2509001573
  • Open Access
  • Article

Critical metal deposits in terrestrial and oceanic environmentsand the Global Energy Transition

  • V. Balaram 1,*,   
  • M. Santosh 2,3,4

Received: 30 Apr 2025 | Revised: 19 May 2025 | Accepted: 20 May 2025 | Published: 24 May 2025

Abstract

Critical metals like rare earth elements (REE), Li, Co, Cu, Ni, and platinum group elements (PGE) are vital requirements for various green technology applications. These metals are essential components in rechargeable batteries, wind turbines, solar panels, electric vehicles, and for strategic applications. In this overview, we present a consolidated account of the different types of critical mineral deposits on land and in the deep oceans is presented here. The terrestrial deposits include various types of magmatic, hydrothermal, and sedimentary archives, which are currently the major sources for these critical minerals. The potential marine mineral deposits include manganese nodules on ocean floor, ferromanganese crust deposits on seamounts, hydrothermal sulphide deposits in the mid-oceanic ridges, phosphorite deposits on the ocean floor along continental margins and submerged mountains, and REY-rich mud representing deep-sea sediment deposits. Currently, exploitation of  marine mineral deposits face many challenges including  pollution and habitat destruction in the marine environment, as well as climate change, which can negatively impact the environment and the resources. The shift to a low-carbon economy depends on securing a stable supply of these critical metals. While terrestrial mining remains dominant, deep-sea resources must be balanced with environmental protections. Sustainable strategies, including recycling and diversification of supply chains, with emphasis on circular economy, will be the key to ensuring a smooth energy transition. Coupled with supportive policies, technological advancements, and ethical practices, these strategies forge a resilient, low-carbon future.

References 

  • 1.
    Aguzzi, J., Thomsen, L., Flgel, S. et al., 2024. New technologies for monitoring and upscaling marine ecosystem restoration in deep-sea environments. Engineering 34, 195 211. doi:10.1016/j.eng.2023.10.012.
  • 2.
    Ahmed, A.H., Aseri, A.A., Ali, K.A., 2022. Geological and geochemical evaluation of phosphorite deposits in northwestern Saudi Arabia as a possible source of trace and rare-earth elements. Ore Geology Reviews 144, 104854. doi:10.1016/j.oregeorev.2022.104854.
  • 3.
    Anitha, J.K., Joseph, S., Rejith, R.G. et al., 2020. Monazite chemistry and its distribution along the coast of Neendakara Kayamkulam belt, Kerala, India. SN Applied Sciences 2, 812. doi:10.1007/s42452-020-2594-6.
  • 4.
    Arendt, R., Bach, V., Finkbeiner, M., 2022. The global environmental costs of mining and processing abiotic raw materials and their geographic distribution. Journal of Cleaner Production 361, 132232. doi:10.1016/j.jclepro.2022.132232.
  • 5.
    Arndt, N., Lesher, C.M., Czamanske, G.K., 2005. Mantle-derived magmas and magmatic Ni-Cu-(PGE) deposits. Economic Geology 100th Aniversary Volume, 5 24. doi:10.5382/AV100.02.Hal-00016864.
  • 6.
    Asadzadeh, S., Koellner, N., Chabrillat, S., 2024. Detecting rare earth elements using EnMAP hyperspectral satellite data: a case study from Mountain Pass, California. Scientific Reports 14, 20766. doi:10.1038/s41598-024-71395-2.
  • 7.
    Balaram, V., 2022. Rare earth element deposits sources, and exploration strategies. Journal of Geological Society of India 98, 1210 1216. doi:10.1007/s12594-022-2154-3.
  • 8.
    Balaram, V., 2023a. Combating climate change and global warming for a sustainable living in harmony with nature. Journal of Geographical Research 6(3), 1-17. doi:10.30564/jgr.v6i3.5706.
  • 9.
    Balaram, V., 2023b. Deep-sea mineral deposits as a future source of critical metals, and environmental issues a brief review. Minerals and Mineral Materials 2. 5, 1-17. doi:10.20517/mmm.2022.12.
  • 10.
    Balaram, V., Armstrong-Altrin, J.S., Khan, R.M.K., Rao, B.S., 2025. Land and marine sedimentary deposits as potential sources of lithium. International Geological Review 67(9), 1217-1250. doi:10.1080/00206814.2024.2431815.
  • 11.
    Balaram, V., Banakar, V.K., Subramanyam, K.S.V., Parijat Roy, M.Satyanarayanan, M. Ram Mohan, Sawant, S.S., 2012. Yttrium and rare earth element contents in seamount cobalt crusts in the Indian Ocean. Current Science 110(11), 1334 1338.
  • 12.
    Balaram, V., Santosh, M., Satyanarayanan, M., Srinivas, N., Gupta, H., 2024. Lithium: a review of applications, occurrence, exploration, extraction, recycling, analysis, and environmental impact. Geoscience Frontiers 15(5), 101868. doi:10.1016/j.gsf.2024.101868.
  • 13.
    Ball, P.J., Gilkes, R.J., 1987. The mount saddleback bauxite deposit, southwestern Australia. Chemical Geology 60(1 4), 215 225. doi:10.1016/0009-2541(87)90127-6.
  • 14.
