2509001577
  • Open Access
  • Article

Carbonatites complexes and associated REE mineral system:Significance in modern technology

  • Franco Pirajno 1,2,3*,   
  • Hao-Cheng Yu 3

Received: 01 May 2025 | Revised: 22 May 2025 | Accepted: 23 May 2025 | Published: 26 May 2025

Abstract

Carbonatites, comprising both intrusive igneous and hypabyssal rocks, are among the major reserves of rare earth elements (REE) on Earth, and are hence critical for modern technology. Major REE minerals in these rocks include bastnaesite, monazite, xenotime, pyrochlore and apatite. REE important military applications, computer displays, sonar, hybrid vehicles, digital cameras, etc. REE mineralization is usually associated with potassic rocks, carbonatite and nephelinitic rocks. In Western Australia, important carbonatite systems include Copperhead, Mt Weld and the Gifford Creek ferrocarbonatite complex. In terms of whole-rock alteration, fenitisation, which occurs in aureoles of carbonatite and alkaline complexes. Associated mineralisation is usually related to alkali metasomatism in anorogenic ring complexes, in which unusual concentrations, apart from REE, contain F, Zr, Ba, Nb, Th, U, Ta and W. Ring complexes of the ijolite-carbonatite association may contain economic amounts of pyrochlore, columbite, cassiterite, monazite and zircon. Pyrochlore generally occurs in sodic metasomatized peralkaline granites. Good examples of REE mineral systems are the Pilanesberg Complex, the Pienaars River Complex and the Lolekop carbonatite complex.

References 

  • 1.
    Anenburg, M., Broom-Fendley, S., Chen, W., 2021. Formation of rare earth deposits in carbonatites. Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology 17(5), 327–332. doi:10.2138/gselements.17.5.327.
  • 2.
    Anenburg, M., Mavrogenes, J.A., Frigo, C., Wall, F., 2020. Rare earth element mobility in and around carbonatites controlled by sodium, potassium, and silica. Science advances 6(41), eabb6570. doi:10.1126/sciadv.abb6570.
  • 3.
    Batchelor, R.A., Bowden, P., 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology 48(1-4), 43–55. doi:10.1016/0009-2541(85)90034-8.
  • 4.
    Bowden, P., 1985. The geochemistry and mineralization of alkaline ring complexes in Africa (a review). Journal of African Earth Sciences 3(12), 17–39. doi:10.1016/0899-5362(85)90020-X.
  • 5.

    Brooker, R., Kjarsgaard, B., 2011. Silicate–carbonate liquid immiscibility and phase relations in the system SiO2–Na2O–Al2O3–CaO–CO2 at 0.1–2.5 GPa with applications to carbonatite genesis. Journal of Petrology 52(7-8), 1281–1305. doi:10.1093/petrology/egq081.

