- 1.
Anderson, D.L., 2002. The case for irreversible chemical stratification of the mantle. Int. Geol. Rev. 44(2), 97–116. doi: 10.2747/0020-6814. 44.2.97.
- 2.
Argus, D.F., Peltier, W.R., Blewitt, G., Kreemer, C., 2021. The viscosity of the top third of the lower mantle estimated using GPS, GRACE, and relative sea level measurements of glacial isostatic adjustment. J. Geophys. Res: Solid Earth 126(5), e2020JB021537. doi: 10.1029/2020JB021537.
- 3.
Birch, F., 1951. Elasticity and constitution of the Earth’s interior. Trans. N. Y. Acad. Sci. 14, 72–76.
- 4.
Busse, F.H., 1970. Thermal instabilities in rapidly rotating systems. J. Fluid Mech. 44(3), 441–460. doi: 10.1017/S0022112070001921.
- 5.
Condie, K.C., 2016. Earth as an Evolving Planetary System. Academic Press, Amsterdam, Netherlands. doi: 10.1016/C2015-0-00179-4.
- 6.
Cruciani, C., Carminati, E., Doglioni, C., 2005. Slab dip vs. lithosphere age: no direct function. Earth Planet. Sci. Lett. 238(3), 298–310. doi: 10.1016/j.epsl.2005.07.025.
- 7.
Demou, A.D., Scapin, N., Crialesi-Esposito, M., Costa, P., Spiga, F., Brandt, L., 2024. Effects of Rayleigh and Weber numbers on twolayer turbulent Rayleigh–Bnard convection. J. Fluid Mech. 996, A23. doi: 10.1017/jfm.2024.805.
- 8.
Faccincani, L., Faccini, B., Casetta, F., Mazzucchelli, M., Nestola, F., Coltorti, M., 2021. EoS of mantle minerals coupled with composition and thermal state of the lithosphere: inferring the density structure of peridotitic systems. Lithos 404-405, 106483. doi: 10.1016/j.lithos. 2021.106483.
- 9.
Ferziger, J.H., Peri, M., Street, R.L., 2020. Computational Methods for Fluid Dynamics. 4th ed., Springer, Switzerland, p. 596. doi: 10.1007/ 978-3-319-99693-6.
- 10.
French, S.W., Romanowicz, B.A., 2014. Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography. Geophys. J. Int. 199(3), 1303–1327. doi: 10.1093/gji/ggu334.
- 11.
Herzberg, C., Condie, K., Korenaga, J., 2010. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292(1-2), 79–88. doi: 10.1016/j.epsl.2010.01.022.
- 12.
Heyn, B.H., Conrad, C.P., Trønnes, R.G., 2020. Core-mantle boundary topography and its relation to the viscosity structure of the lowermost mantle. Earth Planet. Sci. Lett. 543, 116358. doi: 10.1016/j.epsl. 2020.116358.
- 13.
Honda, S., 1982. Numerical analysis of layered convection: marginal stability and finite amplitude analyses. Bull. Earthq. Res. Inst. 57, 273–302. doi: 10.15083/0000032992.
- 14.
Iwamori, H., Nakamura, H., 2015. Isotopic heterogeneity of oceanic, arc and continental basalts and its implications for mantle dynamics. Gondwana Res. 27(3), 1131–1152. doi: 10.1016/j.gr.2014.09.003.
- 15.
Iwamori, H., Yoshida, M., Nakamura, H., 2022. Large-scale structures in the Earth’s interior: top-down hemispherical dynamics constrained by geochemical and geophysical approaches. Front. Earth Sci. 10, 1033378. doi: 10.3389/feart.2022.1033378.
- 16.
Jeanloz, R., Morris, S., 1987. Is the mantle geotherm subadiabatic? Geophys. Res. Lett. 14(4), 335–338. doi: 10.1029/GL014i004p00335.
- 17.