    Bamiki, R.E., Raji, O., Ouabid, M., Elghali, A., Khadiri Yazami, O., Bodinier, J.L., 2021. Phosphate rocks: a review of sedimentary and igneous occurrences in Morocco. Minerals 11, 1137. doi:10.3390/min11101137.
  • 15.
    Bamiki, R.E., Sranne, M., Chella¨, E.H. et al., 2020. The Moroccan high Atlas phosphate-rich sediments: unraveling the accumulation and differentiation processes. Sedimentary Geology 403, 105655. doi:10.1016/j.sedgeo.2020.105655.
  • 16.
    Barends, R., Baselmans, J.J.A., Hovenier, J.N., 2007. Niobium and Tantalum high Q resonators for photon detectors. IEEE Transactions on Applied Superconductivity 17(2), 263-266. doi:10.1109/TASC.2007.898541.
  • 17.
    Barrientos, M.A. et al., 2024. Co, Sc, and Ni enrichment in the Cagdianao nickel laterite deposit, Dinagat Islands, Philippines. IOP Conf. Ser.: Earth Environ. Sci. 1373, 012041.
  • 18.
    Bekker, A., Slack, J.F., Planavsky, N., 2010. Iron formation: the sedimentary product of a complex interplay among Mantle, Tectonic, Oceanic, and Biospheric processes. Economic Geology 105(3), 467-508. doi:10.2113/gsecongeo.105.3.467.
  • 19.
    Bhushan, S.K., 2015. Geology of the Kamthai rare earth deposit. Journal of the Geological Society of India 85(5), 537-546. doi:10.1007/s12594-015-0247-y.
  • 20.
    Birol, F., 2022. The role of critical world energy outlook special report minerals in clean energy transitions, in: International Energy Security (IEA), p. 1-12.
  • 21.
    Boni, M., Mondillo, N., Santoro, L., Balassone, G., 2025. Vanadium and other critical elements in north Gondwana Silurian black shales: the SE Sardinia (Italy) case. Journal of Geochemical Exploration 275(1 2), 107760. doi:10.1016/j.gexplo.2025.107760.
  • 22.
    Borst, A.M., Smith, M.P., Finch, A.A. et al., 2020. Adsorption of rare earth elements in regolith-hosted clay deposits. Nature Communications 11, 4386. doi:10.1038/s41467-020-17801-5.
  • 23.
    Britt, A.F., Czarnota, K., 2024. A review of critical mineral resources in Australia. Australian Journal of Earth Sciences 71(8), 1016-1049. doi:10.1080/08120099.2024.2430279.
  • 24.
    Buccione, R., Kechiched, R., Mongelli, G., Sinisi, R., 2021. REE in the North Africa p-bearing deposits, paleoenvironments, and economic perspectives: a review. Minerals 11(2), 214. doi:10.3390/min11020214.
  • 25.
    Burnett, W.C., 1974. Phosphorite deposits from the sea floor off Peru and Chile: radiochemical and geochemical investigations concerning their origin. Theses for the degree of doctor of philosophy (university of hawaii at manoa). Geology and Geophysics, No. 619 University of Hawaii at Manoa.
  • 26.
    Chaubey, M., Singh, A.K., Imtisunep, S., Uysal, I., Singh, B.P., Satyanarayanan, M., Khogenkumar, S., 2024. Formation of the associating high-Al and high-Cr chromitite in the Nagaland-Manipur Ophiolites in northeast India. International Geology Review 67(2), 210-232. doi:10.1080/00206814.2024.2386565.
  • 27.
    Chen, A., Yang, S., Xu, S. et al., 2019. Sedimentary model of marine evaporites and implications for potash deposits exploration in China. Carbonates Evaporites 34, 83-99. doi:10.1007/s13146-018-0443-0.
  • 28.
    Chen, W.Q., Eckelman, M.J., Sprecher, B. et al., 2024. Interdependence in rare earth element supply between China and the United States helps stabilize global supply chains. One Earth 7(2), 242-252. doi:10.1016/j.oneear.2024.01.011.
  • 29.
    Chen, W.T., Zhou, M.F., Zhao, T.P., 2013. Differentiation of nelsonitic magmas in the formation of the ~1.74 Ga Damiao Fe Ti P ore deposit, North China. Contributions to Mineralogy and Petrology 165, 1341-1362. doi:10.1007/s00410-013-0861-x.
  • 30.
    Chinkaka, E., Klinger, J.M., Davis, K.F., Bianco, F., 2023. Unexpected expansion of rare-earth element mining activities in the Myanmar China border region. Remote Sensing 15, 4597. doi:10.3390/rs15184597.
  • 31.
    Christiansen, B., Denda, A., Christiansen, S., 2020. Potential effects of deep seabed mining on pelagic and benthopelagic biota. Marine Policy 114, 103442. doi:10.1016/j.marpol.2019.02.014.
  • 32.
    Compton, J.S., Bergh, E.W., 2016. Phosphorite deposits on the Namibian shelf. Marine Geology 380, 290-314. doi:10.1016/j.margeo.2016.04.006.
  • 33.
    Cook, N.J., Ciobanu, C.L., Wade, B.P., Gilbert, S.E., Alford, R., 2023. Mineralogy and distribution of REE in oxidised ores of the mount weld laterite deposit, Western Australia. Minerals 13, 656. doi:10.3390/min13050656.
  • 34.