  • 6.
    Brøgger, W.C., 1921. Die eruptivgesteine des Kristianiagebietes. In commission bei J. Dybwad. doi:10.1017/S0016756800105217.
  • 7.
    Carmichael, I.S.E., 1974. Igneous petrology, in: Geological Magazine. McGraw-Hill. doi:10.1017/S0016756800046318.
  • 8.
    Chakhmouradian, A.R., Wall, F., 2012. Rare earth elements: minerals, mines, magnets (and more). Elements 8(5), 333–340. doi:10.2113/gselements.8.5.333.
  • 9.
    Chebotarev, D.A., Wohlgemuth-Ueberwasser, C., Hou, T., 2022. Partitioning of REE between calcite and carbonatitic melt containing P, S, Si at 650–900 °C and 100 MPa. Scientific Reports 12(1), 3320. doi:10.1038/s41598-022-07330-0.
  • 10.
    Coetzee, C.B., 1976. Mineral Resources of the Republic of South Africa. Pretoria, p. 1–462.
  • 11.
    Crocker, I.T., Martini, J.E., Shnge, A. (Eds.), 1988. The fluorspar deposits of the Republics of South Africa and Bophuthatswana. Handbook-Republic of South Africa. Geological survey, p. 172.
  • 12.
    Downes, P.J., Demny, A., Czuppon, G., Jaques, A.L., Verrall, M., Sweetapple, M., Adams, D., McNaughton, N.J., Gwalani, L.G., Griffin, B.J., 2014. Stable H–C–O isotope and trace element geochemistry of the Cummins Range Carbonatite Complex, Kimberley region, western Australia: implications for hydrothermal REE mineralization, carbonatite evolution and mantle source regions. Mineralium Deposita 49(8), 905–932. doi:10.1007/s00126-014-0552-1.
  • 13.
    Gittins, J., 1989. Carbonatite origin and diversity. Nature 338(6216), 547–548. doi:10.1038/338547d0.
  • 14.
    Goodenough, K.M., 2017. Verplanck and Hitzman: rare earth and critical elements in ore deposits. Mineralium Deposita 52(1), 129–130. doi:10.1007/s00126-016-0679-3.
  • 15.
    Griffin, T., 1990. Hooper and Lamboo Complexes, p. 234-249.
  • 16.
    Hou, Z., Liu, Y., Tian, S., Yang, Z., Xie, Y., 2015. Formation of carbonatiterelated giant rare-earth-element deposits by the recycling of marine sediments. Scientific Reports 5(1), 10231. doi:10.1038/srep10231.
  • 17.
    Hou, Z.-Q., Xu, B., Zhang, H., Zheng, Y.-C., Wang, R., Liu, Y., Miao, Z., Gao, L., Zhao, Z., Griffin, W.L., 2023. Refertilized continental root controls the formation of the Mianning–Dechang carbonatite-associated rare-earth-element ore system. Communications Earth & Environment 4(1), 293. doi:10.1038/s43247-023-00956-6.
  • 18.
    Hutchison, C.S., 1983. Mineralization in Intracratonic Basins, Economic Deposits and their Tectonic Setting. Springer, p. 44–81. doi:10.1007/978-1-349-17039-5.
  • 19.
    Jaques, A., 2008. Australian carbonatites: their resources and geodynamic setting. International Kimberlite Conference: Extended Abstracts, vol. 9. doi:10.29173/ikc3566.
  • 20.
    Kinnaird, J., Bowden, P., 1991. Magmatism and Mineralization Associated with Phanerozoic Anorogenic Plutonic Complexes of the African Plate, Magmatism in Extensional Structural Settings. Springer, p. 410–485. doi:10.1007/978-3-642-73966-8_16.
  • 21.
    Kjarsgaard, B., Hamilton, D., 1989. Carbonatite origin and diversity. Nature 338(6216), 547–548.
  • 22.
    Lal, R., 2017. Encyclopedia of Soil Science. CRC Press. doi:10.1081/e-ess3.
  • 23.
    Le Bas, M., 1981. Carbonatite magmas. Mineralogical Magazine 44(334), 133–140. doi:10.1180/minmag.1981.044.334.02.
  • 24.
    Le Bas, M., 1987. Ultra-alkaline magmatism with or without rifting. Tectonophysics 143(1-3), 75–84. doi:10.1016/0040-1951(87) 90079-5.
  • 25.
