G.J., 1997. Early forest soils and their role in Devonian global change. Science 276, 583 585. doi:10.1126/science.276.5312.583.
- 43.
Retallack, G.J., 1998. Life, love and soil. Nature 391, 12. doi:10.1038/34020.
- 44.
Retallack, G.J., 2001. Scoyenia burrows from Ordovician palaeosols of the Juniata Formation in Pennsylvania. Palaeontology 44, 209-235. doi:10.1111/1475-4983.00177.
- 45.
Retallack, G.J., 2007. Coevolution of life and earth, in Earth evolution, in: Stevenson, D., Schubert, G. (Eds.), Treatise of Geophysics. Elsevier, Amsterdam, p. 295 320. doi:10.1016/B978-044452748-6.00150-4.
- 46.
Retallack, G.J., 2011. Problematic megafossils in Cambrian palaeosols of South Australia. Palaeontology 54, 1223-1242. doi:10.1080/08120090802266568.
- 47.
Retallack, G.J., 2013a. Global cooling by grasslands in the geological past and near future. Annu. Rev. Earth Planet. Sci. 41, 5.1-18. doi:10.1146/annurev-earth-050212-124001.
- 48.
Retallack, G.J., 2013b. A short history and long future for Paleopedology, in: Driese, S.G., Nordt, L.E. (Eds.), New Frontieres in Paleopedology and Terrestrial paleoclimatology: Paleosols and soil surface analog systems. Spe. Publ. Soc. Econ. Paleont. Mineral. 104, 5-16. doi:10.2110/sepmsp.104.ch02.
- 49.
Retallack, G.J., 2014. Paleosols and paleoenvironments of early Mars. Geology 42, 755-758. doi:10.1130/G35912.1.
- 50.
Retallack, G.J., 2015. Late Ordovician glaciation initiated by early land plant evolution and punctuated by greenhouse mass extinctions. J. Geol. 123, 509-538. doi:10.1086/683663.
- 51.
Retallack, G.J., 2016. Astropedology: palaeosols and the origin of life. Geol. Today 32, 172-178. doi:10.1111/gto.12149.
- 52.
Retallack, G.J., 2018. The oldest known paleosol profiles on Earth: 3.46 Ga Panorama Formation, Western Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 489, 230-248. doi:10.1016/j.palaeo.2017.10.013.
- 53.
Retallack, G.J., 2019. Soils of the Past: An Introduction to Paleopedology. Wiley, Chichester, p. 534.
- 54.
Retallack, G., 2021a. Modern analogs reveal the origin of Carboniferous coal balls. Palaeogeogr. Palaeoclimatol. Palaeoecol. 564, 110185. doi:10.1016/j.palaeo.2020.110185.
- 55.
Retallack, G.J., 2021b. Paleosols and weathering leading up to Snowball Earth in Central Australia. Aust. J. Earth Sci. 68, 1122-1148. doi:0.1080/08120099.2021.1906747.
- 56.
Retallack, G.J., 2021c. Palaeoproterozoic (2.2 Ga) life on land near Medicine Bow Peak, Wyoming, U.S.A. Palaeobotanist 69, 93-118. doi:10.54991/jop.2020.33.
- 57.
Retallack, G.J., 2022a. Soil carbon dioxide planetary thermostat. Astrobiology 22, 116-123. doi:10.1089/ast.2020.241.
- 58.
Retallack, G.J., 2022b. Ordovician-Devonian lichen canopies before evolution of woody trees. Gondwana Res. 106, 211-223. doi:10.1016/j. gr.2022.01.010.
- 59.
Retallack, G.J., 2022c. Soil salt and microbiome diversification over the past 3700 million years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 598, 111016. doi:10.1016/j.palaeo.2022.111016.
- 60.
Retallack, G.J., 2022d. Biotic enhancement of weathering over the past 3.7 billion years. GSA Today 32(12), 4-9. doi:10.1130/GSATG543A.1.
- 61.
Retallack, G.J., 2022e. Early Ediacaran lichen from Death Valley, Cali-fornia, USA. J. Palaeosci. 71(2), 187-218. doi:10.54991/jop.2022.1841.
- 62.
Retallack, G.J., 2023a. Mesoproterozoic calcareous paleosols from Montana. Precambrian Res. 395, 107134. doi:10.1016/j.precamres.2023.107134.
- 63.
Retallack, G.J., 2023b. Why was there a Neoproterozoic Snowball Earth? Precambrian Res. 365, 106952. doi:10.1016/j.precamres.2022.106952.
- 64.
Retallack, G.J., Bindeman, I., 2024. Stable isotopic evidence for increased terrestrial productivity through geological time. Nature Sci. Rep. 14, 27438. doi:10.1038/s41598-024-78838-w.
- 65.
Retallack, G.J., Broz, A.P., Lai, L., Gardner, K., 2021a. Neoproterozoic marine chemostratigraphy, or eustatic sea level change? Palaeogeogr. Palaeclim. Palaeoec. 562, 110155. doi:10.1016/j.palaeo.2020.110155.
- 66.
Retallack, G.J., Chen, Z.Q., Huang, Y., Fang, Y., 2021b. Oxidizing atmosphere and life on land during the late Paleoproterozoic outset of the “boring billion”. Precambrian Res. 364, 106361. doi:10.1016/j.precamres.2021.106361.