    Cowden, A., Donaldson, M.J., Naldrett, A.J., Campbell, I.H., 1986. Platinum-group elements and gold in the komatiite-hosted Fe-Ni-Cu sulfide deposits at Kambalda, Western Australia. Economic Geology 81(5), 1226-1235. doi:10.2113/gsecongeo.81.5.1226.
  • 35.
    Dar, S.A., Balaram, V., Roy, P., Akhtar, R.M., Javed, M., Teja, M.S., 2025. Phosphorite deposits: A promising unconventional resource for rare earth elements. Geoscience Frontiers 16(3), 102044. doi:10.1016/j. gsf.2025.102044.
  • 36.
    Deb, M., Joshi, A., 1984. Petrological studies on two East Coast bauxite deposits of India, and implications on their genesis. Sedimentary Geology 39(1 2), 121-139. doi:10.1016/0037-0738(84)90029-0.
  • 37.
    Dehkordi, M.M., Nodeh, Z.P., Dehkordi, K.S. et al., 2024. Soil, air, and water pollution from mining and industrial activities: sources of pollution, environmental impacts, and prevention and control methods. Results in Engineering 23, 102729. doi:10.1016/j.rineng.2024.102729.
  • 38.
    Duchesne, J., 1999. Fe-Ti deposits in Rogaland anorthosites (South Norway): geochemical characteristics and problems of interpretation. Mineralium Deposita 34, 182-198. doi:10.1007/s001260050195.
  • 39.
    Emsbo, P., McLaughlin, P.I., Breit, G.N., Bray, E.A., Koenig, A.E., 2015. Rare earth elements in sedimentary phosphate deposits: solution to the global REE crisis? Gondwana Research 27(2), 776-785. doi:10.1016/j.gr.2014.10.008.
  • 40.
    Estrade, G., Marquis, E., Smith, M., Goodenough, K., Nason, P., 2019. REE concentration processes in ion adsorption deposits: evidence from the ambohimirahavavy alkaline complex in Madagascar. Ore Geology Reviews 112, 103027. doi:10.1016/j.oregeorev.2019.103027.
  • 41.
    Fan, H.R., Yang, K.F., Hu, F.F., Liu, S., Wang, K.Y., 2016. The giant Bayan Obo REE-Nb-Fe deposit, China: controversy and ore genesis. Geoscience Frontiers 7(3), 335 344. doi:10.1016/j.gsf.2015.11.005. Gadea, O.C.A., Khan, S.D., Sisson, V.B., 2024. Estimating rare earth elements at various scales with bastnsite indices for Mountain Pass. Ore Geology Reviews 173, 106254. doi:10.1016/j.oregeorev.2024.106254.
  • 42.
    Garber, R.A., Levy, Y., Friedman, G.M., 1987. The sedimentology of the dead sea. Carbonates Evaporites 2, 43-57. doi:10.1007/BF03174303.
  • 43.
    Gong, C., Lu, H., 2024. Simultaneous determination of 50 elements in geological samples by ICP-MS combined with ICP-OES. Spectroscopy 39(s9), 6-17. doi:10.56530/spectroscopy.xu1284x3.
  • 44.
    Goswami, S., Bhagat, S., Zakaulla, S., Kumar, S., Rai, A.K., 2017. Role of organic matter in uranium mineralisation in vempalle dolostone; Cuddapah Basin, India. Journal of Geological Society of India 89(2), 145-154. doi:10.1007/s12594-017-0578-y.
  • 45.
    Groves, D.I., Mller, D., Santosh, M., Yang, C.X., 2025. The heterogeneous distribution of critical metal mineral resources: an impending geopolitical issue. Geosystems and Geoenvironment 4(1), 100288. doi:10.1016/j.geogeo.2024.100288.
  • 46.
    Hagemann, S.G., Angerer, T., Duuring, P., Rosire, C.A., Figueiredo e Silva, R.C., Lobato, L., Hensler, A.S., Walde, D.H.G., 2016. BIF-hosted iron mineral system: a review. Ore Geology Reviews 76, 317-359. doi:10.1016/j.oregeorev.2015.11.004.
  • 47.
    Hall, S.M., Gosen, B.S., Zielinski, R.A., 2023. Sandstone-hosted uranium deposits of the Colorado plateau, USA. Ore Geology Reviews 155, 105353. doi:10.1016/j.oregeorev.2023.105353.
  • 48.
    Hansen, J.E., Kharecha, P., Sato, M. et al., 2025. Global warming has accelerated: are the United Nations and the public well-informed? Environment: Science and Policy for Sustainable Development 67(1), 6-44. doi:10.1080/00139157.2025.2434494.
  • 49.
    Hein, J.R., Koschinsky, A., Mikesell, M. et al., 2016. Marine phosphorites as potential resources for heavy rare earth elements and yttrium. Minerals 6(3), 88. doi:10.3390/min6030088.
  • 50.
    Hein, J.R., Mizell, K., Koschinsky, A., Conrad, T.A., 2013. Deep-Ocean mineral deposits as a source of critical metals for highand greentechnology applications: comparison with land-based resources. Ore Geology Reviews 51, 1-14. doi:10.1016/j.oregeorev.2012.12.0.
  • 51.
    Heye, D., Marchig, V., Meyer, H., 1979. The growth of buried manganese nodules, Deep Sea Research Part A. Oceanographic Research Papers 26(7), 789-798. doi:10.1016/0198-0149(79)90014-1.
