2509001587
  • Open Access
  • Article

Thermal coupling mode in mantle-outer core convection predicted from an ultra-high-resolution numerical simulation of two-layer convection with a large viscosity contrast

  • Masaki Yoshida *

Received: 21 May 2025 | Revised: 05 Jun 2025 | Accepted: 06 Jun 2025 | Published: 11 Jun 2025

Abstract

Previous global mantle seismic tomography analyses have revealed the large-scale horizontal structure of the mantle. On the other hand, the large-scale horizontal structure of the outer core could not be well determined using seismic wave analysis due to its liquid nature. Therefore, at present, numerical simulations are the only method for understanding the large-scale horizontal structure of the outer core. Previous numerical studies on two-layer Rayleigh-Bénard convection with an infinite Prandtl number have shown that the coupling mode between the two layers changes from mechanical coupling to a transitional mode to thermal coupling as the viscosity contrast between the two layers increases. This study presents an ultra-high-resolution numerical simulation of two-layer convection with a viscosity contrast of 104. The effective Rayleigh number of convection in the inner low-viscosity layer is approximately 2 × 1010. A spatiotemporal analysis of convection confirmed a new thermal coupling mode in the two-layer convection, primarily driven by downwelling plumes. When applied to the coupling between the mantle and outer core of Earth's interior, whose geophysical and geochemical structures are considered nearly hemispherical relative to the axis of rotation, this coupling mode effectively cools Earth’s core and releases heat from the interior to the surface.