- 67.
Retallack, G.J., Conde, G.D., 2020. Deep time perspective on rising atmospheric CO2. Global Planet. Change 189, 103177. doi:10.1016/j. gloplacha.2020.103177.
- 68.
Retallack, G.J., Germn-Heins, J., 1994. Evidence from paleosols for the geological antiquity of rain forest. Science 265, 499-502. doi:10.1126/ science.265.5171.499.
- 69.
Retallack, G.J., Gose, B.N., Osterhout, J.T., 2015. Periglacial paleosols and Cryogenian paleoclimate near Adelaide, South Australia. Precambrian Res. 263, 1-18. doi:10.1016/j.precamres.2015.03.002.
- 70.
Retallack, G.J., Huang, C.-M., 2011. Ecology and evolution of Devonian trees in New York, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 299, 110-128. doi:10.1016/j.palaeo.2010.10.040.
- 71.
Retallack, G.J., Krinsley, D.H., Fischer, R., Razink, J.J., Langworthy, K., 2016. Archean coastal-plain paleosols and life on land. Gondwana Res. 40, 1-20. doi:10.1016/j.gr.2016.08.003.
- 72.
Retallack, G.J., Krull, E.S., Thackray, G.D., Parkinson, D., 2013. Problematic urn-shaped fossils from a Paleoproterozoic (2.2 Ga) paleosol in South Africa. Precambrian Res. 235, 71-87. doi:10.1016/j.precamres.2013.05.015.
- 73.
Retallack, G.J., Mao, X.-G., 2019. Paleoproterozoic (ca. 1.9 Ga) megascopic life on land in Western Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 532, 109266. doi:10.1016/j.palaeo.2019.109266.
- 74.
Retallack, G.J., Noffke, N., 2019. Are there ancient soils in the 3.7 Ga Isua Greenstone Belt, Greenland? Palaeogeogr. Palaeoclimatol. Palaeoecol. 514, 18-30. doi:10.1016/j.palaeo.2018.10.005.
- 75.
Retallack, G.J., Schmitz, M., 2023. Archean (3.3 Ga) paleosols and paleoenvironments of Western Australia. PLoS One 18(9), e0291074. doi:10.1371/journal.pone.0291074.
- 76.
Ribas, I., 2009. The Sun and stars as the primary energy input in planetary atmospheres. Proc. Int. Astron. Union 5, 3-18. doi:10.1017/S1743921309992298.
- 77.
Ruddiman, W., 2005. Plows, Plagues, and Petroleum: How Humans Took Control of Climate. Princeton Univ. Press, Princeton, p. 224.
- 78.
Rye, R., Holland, H.D., 1998. Paleosols and the evolution of atmospheric oxygen; a critical review. Am. J. Sci. 298, 621 672. doi:10.2475/ajs. 298.8.621.
- 79.
Smith, M.P., Harper, D.A., 2013. Causes of the Cambrian explosion. Science 341, 1355-1356. doi:10.1126/science.12394.
- 80.
Soil Science Society of America, 2022. Glossary of Soil Science Terms. Soil Science Society of America, Madison. https://www.soils.org/publications/soils-glossary/browse/s?q=publications/soils-glossary/browse/s/accessed January 6, 2025.
- 81.
Soil Survey Staff, 2020. Keys to Soil Taxonomy. Natural Resources Conservation Service. Washington DC, p. 358.
- 82.
Stebbins, G.L., 1981. Coevolution of grasses and herbivores. Ann. Missouri Bot. Gard. 68, 75-86. doi:10.2307/2398811.
- 83.
Stein, W.E., Berry, C.M., Morris, J.L., Hernick, L.V., Mannolini, F., Ver Straeten, C., Landing, E., Marshall, J.E.A., Wellman, C.H., Beerling, D.J., Leake, J.R., 2020. Mid-Devonian Archaeopteris roots signal revolutionary change in earliest fossil forests. Curr. Biol. 30, 421 431. doi:10.1016/j.cub.2019.11.067.
- 84.
Strmberg, C.A., 2006. Evolution of hypsodonty in equids: testing a hypothesis of adaptation. Paleobiology 32, 236 258. doi:10.1666/ 0094-8373(2006)32[236:EOHIET]2.0.CO;2.
- 85.
Strmberg, C.A., Dunn, R.E., Crif, C., Harris, E.B., 2018. Phytoliths in paleoecology: analytical considerations, current use, and future directions, in: Croft, D., Su, D., Simpson, S. (Eds.), Methods in Paleoecology: Reconstructing Cenozoic Terrestrial Environments and Ecological Communities, Springer, Cham, p. 235-287. doi:10.1007/978-3-319-9426.
- 86.
Vanstone, S.D., 1991. Early Carboniferous (Mississippian) paleosols from Southwest Britain; influence of climatic change on soil development. J. Sedim. Res. 61, 445-457. doi:10.1306/D4267735-2B26-11D7-8648000102C1865D.
- 87.
Zhang, F., Xu, H., Konishi, H., Shelobolina, E.S., Roden, E.E., 2012. Polysaccharide-catalyzed nucleation and growth of disordered dolomite: a potential precursor of sedimentary dolomite. Am. Mineral. 97, 556-567. doi:10.2138/am.2012.3979.