    Le Maitre, R., Streckeisen, A., Zanettin, B., Le Bas, M., Bonin, B., Bateman, P., Bellieni, G., Dudek, A., Efremova, S., Keller, J., 2002. Igneous rocks: a classification and glossary of terms, in: Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous rocks. Cambridge University Press.
  • 26.
    Ma, J.-D., Wu, M.-Q., Diao, X., He, D.-Y., Cui, T., Long, Z.-Y., Qiu, K.F., 2023. Na-metasomatism and hematization implication of Zr and Nb-Be-REE mineralization: case study of the Baerzhe deposit in inner Mongolia. Acta Petrologica Sinica 39(2), 432–444. doi:10.18654/1000-0569/2023.02.09.
  • 27.
    Mariano, A.N., 1989. Economic geology of rare earth elements. Reviews in Mineralogy and Geochemistry 21(1), 309-337. doi:130820383.
  • 28.
    Martin, L.H., Schmidt, M.W., Mattsson, H.B., Guenther, D., 2013. Element partitioning between immiscible carbonatite and silicate melts for dry and H2O-bearing systems at 1 3 GPa. Journal of Petrology 54(11), 2301-2338. doi:10.1093/petrology/egt048.
  • 29.
    McKie, D., 1962. Goyazite and florencite from two African carbonatites. Mineralogical Magazine and Journal of the Mineralogical Society 33, 281-297. doi:10.1180/minmag.1962.033.259.03.
  • 30.
    Michael, D., 1989. Geology, mineralogy, geochemistry and hydrothermal alteration of the Brandberg alkaline complex, Namibia. URI: http: //hdl.handle.net/11070.1/4912.
  • 31.
    Moror, E., Berkesi, M., Zajacz, Z., Guzmics, T., 2024. Rare earth element transport and mineralization linked to fluids from carbonatite systems. Geology 52(4), 240-244. doi:10.1130/g51531.1.
  • 32.
    Nabyl, Z., Massuyeau, M., Gaillard, F., Tuduri, J., Iacono-Marziano, G., Rogerie, G., Le Trong, E., Di Carlo, I., Melleton, J., Bailly, L., 2020. A window in the course of alkaline magma differentiation conducive to immiscible REE-rich carbonatites. Geochimica et Cosmochimica Acta 282, 297-323. doi:10.1016/j.gca.2020.04.008.
  • 33.
    Pirajno, F., 1992. Alkali Metasomatism and Related Mineral Deposits, Hydrothermal Mineral Deposits: Principles and Fundamental Concepts for the Exploration Geologist. Springer, Berlin Heidelberg, Berlin, Heidelberg. doi:10.1007/978-3-642-75671-9_9.
  • 34.
    Pirajno, F., 2009. Hydrothermal processes and mineral systems. Springer Science & Business Media. doi:10.1007/978-1-4020-8613-7.
  • 35.
    Pirajno, F., 2013. Effects of MetasomatiSM on Mineral Systems and their Host Rocks: Alkali Metasomatism, Skarns, Greisens, Tourmalinites, Rodingites, Black-Wall Alteration and Listvenites, Metasomatism and the Chemical Transformation of Rock. Springer, p. 203-251. doi:10.1007/978-3-642-28394-9_7.
  • 36.
    Pirajno, F., 2015. Intracontinental anorogenic alkaline magmatism and carbonatites, associated mineral systems and the mantle plume connection. Gondwana Research 27(3), 1181-1216. doi:10.1016/j.gr.2014.09.008.
  • 37.
    Pirajno, F., Gonzlez-lvarez, I., Chen, W., Kyser, K.T., Simonetti, A., Leduc, E., 2014. The Gifford Creek ferrocarbonatite complex, Gascoyne Province, western Australia: associated fenitic alteration and a putative link with the ~1075 Ma Warakurna LIP. Lithos 202, 100-119. doi:10.1016/j.lithos.2014.05.012.
  • 38.
    Pirajno, F., Hoatson, D.M., 2012. A review of Australia's Large Igneous Provinces and associated mineral systems: implications for mantle dynamics through geological time. Ore Geology Reviews 48, 2-54. doi:10.1016/j.oregeorev.2012.04.007.
  • 39.
    Pirajno, F., Yu, H.-C., 2022. The carbonatite story once more and associated REE mineral systems. Gondwana Research 107, 281-295. doi:10.1016/j.gr.2022.03.006.
  • 40.