  • 52.
    Hiatt, E.E., Budd, D.A., 2001. Sedimentary phosphate formation in warm shallow waters: new insights into the palaeoceanography of the Permian Phosphoria Sea from analysis of phosphate oxygen isotopes. Sedimentary Geology 145(1 2), 119-133. doi:10.1016/S0037-738(01)00127-0.
  • 53.
    Hilson, G., 2009. Small-scale mining, poverty and economic development in sub-Saharan Africa: an overview. Resources Policy 34(1), 1-5. doi:10.1016/j.resourpol.2008.12.001.
  • 54.
    Hughes, A.E., Haque, N., Northey, S.A., Giddey, S., 2021. Platinum group metals: a review of resources, production and usage with a focus on catalysts. Resources 10, 93. doi:10.3390/resources10090093.
  • 55.
    Hunt, J., Oalmann, J., Atach, M., Pirard, E., Fulton, R., Feig, S., 2025. Critical metal potential of Tasmanian Greisen: lithium, rare earth elements, and bismuth distribution and implications for processing. Minerals 15, 462. doi:10.3390/min15050462.
  • 56.
    Ibad, S.M., Tsegab, H., Siddiqui, N.A. et al., 2024. The upstream rare earth resources of Malaysia: insight into geology, geochemistry, and hydrometallurgical approaches. Geoscience Frontiers 15(6), 101899. doi:10.1016/j.gsf.2024.101899.
  • 57.
    IEA, 2023. International Energy Agency, 2021. The Role of Critical Minerals in Clean Energy Transitions. Paris. IEA, p. 283.
  • 58.
    ISA, 2024. A review of the contribution of ISA to the objectives of the 2023 Agreement under UNCLOS on the Conservation and Sustainable Use of Marine Biological Diversity of Areas Beyond National Jurisdictions. URL: https://www.isa.org.jm/legal-documents/.
  • 59.
    Islam, M.T., Iyer-Raniga, U., 2022. Lithium-ion battery recycling in the circular economy: a review. Recycling 7, 33. doi:10.3390/recycling7030033.
  • 60.
    Jena, M.S., Mohanty, J.K., Venugopal, R., Mandre, N.R., 2016. Characterization of low grade PGE ores of Boula-Nuasahi area, Odisha, India and implication on beneficiation. Ore Geology Reviews 72, Part 1, 629-640. doi:10.1016/j.oregeorev.2015.08.019.
  • 61.
    Jones, D.O.B., Arias, M.B., Van Audenhaege, L. et al., 2025. Long-term impact and biological recovery in a deep-sea mining track. Nature, 26808. doi:10.1038/s41586-025-08921-3.
  • 62.
    Khaskheli, M.B., Wang, S., Zhang, X. et al., 2023. Technology advancement and international law in marine policy, challenges, solutions and future prospective. Frontiers in Marine Science 10, 1258924. doi:10.3389/fmars.2023.1258924.
  • 63.
    Kingson, O., Liu, Y., Bhutani, R., Widdowson, M., 2023. Relicts of NeoTethyan mantle wedge in the Indo-Burma range, India: record of carbonate metasomatism and Neo-Tethyan mantle evolution. Results in Earth Sciences 1, 100001. doi:10.1016/j.rines.2023.100001.
  • 64.
    Klar, J.K., Schlosser, C., Milton, J.A. et al., 2018. Sources of dissolved iron to oxygen minimum zone waters on the senegalese continental margin in the tropical North Atlantic Ocean: insights from iron isotopes. Geochimica et Cosmochimica Acta 236, 60-78. doi:10.1016/j.gca. 2018.02.031.
  • 65.
    Krishnamurthy, P., 2023. India's first carbonatite discovery at Amba Dongar is sixty years old: an overview and current status. Journal of the Geological Society of India 99, 1335-1340. doi:10.1007/s12594-023-2480-0.
  • 66.
    Kumar, A., Fukuda, H., Hatton, T.A., Lienhard, J.H.V., 2019. Lithium recovery from oil and gas produced water: a need for a growing energy industry. ACS Energy Letters 4(6), 1471-1474. URL: http://pubs.acs.org/journal/aelccp.
  • 67.
    Kvamsdal, S., Hopland, A.O., Li, Y., Selle, S., 2023. Expert opinions on threats and impacts in the marine environment. Marine Policy 147, 105382. doi:10.1016/j.marpol.2022.105382.
  • 68.
    Kwan, K., Reford, S., 2025. Innovative airborne geophysical strategies to assist the exploration of critical metal systems. Geosystems and Geoenvironment 4(1), 100344. doi:10.1016/j.geogeo.2024.100344.
  • 69.
    Lawley, C.J.M., McCafferty, A.E., Graham, G.E. et al., 2022. Data driven prospectivity modelling of sediment hosted Zn Pb mineral systems and their critical raw materials. Ore Geology Reviews 141, 104635. doi:10.1016/j.oregeorev.2021.104635.
  • 70.
    Li, L.J., Li, D.X., Mao, X.C. et al., 2023. Evolution of magmatic sulfide of the giant Jinchuan Ni-Cu deposit, NW China: insights from chalcophile elements in base metal sulfide mineral. Ore Geology Reviews 158, 105497. doi:10.1016/j.oregeorev.2023.105497.