References 

  • 1.
    Anderson, D.L., 2002. The case for irreversible chemical stratification of the mantle. Int. Geol. Rev. 44(2), 97–116. doi: 10.2747/0020-6814. 44.2.97.
  • 2.
    Argus, D.F., Peltier, W.R., Blewitt, G., Kreemer, C., 2021. The viscosity of the top third of the lower mantle estimated using GPS, GRACE, and relative sea level measurements of glacial isostatic adjustment. J. Geophys. Res: Solid Earth 126(5), e2020JB021537. doi: 10.1029/2020JB021537.
  • 3.
    Birch, F., 1951. Elasticity and constitution of the Earth’s interior. Trans. N. Y. Acad. Sci. 14, 72–76.
  • 4.
    Busse, F.H., 1970. Thermal instabilities in rapidly rotating systems. J. Fluid Mech. 44(3), 441–460. doi: 10.1017/S0022112070001921.
  • 5.
    Condie, K.C., 2016. Earth as an Evolving Planetary System. Academic Press, Amsterdam, Netherlands. doi: 10.1016/C2015-0-00179-4.
  • 6.
    Cruciani, C., Carminati, E., Doglioni, C., 2005. Slab dip vs. lithosphere age: no direct function. Earth Planet. Sci. Lett. 238(3), 298–310. doi: 10.1016/j.epsl.2005.07.025.
  • 7.
    Demou, A.D., Scapin, N., Crialesi-Esposito, M., Costa, P., Spiga, F., Brandt, L., 2024. Effects of Rayleigh and Weber numbers on twolayer turbulent Rayleigh–Bnard convection. J. Fluid Mech. 996, A23. doi: 10.1017/jfm.2024.805.
  • 8.
    Faccincani, L., Faccini, B., Casetta, F., Mazzucchelli, M., Nestola, F., Coltorti, M., 2021. EoS of mantle minerals coupled with composition and thermal state of the lithosphere: inferring the density structure of peridotitic systems. Lithos 404-405, 106483. doi: 10.1016/j.lithos. 2021.106483.
  • 9.
    Ferziger, J.H., Peri, M., Street, R.L., 2020. Computational Methods for Fluid Dynamics. 4th ed., Springer, Switzerland, p. 596. doi: 10.1007/ 978-3-319-99693-6.
  • 10.
    French, S.W., Romanowicz, B.A., 2014. Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography. Geophys. J. Int. 199(3), 1303–1327. doi: 10.1093/gji/ggu334.
  • 11.
    Herzberg, C., Condie, K., Korenaga, J., 2010. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292(1-2), 79–88. doi: 10.1016/j.epsl.2010.01.022.
  • 12.
    Heyn, B.H., Conrad, C.P., Trønnes, R.G., 2020. Core-mantle boundary topography and its relation to the viscosity structure of the lowermost mantle. Earth Planet. Sci. Lett. 543, 116358. doi: 10.1016/j.epsl. 2020.116358.
  • 13.
    Honda, S., 1982. Numerical analysis of layered convection: marginal stability and finite amplitude analyses. Bull. Earthq. Res. Inst. 57, 273–302. doi: 10.15083/0000032992.
  • 14.
    Iwamori, H., Nakamura, H., 2015. Isotopic heterogeneity of oceanic, arc and continental basalts and its implications for mantle dynamics. Gondwana Res. 27(3), 1131–1152. doi: 10.1016/j.gr.2014.09.003.
  • 15.
    Iwamori, H., Yoshida, M., Nakamura, H., 2022. Large-scale structures in the Earth’s interior: top-down hemispherical dynamics constrained by geochemical and geophysical approaches. Front. Earth Sci. 10, 1033378. doi: 10.3389/feart.2022.1033378.
  • 16.
    Jeanloz, R., Morris, S., 1987. Is the mantle geotherm subadiabatic? Geophys. Res. Lett. 14(4), 335–338. doi: 10.1029/GL014i004p00335.
  • 17.
    Johnson, D., Narayanan, R., 1997. Geometric effects on convective coupling and interfacial structures in bilayer convection. Phys. Rev. E 56(5), 5462–5472. doi: 10.1103/PhysRevE.56.5462.
  • 18.
    Kono, M., Roberts, P.H., 2002. Recent geodynamo simulations and observations of the geomagnetic field. Rev. Geophys. 40(4), 4-1–4-53. doi: 10.1029/2000RG000102.
  • 19.
    Koper, K.D., Pyle, M.L., Franks, J.M., 2003. Constraints on aspherical core structure from PKiKP-PcP differential travel times. J. Geophys. Res. 108(B3), 2168. doi: 10.1029/2002JB001995.
  • 20.
    Lambeck, K., Purcell, A., Zhao, S., 2017. The North American Late Wisconsin ice sheet and mantle viscosity from glacial rebound analyses. Quat. Sci. Rev. 158, 172–210. doi: 10.1016/j.quascirev.2016.11. 033.
  • 21.
    Lau, H.C.P., Mitrovica, J.X., Austermann, J., Crawford, O., Al-Attar, D., Latychev, K., 2016. Inferences of mantle viscosity based on ice age data sets: radial structure. J. Geophys. Res.: Solid Earth 121(10), 6991–7012. doi: 10.1002/2016JB013043.
  • 22.
    Lu, C., Grand, S.P., Lai, H., Garnero, E.J., 2019. TX2019slab: a new P and S tomography model incorporating subducting slabs. J. Geophys. Res. Solid Earth 124(11), 11549–11567. doi: 10.1029/2019jb017448.
  • 23.
    McKenzie, D.P., Parker, R.L., 1967. The North Pacific: an example of tectonics on a sphere. Nature 216, 1276–1280. doi: 10.1038/2161276a0.
  • 24.
    Moore, D.R., Weiss, N.O., 1973. Two-dimensional Rayleigh-Bnard convection. J. Fluid Mech. 58(2), 289–312. doi: 10.1017/ S0022112073002600.
  • 25.
    Morelli, A., Dziewonski, A.M., 1987. Topography of the core–mantle boundary and lateral homogeneity of the liquid core. Nature 325, 678–683. doi: 10.1038/325678a0.
  • 26.