Johnson, D., Narayanan, R., 1997. Geometric effects on convective coupling and interfacial structures in bilayer convection. Phys. Rev. E 56(5), 5462–5472. doi: 10.1103/PhysRevE.56.5462.
- 18.
Kono, M., Roberts, P.H., 2002. Recent geodynamo simulations and observations of the geomagnetic field. Rev. Geophys. 40(4), 4-1–4-53. doi: 10.1029/2000RG000102.
- 19.
Koper, K.D., Pyle, M.L., Franks, J.M., 2003. Constraints on aspherical core structure from PKiKP-PcP differential travel times. J. Geophys. Res. 108(B3), 2168. doi: 10.1029/2002JB001995.
- 20.
Lambeck, K., Purcell, A., Zhao, S., 2017. The North American Late Wisconsin ice sheet and mantle viscosity from glacial rebound analyses. Quat. Sci. Rev. 158, 172–210. doi: 10.1016/j.quascirev.2016.11. 033.
- 21.
Lau, H.C.P., Mitrovica, J.X., Austermann, J., Crawford, O., Al-Attar, D., Latychev, K., 2016. Inferences of mantle viscosity based on ice age data sets: radial structure. J. Geophys. Res.: Solid Earth 121(10), 6991–7012. doi: 10.1002/2016JB013043.
- 22.
Lu, C., Grand, S.P., Lai, H., Garnero, E.J., 2019. TX2019slab: a new P and S tomography model incorporating subducting slabs. J. Geophys. Res. Solid Earth 124(11), 11549–11567. doi: 10.1029/2019jb017448.
- 23.
McKenzie, D.P., Parker, R.L., 1967. The North Pacific: an example of tectonics on a sphere. Nature 216, 1276–1280. doi: 10.1038/2161276a0.
- 24.
Moore, D.R., Weiss, N.O., 1973. Two-dimensional Rayleigh-Bnard convection. J. Fluid Mech. 58(2), 289–312. doi: 10.1017/ S0022112073002600.
- 25.
Morelli, A., Dziewonski, A.M., 1987. Topography of the core–mantle boundary and lateral homogeneity of the liquid core. Nature 325, 678–683. doi: 10.1038/325678a0.
- 26.
Prakash, A., Yasuda, K., Otsubo, F., Kuwahara, K., Doi, T., 1997. Flow coupling mechanisms in two-layer Rayleigh–Benard convection. Exp. Fluid 23(3), 252–261. doi: 10.1007/s003480050108.
- 27.
Ritsema, J., Deuss, A., van Heijst, H.J., Woodhouse, J.H., 2011. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int. 184(3), 1223–1236. doi: 10. 1111/j.1365-246X.2010.04884.x.
- 28.
Schubert, G., Turcotte, D.L., Olson, P., 2001. Mantle Convection in the Earth and Planets. Cambridge Univ. Press, London, p. 956. doi: 10.1017/CBO9780511612879.
- 29.
Sun, Y., Xie, Y.-C., Xie, J.-X., Zhong, J.-Q., Zhang, J., Xia, K.-Q., 2024. Model for the dynamics of the large-scale circulations in two-layer turbulent convection. Phys. Rev. Fluids 9(3), 033501. doi: 10.1103/ PhysRevFluids.9.033501.
- 30.
Sze, E.K.M., van der Hilst, R.D., 2003. Core mantle boundary topography from short period PcP, PKP, and PKKP data. Phys. Earth Planet. Int. 135(1), 27–46. doi: 10.1016/S0031-9201(02)00204-2.
- 31.
Tanaka, S., 2010. Constraints on the core-mantle boundary topography from P4KP-PcP differential travel times. J. Geophys. Res.: Solid Earth (B4), B04310. doi: 10.1029/2009JB006563.
- 32.
Ukaji, K., Sawada, R., 1970a. Cellular convection in the two-layer fluid. Abstracts of Meteorolog. Soc. Jpn. Meet. 17, 96. (in Japanese).
- 33.