  • 71.
    Li, W., Li, Z., Wang, N., Gu, H., 2022. Selective extraction of rare earth elements from red mud using oxalic and sulfuric acids. Journal of Environmental Chemical Engineering 10(6), 108650. doi:10.1016/j.jece.2022.108650.
  • 72.
    Li, Z., Li, H., Hein, J.R., Dong, Y. et al., 2021. A possible link between seamount sector collapse and manganese nodule occurrence in the abyssal plains. NW Pacific Ocean, Ore Geology Reviews 138, 104378. doi:10.1016/j.oregeorev.2021.104378.
  • 73.
    Liu, J.G., Su, B.X., Liu, X. et al., 2024. Characterization and origin of high-Al chromitites: a case study of chromite deposit in the Kudi ophiolite in the NW Tibetan plateau. Lithos 484-485, 107753. doi:10.1016/j.lithos.2024.107753.
  • 74.
    Liu, S.L., Fan, H.R., Liu, X. et al., 2023. Global rare earth elements projects: new developments and supply chains. Ore Geology Reviews 157, 105428. doi:10.1016/j.oregeorev.2023.105428.
  • 75.
    London, D., 2017. Reading pegmatites: part 3 what lithium minerals say. Rocks & Minerals 92(2), 144-157. doi:10.1080/00357529.2017.1252636.
  • 76.
    Long, J., Zhang, S., Luo, K., 2023. Discovery of anomalous gallium enriched in stone coal: significance, provenance and recommendations. Geoscience Frontiers 14(4), 101538. doi:10.1016/j.gsf.2023.101538.
  • 77.
    Lorand, J., Juteau, T., 2000. The Haymiliyah sulphide ores (Haylayn Massif, Oman ophiolite): in-situ segregation of PGE-poor magmatic sulphides in a fossil Oceanic magma chamber. Marine Geophysical Researches 21, 327-350. doi:10.1023/A:1004887103269.
  • 78.
    Lusty, P., Goodenough, K., 2022. The potential for graphite in the UK. British geological survey (keyworth). Report CR/22/119, 6pp. Contribution and editing by Josso, P., and HiLL, A.
  • 79.
    Lusty, P.A.J., Hein, J.R., Josso, P., 2018. Formation and occurrence of ferromanganese crusts: earth's storehouse for critical metals. Elements 14, 313-8. doi:10.2138/gselements.14.5.313.
  • 80.
    Ma, T., Zhang, Q., Tang, Y., Liu, B., Li, Y., Wang, L., 2024. A review on the industrial chain of recycling critical metals from electric vehicle batteries: current status, challenges, and policy recommendations. Renewable and Sustainable Energy Reviews 204, 114806. doi:10.1016/j.rser.2024.114806.
  • 81.
    Malkova, M.Y., Zadiranov, A.N., Zaya, K., Dkhar, P., 2020. Ore of the tomtor rare-earth deposit for its industrial processing. Journal of Physics: Conference Series, 1687, 012038. doi:10.1088/1742-6596/1687/1/012038.
  • 82.
    Mart´n-Mndez, I., Llamas Borrajo, J., Bel-lan, A. et al., 2023. Geochemical distribution in residual soils of Iberian Pyrite Belt (Spain). Journal of Iberian Geology 49, 97-114. doi:10.1007/s41513-023-00210-0.
  • 83.
    McArthur, J.M., 1983. Offshore Peruvian phosphorite: a reappraisal of its age and genesis. Chemical Geology 38(1 2), 93-105. doi:10.1016/0009-2541(83)90047-5.
  • 84.
    McClenaghan, M.B., 2005. Indicator mineral methods in mineral exploration. Geochemistry: Exploration, Environment, Analysis 5, 233-245.
  • 85.
    doi:10.1144/1467-7873/03-066.
  • 86.
    Melcher, F., Grum, W., Simon, G., 1997. Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: a study of solid and fluid inclusions in chromite. Journal of Petrology 38(10), 1419-1458. doi:10.1093/petroj/38.10.1419.
  • 87.
    Menendez, A., James, R., Roberts, S., Peel, K., Connelly, D., 2017. Controls on the distribution of rare earth elements in deep-sea sediments in the North Atlantic Ocean. Ore Geology Reviews 87, 100-113. doi:10.1016/j.oregeorev.2016.09.036.
  • 88.
    Misra, P.S., Singh, A.K., Yadav, S. et al., 2017. Graphite exploration in Arunachal Pradesh, India. Journal of Fundamentals of Renewable Energy and Applications 2(2), 97-102.
  • 89.
    Moeck, I.S., 2014. Catalog of geothermal play types based on geologic controls. Renewable and Sustainable Energy Reviews 37, 867-882. doi:10.1016/j.rser.2014.05.032.
  • 90.
    Mostaghel, S., Siegmund, A., Cloutier, J.-P.A., 2022. Review on pyrometallurgical extraction of antimony from primary resources: current practices and evolving processes. Processes 10, 1590. doi:10.3390/pr10081590.
  • 91.
    Moura, A., 2005. Fluids from the Neves Corvo massive sulphide ores, iberian Pyrite Belt, Portugal. Chemical Geology 223(1 3), 153-169. doi:10.1016/j.chemgeo.2004.12.025.
  • 92.