    Prakash, A., Yasuda, K., Otsubo, F., Kuwahara, K., Doi, T., 1997. Flow coupling mechanisms in two-layer Rayleigh–Benard convection. Exp. Fluid 23(3), 252–261. doi: 10.1007/s003480050108.
  • 27.
    Ritsema, J., Deuss, A., van Heijst, H.J., Woodhouse, J.H., 2011. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int. 184(3), 1223–1236. doi: 10. 1111/j.1365-246X.2010.04884.x.
  • 28.
    Schubert, G., Turcotte, D.L., Olson, P., 2001. Mantle Convection in the Earth and Planets. Cambridge Univ. Press, London, p. 956. doi: 10.1017/CBO9780511612879.
  • 29.
    Sun, Y., Xie, Y.-C., Xie, J.-X., Zhong, J.-Q., Zhang, J., Xia, K.-Q., 2024. Model for the dynamics of the large-scale circulations in two-layer turbulent convection. Phys. Rev. Fluids 9(3), 033501. doi: 10.1103/ PhysRevFluids.9.033501.
  • 30.
    Sze, E.K.M., van der Hilst, R.D., 2003. Core mantle boundary topography from short period PcP, PKP, and PKKP data. Phys. Earth Planet. Int. 135(1), 27–46. doi: 10.1016/S0031-9201(02)00204-2.
  • 31.
    Tanaka, S., 2010. Constraints on the core-mantle boundary topography from P4KP-PcP differential travel times. J. Geophys. Res.: Solid Earth (B4), B04310. doi: 10.1029/2009JB006563.
  • 32.
    Ukaji, K., Sawada, R., 1970a. Cellular convection in the two-layer fluid. Abstracts of Meteorolog. Soc. Jpn. Meet. 17, 96. (in Japanese).
  • 33.
    Ukaji, K., Sawada, R., 1970b. Cellular convection in the two-layer fluid (2). Abstracts of Meteorolog. Soc. Jpn. Meet. 18, 37 (in Japanese).
  • 34.
    Ukaji, K., Sawada, R., 1971. Cellular convection in the two-layer fluid (Theory 3). Abstracts of Meteorolog. Soc. Jpn. Meet. 20, 2 (in Japanese).
  • 35.
    Vecsey, L., 2003. Chaos in Thermal Convection and the Wavelet Analysis of Geophysical Fields. PhD thesis. Faculty of Mathematics and Physics, Charles University in Prague, p. 116.
  • 36.
    Vecsey, L., Yuen, D.A., Sevre, E.O.D., Dubuffet, F., 2003. Ultra-high Ra convection and applications of wavelet, in: Abstracts of 8th International Workshop on Numerical Modeling of Mantle Convection and Lithospheric Dynamics, Hruba Skala, Czech Republic, p. 34.
  • 37.
    Versteeg, H.K., Malalasekera, W., 2007. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. 2nd ed., Prentice Hall, U.K., p. 503.
  • 38.
    Wessel, P., Luis, J., Uieda, L., Scharroo, R., Wobbe, F., Smith, W.H.F., Tian, D., 2019. The Generic Mapping Tools Version 6. Geochem. Geophys. Geosyst. 20(11), 5556–5564. doi: 10.1029/2019GC008515.
  • 39.
    Xie, Y.-C., Xia, K.-Q., 2013. Dynamics and flow coupling in two-layer turbulent thermal convection. J. Fluid Mech. 728, R1. doi: 10.1017/jfm. 2013.313.
  • 40.
    Yoshida, M., 2008a. Core-mantle boundary topography estimated from numerical simulations of instantaneous mantle flow. Geochem. Geophys. Geosyst. 9(7), Q07002. doi: 10.1029/2008GC002008.
  • 41.
    Yoshida, M., 2008b. Mantle convection with longest-wavelength thermal heterogeneity in a 3-D spherical model: degree one or two? Geophys.
  • 42.
    Res. Lett. 35, L23302. doi: 10.1029/2008GL036059.
  • 43.
    Yoshida, M., 2010. Preliminary three-dimensional model of mantle convection with deformable, mobile continental lithosphere. Earth Planet. Sci. Lett. 295(1-2), 205–218. doi: 10.1016/j.epsl.2010.04.001.
  • 44.
    Yoshida, M., 2017. On approximations of the basic equations of terrestrial mantle convection used in published literature. Phys. Earth Planet. Int. , 11–17. doi: 10.1016/j.pepi.2017.05.006.
  • 45.
    Yoshida, M., 2023a. How mantle convection drives the supercontinent cycle: mechanism, driving force, and substantivity, in: Duarte, J. (Ed.), Dynamics of Plate Tectonics and Mantle Convection. Elsevier, Amsterdam, Netherlands, p. 197–221. doi: 10.1016/B978-0-323-85733-8. 00002-0.
  • 46.
    Yoshida, M., 2023b. Stress state of the stable part of the Pacific Plate predicted by a numerical model of global mantle flow coupled with plate motion. Lithosphere 2023, 6563534. doi: 10.2113/2023/6563534.
  • 47.
    Yoshida, M., Hamano, Y., 2016. Numerical studies on the dynamics of two-layer Rayleigh-Bnard convection with an infinite Prandtl number and large viscosity contrasts. Phys. Fluids 28(11), 116601. doi: 10.1063/1.4966685.
  • 48.
    Yoshida, M., Iwamori, H., Hamano, Y., Suetsugu, D., 2017. Heat transport and coupling modes in Rayleigh-Bnard convection occurring between two layers with largely different viscosities. Phys. Fluids 29(9), 096602. doi: 10.1063/1.4989592.
  • 49.
    Zhao, D., 2015. Multiscale Seismic Tomography. Springer Japan, Tokyo, p. 304. doi: 10.1007/978-4-431-55360-1.
Share this article:
How to Cite
Yoshida, M. (2025). Thermal coupling mode in mantle-outer core convection predicted from an ultra-high-resolution numerical simulation of two-layer convection with a large viscosity contrast. Habitable Planet, 1(1&2), 145–156. https://doi.org/10.63335/j.hp.2025.0012
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.