Ukaji, K., Sawada, R., 1970b. Cellular convection in the two-layer fluid (2). Abstracts of Meteorolog. Soc. Jpn. Meet. 18, 37 (in Japanese).
- 34.
Ukaji, K., Sawada, R., 1971. Cellular convection in the two-layer fluid (Theory 3). Abstracts of Meteorolog. Soc. Jpn. Meet. 20, 2 (in Japanese).
- 35.
Vecsey, L., 2003. Chaos in Thermal Convection and the Wavelet Analysis of Geophysical Fields. PhD thesis. Faculty of Mathematics and Physics, Charles University in Prague, p. 116.
- 36.
Vecsey, L., Yuen, D.A., Sevre, E.O.D., Dubuffet, F., 2003. Ultra-high Ra convection and applications of wavelet, in: Abstracts of 8th International Workshop on Numerical Modeling of Mantle Convection and Lithospheric Dynamics, Hruba Skala, Czech Republic, p. 34.
- 37.
Versteeg, H.K., Malalasekera, W., 2007. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. 2nd ed., Prentice Hall, U.K., p. 503.
- 38.
Wessel, P., Luis, J., Uieda, L., Scharroo, R., Wobbe, F., Smith, W.H.F., Tian, D., 2019. The Generic Mapping Tools Version 6. Geochem. Geophys. Geosyst. 20(11), 5556–5564. doi: 10.1029/2019GC008515.
- 39.
Xie, Y.-C., Xia, K.-Q., 2013. Dynamics and flow coupling in two-layer turbulent thermal convection. J. Fluid Mech. 728, R1. doi: 10.1017/jfm. 2013.313.
- 40.
Yoshida, M., 2008a. Core-mantle boundary topography estimated from numerical simulations of instantaneous mantle flow. Geochem. Geophys. Geosyst. 9(7), Q07002. doi: 10.1029/2008GC002008.
- 41.
Yoshida, M., 2008b. Mantle convection with longest-wavelength thermal heterogeneity in a 3-D spherical model: degree one or two? Geophys.
- 42.
Res. Lett. 35, L23302. doi: 10.1029/2008GL036059.
- 43.
Yoshida, M., 2010. Preliminary three-dimensional model of mantle convection with deformable, mobile continental lithosphere. Earth Planet. Sci. Lett. 295(1-2), 205–218. doi: 10.1016/j.epsl.2010.04.001.
- 44.
Yoshida, M., 2017. On approximations of the basic equations of terrestrial mantle convection used in published literature. Phys. Earth Planet. Int. , 11–17. doi: 10.1016/j.pepi.2017.05.006.
- 45.
Yoshida, M., 2023a. How mantle convection drives the supercontinent cycle: mechanism, driving force, and substantivity, in: Duarte, J. (Ed.), Dynamics of Plate Tectonics and Mantle Convection. Elsevier, Amsterdam, Netherlands, p. 197–221. doi: 10.1016/B978-0-323-85733-8. 00002-0.
- 46.
Yoshida, M., 2023b. Stress state of the stable part of the Pacific Plate predicted by a numerical model of global mantle flow coupled with plate motion. Lithosphere 2023, 6563534. doi: 10.2113/2023/6563534.
- 47.
Yoshida, M., Hamano, Y., 2016. Numerical studies on the dynamics of two-layer Rayleigh-Bnard convection with an infinite Prandtl number and large viscosity contrasts. Phys. Fluids 28(11), 116601. doi: 10.1063/1.4966685.
- 48.
Yoshida, M., Iwamori, H., Hamano, Y., Suetsugu, D., 2017. Heat transport and coupling modes in Rayleigh-Bnard convection occurring between two layers with largely different viscosities. Phys. Fluids 29(9), 096602. doi: 10.1063/1.4989592.
- 49.
Zhao, D., 2015. Multiscale Seismic Tomography. Springer Japan, Tokyo, p. 304. doi: 10.1007/978-4-431-55360-1.