    Muller, D., Groves, D.I., Santosh, M., 2024. Metallic Mineral Resources: The Critical Components for a Sustainable Earth. Elsevier, Amsterdam, p. 1-447.
  • 93.
    Mller, D., Groves, D.I., Santosh, M., 2024. Metallic Mineral Resources: The Critical Components for a Sustainable Earth. Elsevier, Amsterdam.
  • 94.
    Mller, D., Groves, D.I., Santosh, M., Yang, C.X., 2025. Critical metals: their applications with emphasis on the clean energy transition. Geosystems and Geoenvironment 4, 100310. doi:10.1016/j.geogeo.2024.100310.
  • 95.
    Natarajan, T., Inoue, K., Sahoo, S.K., 2023. Rare earth elements geochemistry and234 U/238 U, 235 U/238 U isotope ratios of the Kanyakumari beach placer deposits: occurrence and provenance. Minerals 13, 886. doi:10.3390/min13070886.
  • 96.
    Nayak, A.K., Ganguli, B., Ajayan, P.M., 2023. Advances in electric twowheeler technologies. Energy Reports 9, 3508-3530. doi:10.1016/j.egyr.2023.02.008.
  • 97.
    Niner, H.J., Ardron, J.A., Escobar, E.G., Gianni, M., Jaeckel, A., Jones, D.O.B., Levin, L.A., Smith, C.R., Thiele, T., Turner, P.J., Van Dover, C.L., Watling, L., Gjerde, K.M., 2018. Deep-sea mining with no net loss of biodiversity an impossible aim. Frontiers in Marine Science 5(53). doi:10.3389/fmars.2018.00053.
  • 98.
    Nkulu, C.B.L., Casas, L., Haufroid, V. et al., 2018. Sustainability of artisanal mining of cobalt in DR Congo. Nature Sustainability 1(9), 495-504. doi:10.1038/s41893-018-0139-4.
  • 99.
    Oszczepalski, S., Speczik, S., Zieli, K., Chmielewski, A., 2019. The Kupferschiefer deposits and prospects in S W Poland: past, present and future. Minerals 9, 592. doi:10.3390/min9100592.
  • 100.
    O'Driscoll, D., 2017. Overview of child labour in the artisanal and smallscale mining sector in Asia and Africa Helpdesk. UK Government, 1-10.
  • 101.
    Pak, S.J., Seo, I., Lee, K.Y., Hyeong, K., 2019. Rare earth elements and other critical metals in deep seabed mineral deposits: composition and implications for resource potential. Minerals 9(3), 3. doi:10.3390/min9010003.
  • 102.
    Paropkari, A.L., Ray, D., Balaram, V. et al., 2010. Formation of hydrothermal deposits at kings triple junction, northern Lau back-arc basin, SW Pacific: the geochemical perspectives. Journal of Asian Earth Sciences 38, 121-130. doi:10.1016/j.jseaes.2009.12.003.
  • 103.
    Partington, G.A., 1990. Environment and structural controls on the intrusion of the giant rare metal Greenbushes Pegmatite, Western Australia. Economic Geology 85(3), 437-456. doi:10.2113/gsecongeo.85.3.437.
  • 104.
    Parviainen, A., Ruskeeniemi, K.L., 2019. Environmental impact of mineralised black shales. Earth-Science Reviews 192, 65-90. doi:10.1016/j.earscirev.2019.01.017.
  • 105.
    Paulen, R.C. and McClenaghan, M.B. (ed.), 2024. Till geochemistry and indicator-mineral methods for exploration in glaciated terrains. Geological Survey of Canada, Open File 9210, p. 157. doi:10.4095/pbmy2d03m0.
  • 106.
    Petterson, M.G., Tawake, A., 2019. The Cook Islands (South Pacific) experience in governance of seabed manganese nodule mining. Ocean & Coastal Management 167, 271-287. doi:10.1016/j.ocecoaman. 2018.09.010.
  • 107.
    Rachidi, N.R., Nwaila, G.T., Zhang, S.E., Bourdeau, J.E., Ghorbani, Y., 2021. Assessing cobalt supply sustainability through production forecasting and implications for green energy policies. Resources Policy 74, 102423. doi:10.1016/j.resourpol.2021.102423.
  • 108.
    Radwany, M.R., Barton, I.F., 2022. The process mineralogy of leaching sandstone-hosted uranium-vanadium ores. Minerals Engineering 187, 107811. doi:10.1016/j.mineng.2022.107811.
  • 109.
    Rao, R.B., Mishra, B., 2025. In-depth mineralogical and geochemical characterisation of lean grade placer deposit for assessing the potential for mining operations of industrial critical minerals. Journal of The Institution of Engineers (India): Series D. doi:10.1007/s40033-025-00899-6.
  • 110.
    Reedy, R.C., Scanlon, B.R., Bagdonas, D.A., Hower, J.C., James, D., Kyle, J.R., Uhlman, K., 2024. Coal ash resources and potential for rare earth element production in the United States. International Journal of Coal Science & Technology 11, 74. doi:10.1007/s40789-024-00710-z.
  • 111.
    Rojas, P.A., Barra, F., Deditius, A. et al., 2018. New contributions to the understanding of Kiruna-type iron oxide-apatite deposits revealed by magnetite ore and gangue mineral geochemistry at the EI Romeral deposit, Chile. Ore Geology Reviews 93, 413-435. doi:10.1016/j.oregeorev.2018.01.003.