    Prins, P., 1981. The Geochemical Evolution of the Alkaline and Carbonatite Complexes of the Damaraland Igneous Province, South West Africa. Stellenbosch University, p. 145-278. doi:doi:10019.1/68062. Qiu, K.F., Yu, H.C., Wu, M.Q., Geng, J.Z., Ge, X.K., Gou, Z.Y., Taylor, R.D., 2019. Discrete Zr and REE mineralization of the Baerzhe rare-metal deposit, China. American Mineralogist 104(10), 1487-1502. doi:10.2138/am-2019-6890.
  • 41.
    Rugless, C., Pirajno, F., 1996. Geology and geochemistry of the copperhead albitite `carbonatite' complex, east Kimberley, Western Australia. Australian Journal of Earth Sciences 43(3), 311-322. doi:10.1080/08120099608728258.
  • 42.
    Smith, M., Moore, K., Kavecsnszki, D., Finch, A.A., Kynicky, J., Wall, F., 2016. From mantle to critical zone: a review of large and giant sized deposits of the rare earth elements. Geoscience Frontiers 7(3), 315-334. doi:10.1016/j.gsf.2015.12.006.
  • 43.
    Strauss, C., Truter, F.C., 1950. Post-bushveld ultrabasic, alkali, and carbonatitic eruptives at magnet heights, Sekukuniland, Eastern Transvaal. South African Journal of Geology 53(1), 169-190. doi :10520/AJA10120750_2047.
  • 44.
    Tyler, I.M., Hocking, R.M., Haines, P.W., 2012. Geological evolution of the Kimberley region of Western Australia. Episodes 35(1), 298-306. doi:10.18814/epiiugs/2012/v35i1/029.
  • 45.
    Veksler, I.V., Dorfman, A.M., Dulski, P., Kamenetsky, V.S., Danyushevsky, L.V., Jeffries, T., Dingwell, D.B., 2012. Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite. Geochimica et Cosmochimica Acta 79, 20-40. doi:10.1016/j.gca. 2011.11.035.
  • 46.
    Verwoerd, W. (Ed.), 1967. The Carbonatites of South Africa and South West Africa. Government Printer, South Africa.
  • 47.
    Woolley, A.R. (Ed.), 1987. Alkaline Rocks and Carbonatites of the World: Africa. London British Museum (Natural History), p. 335.
  • 48.
    Woolley, A.R., Kjarsgaard, B.A., 2008. Paragenetic types of carbonatite as indicated by the diversity and relative abundances of associated silicate rocks: evidence from a global database. The Canadian Mineralogist 46(4), 741-752. doi:10.3749/canmin.46.4.741.
  • 49.
    Wu, M., Samson, I.M., Qiu, K., Zhang, D., 2021. Concentration mechanisms of rare earth element-Nb-Zr-Be mineralization in the Baerzhe Deposit, Northeast China: insights from textural and chemical features of amphibole and rare metal minerals. Economic Geology 116(3), 651-679. doi:10.5382/econgeo.4789.
  • 50.
    Xie, Y., Li, Y., Hou, Z., Cooke, D.R., Danyushevsky, L., Dominy, S.C., Yin, S., 2015. A model for carbonatite hosted REE mineralisation the Mianning Dechang REE belt, western Sichuan Province, China. Ore Geology Reviews 70, 595-612. doi:10.1016/j.oregeorev.2014.10.027.
  • 51.
    Yang, K.F., Fan, H.R., Pirajno, F., Li, X.C., 2019. The Bayan Obo (China) Giant REE Accumulation Conundrum Elucidated by Intense Magmatic Differentiation of Carbonatite. Geology 47(12), 1198-1202. doi:10.1130/g46674.1.
  • 52.
    Zhao, X.-C., Yan, S., Niu, H.-C., Yang, W.-B., Li, N.-B., Li, J., Zhang, L., McCoy-West, A.J., 2025. Molybdenum isotopes demonstrate that multistage upgrading is required to generate heavy rare earth elementenriched carbonatites. Geological Society of America Bulletin 137(3-4), 1855-1871. doi:10.1130/b37700.1.
Share this article:
How to Cite
Pirajno, F., & Yu, H.-C. (2025). Carbonatites complexes and associated REE mineral system:Significance in modern technology. Habitable Planet, 1(1&2), 115–128. https://doi.org/10.63335/j.hp.2025.0010
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.