  • 112.
    Rossi, C., Bateson, L., Bayaraa, M., Butcher, A., Ford, J., Hughes, A., 2022. Framework for remote sensing and modelling of lithium-brine deposit formation. Remote Sensors 14, 1383. doi:10.3390/rs14061383.
  • 113.
    Sader, J.A., Ryan, S., 2019. Advances in ICP-MS technology and the application of multi-element geochemistry to exploration. Geochemistry: Exploration, Environment, Analysis 20(2), 167-175. doi:10.1144/geochem2019-049.
  • 114.
    Sakellariadou, F., Gonzalez, F.J., Hein, JR, Rincn-toms, B, Arvanitidis, N, Kuhn, T., 2022. Seabed mining and blue growth: exploring the potential of marine mineral deposits as a sustainable source of rare earth elements (MaREEs) (IUPAC Technical Report). Pure and Applied Chemistry 94, 329-51. doi:10.1515/pac-2021-0325.
  • 115.
    Sanoh, O., Zhang, Q., Wang, D., Aurlien, N., 2022. Guinea's bauxite resources evaluation and forecasting using elasticity demand method. Open Journal of Social Sciences 10, 400-418. doi:10.4236/jss.2022.104029.
  • 116.
    Santoro, L., Putzolu, F., Mondillo, N., Boni, M., Herrington, R., 2022. Trace element geochemistry of iron-(oxy)-hydroxides in Ni(Co)-laterites review, new data and implications for ore forming processes. Ore Geology Reviews 140, 104501. doi:10.1016/j.oregeorev.2021.104501.
  • 117.
    Santosh, M., Groves, D.I., Yang, C.X., 2024. Habitable planet to sustainable civilization: global climate change with related clean energy transition reliant on declining critical metal resources. Gondwana Research 130, 220–233. doi:10.1016/j.gr.2024.01.013.
  • 118.
    Schmid, S., Taylor, W.R., Jordan, D.P., 2020. The Bigrlyi tabular sandstone-hosted uranium–vanadium deposit, Ngalia Basin, Central Australia. Minerals 10, 896. doi:10.3390/min10100896.
  • 119.
    Sengupta, D., Van Gosen, B., 2016. Placer-type rare earth element deposits. Reviews in Economic Geology 18, 81–100. doi:10.5382/Rev.18.04.
  • 120.
    Slack, J.F., Beck, F.M., Bradley, D.C. et al., 2022. Potential for critical mineral deposits in Maine, USA. Atlantic Geoscience 58, 155–191. doi:10.4138/atlgeo.2022.007.
  • 121.
    Soh Tamehe, L., Zhao, Y., Xu, W., Gao, J., 2024. Ni(Co) laterite deposits of southeast Asia: a review and perspective. Minerals 14, 134. doi:10.3390/min14020134.
  • 122.
    Starostin, V.I., Sorokhtin, O.G., 2011. A new interpretation for the origin of the Norilsk type PGE–Cu–Ni sulfide deposits. Geoscience Frontiers 2(4), 583–591. doi:10.1016/j.gsf.2011.09.005.
  • 123.
    Staszak, P., Collot, J., Josso, P., Pelleter, E., Etienne, S., Patriat, M., Cheron, S., Boissier, A., Guyomard, Y., 2022. Origin and composition of ferromanganese deposits of New Caledonia exclusive economic zone. Minerals 12, 255. doi:10.3390/min12020255.
  • 124.
    Surour, A.A., El Desouky, M.M., Ismail, M.M., Aissa, R.A., Zaghloul, A., 2024. Gold mineralization and environmental impacts of artisanal mining in the Um Araka area. Egypt: microanalyses and heavy metals assessment. Journal of African Earth Sciences 223(1), 105519. doi:10.1016/j.jafrearsci.2024.105519.
  • 125.
    Sykes, J.P., Schodde, R., Samuel, R., 2019. A global overview of the geology and economics of lithium production, in: Australasian Institute of Mining and Metallurgy (AusIMM) Lithium Conference. doi:10.13140/RG.2.2.18537.42088.
  • 126.
    Tabelin, C.B., Park, I., Phengsaart, T. et al., 2021. Copper and critical metals production from porphyry ores and E-wastes: a review of resource availability, processing/recycling challenges, socio-environmental aspects, and sustainability issues. Resources, Conservation and Recycling 170, 105610. doi:10.1016/j.resconrec.2021.105610.
  • 127.
    Thompson, E.S., Holwell, D.A., McDonald, I., Reichow, M. et al., 2025. The effects of carbonate contamination on Ni-Cu-PGE deposit genesis in the Platreef, northern Bushveld Complex: a case study using Niggli numbers. Chemical Geology 671, 122481. doi:10.1016/j.chemgeo.2024.122481.
  • 128.
    Toro, N., Robles, P., Jeldres, R.I., 2020. Seabed mineral resources, an alternative for the future of renewable energy: a critical review. Ore Geology Reviews 126, 103699. doi:10.1016/j.oregeorev.2020.103699.
  • 129.
    Tshanga, M.M., Ncube, L., van Niekerk, E., 2024. Remote sensing insights into subsurface-surface relationships: land cover analysis and copper deposits exploration. Earth Science Informatics 17, 3979–4000. doi:10.1007/s12145-024-01423-2.
  • 130.
    Tunnicliffe, V., Snchez, L.E., Mudd, G.M. et al., 2025. Metal mining on land versus the ocean in the context of the current biodiversity crisis. npj Ocean Sustainability 4, 7. doi:10.1038/s44183-025-00110-z.
  • 131.
    USGS, 2025. U.S. Geological Survey, Mineral Commodity Summaries.
  • 132.
    Viladkar, S.G., 1981. The carbonatites of Amba Dongar, Gujarat, India. Bulletin of the Geological Society of Finland 53(1), 17–28.
  • 133.
    Vind, J., Malfliet, A., Blanpain, B. et al., 2018. Rare earth element phases in bauxite residue. Minerals 8, 77. doi:10.3390/min8020077.
  • 134.
    Wang, J., Li, L., Santosh, M., Ya, G.Y., Shen, J.F., Yuan, M.W., Alam, M., Li, S.R., 2024a. Multistage ore formation in the world’s largest REE-Nb-Fe deposit of Bayan Obo, North China Craton: new insights and implications. Ore Geology Reviews 164, 105817. doi:10.1016/j.oregeorev.2023.105817.
  • 135.
    Wang, X., Qin, W., Li, M., Liu, X., Cheng, Y., Chen, S., Yang, C., 2024b. Mineralogy of deep-sea manganese nodules and advances in extraction technology of valuable elements from manganese nodules. Metals 14, 1359. doi:10.3390/met14121359.
  • 136.
    Wang, Z.Y., Fan, H.R., Zhou, L., 2020. Carbonatite-related REE deposits: an overview. Minerals 10, 965. doi:10.3390/min10110965.
  • 137.
    Warren, J.K., 2010. Evaporites through time: tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth-Science Reviews 98(3–4), 217–268. doi:10.1016/j.earscirev.2009.11.004.
  • 138.
    Wilde, A., Simpson, L., Hanna, S., 2002. Preliminary study of tertiary hydrothermal alteration and platinum deposition in the Oman ophiolite. In: Jessell, M.W., 2002. General contributions: 2002. Journal of the Virtual Explorer 6, 7–13.
  • 139.
    Wood, D., van As, A., 2024. Discovery and underground mining of large deposits: essential training to ensure copper supply. SEG Discovery 139, 11–23. doi:10.5382/Geo-and-Mining-25.
  • 140.
    Worlanyo, A.S., Jiangfeng, L., 2021. Evaluating the environmental and economic impact of mining for post-mined land restoration and landuse: a review. Journal of Environmental Management 279, 111623. doi:10.1016/j.jenvman.2020.111623.
  • 141.
    Wright, A.J., Parnell, J., Ames, D.E., 2010. Carbon spherules in Ni–Cu–PGE sulphide deposits in the sudbury impact structure, Canada. Precambrian Research 177(1–2), 23–38. doi:10.1016/j.precamres.2009.11.002.
  • 142.
    Yamada, R., Yoshida, T., 2011. Relationships between Kuroko volcanogenic massive sulfide (VMS) deposits, felsic volcanism, and island arc development in the northeast Honshu arc, Japan. Mineralium Deposita 46, 431–448. doi:10.1007/s00126-011-0362-7.
  • 143.
    Yang, Y., Xiao, B., Shi, X., Zhang, S., 2024. Unusual cobalt behaviors and enrichment in cobalt-rich crust from the Magellan seamounts in the Western Pacific. Ore Geology Reviews 173, 106234. doi:10.1016/j.oregeorev.2024.106234.
  • 144.
    Yin, J., Xiang, S., Yang, K., Shi, H., Yin, Y., 2023. Review of tellurium resources in the World and in China. Advances in Social Sciences and Management 1(1), 41–51. URL: https://hspublishing.org/ASSM/article/view/13
  • 145.
    Zhang, Q., Chen, X., Luan, L., Sha, F., Liu, X., 2025. Technology and equipment of deep-sea mining: state of the art and perspectives. Earth Energy Science 1(1), 65–84. doi:10.1016/j.ees.2024.08.002.
  • 146.
    Zhang, S.E., Bourdeau, J.E., Nwaila, G.T., Ghorbani, Y., 2022. Advanced geochemical exploration knowledge using machine learning: prediction of unknown elemental concentrations and operational prioritization of re-analysis campaigns. Artificial Intelligence in Geosciences 3, 86–100. doi:10.1016/j.aiig.2022.10.003.
  • 147.
    Zhao, T., Wang, S., Ouyang, C. et al., 2024. Artificial intelligence for geoscience: progress, challenges, and perspectives. Innovation (Camb) 5(5), 100691. doi:10.1016/j.xinn.2024.100691.
  • 148.
    Zhu, J., MacInnis, M.S., Deng, J., 2024. Decoupling of Cu and Zn in sediment-hosted base metal deposits: evidence from LA-ICP-MS analyses of fluid inclusions and trace elements in minerals at Baiyangping, China. Journal of Asian Earth Sciences 272, 106230. doi:10.1016/j.jseaes.2024.106230.
Share this article:
How to Cite
Balaram, V., & Santosh, M. (2025). Critical metal deposits in terrestrial and oceanic environmentsand the Global Energy Transition. Habitable Planet, 1(1&2), 86–107. https://doi.org/10.63335/j.hp.2025.0008
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.