2509001595
  • Open Access
  • Article

Climatic shifts and floristic responses during India’s tectonicvoyage from Gondwana to Asia

  • Gaurav Srivastava *,   
  • Harshita Bhatia

Received: 02 Jun 2025 | Revised: 27 Jun 2025 | Accepted: 28 Jun 2025 | Published: 30 Jun 2025

Abstract

Rising atmospheric carbon dioxide (CO₂) levels are profoundly altering Earth's hydrological systems. To contextualize these changes, insights from past warm intervals are essential. This study synthesizes plant-derived proxy records from the Indian subcontinent to reconstruct hydrological patterns from the Late Cretaceous through the Paleogene—a period marked by India's tectonic drift from Gondwanaland to Asia. Results indicate a persistently warm and humid climate with high mean annual precipitation and pronounced seasonal rainfall from the latest Cretaceous into the early Paleocene. Throughout the early to middle Paleogene, including hyperthermal events such as the PETM, ETM2, and MECO, plant assemblages reflect changes in hydrological cycles and biotic turnover. Notably, these intervals saw a rise in deciduous taxa, signaling heightened seasonality and prolonged dry periods despite global warming. The Early Eocene Climatic Optimum (EECO) stands out for its sustained warm and humid conditions that supported stable tropical evergreen rainforests. The long-standing monsoonal regime observed during Late Cretaceous to early Oligocene more closely resembled the present-day Indonesian–Australian Monsoon than the modern South Asian Monsoon, which likely developed following Himalayan uplift in the Neogene. This synthesis highlights the complex interplay between global warming, seasonal precipitation patterns, and vegetation dynamics, reinforcing India's key role in understanding Cenozoic climate–biosphere evolution.

References 

  • 1.
    Agnini, C., Fornaciari, E., Raffi, I., Catanzariti, R., Plike, H., Backman, J., Rio, D., 2014. Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes. Newsl. Stratigr. 47, 131–181. doi: 10.1127/0078-0421/2014/0042.
  • 2.

    Anagnostou, E., John, E.H., Edgar, K.M., Foster, G.L., Ridgwell, A., Inglis, G.N. et al., 2016. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature 533, 380–384. doi: 10.1038/nature17423.

  • 3.
    Bhatia, H., Khan, M.A., Srivastava, G. et al., 2021. Late Cretaceous–Paleogene Indian monsoon climate vis-a-vis movement of the Indian plate, and the birth of the South Asian Monsoon. Gondwana Res. 93, 89–100. doi: 10.1016/j.gr.2021.01.010.
  • 4.
    Bhatia, H., Lokho, K., Srivastava, G., Ezung, O.C., 2025. Quantifying the equatorial climate shifts in the Indo-Burma range using late Eocene–early Oligocene leaf fossils. Palaeogeogr. Palaeoclimatol. Palaeoecol. 669, 112931. doi: 10.1016/j.palaeo.2025.112931.
  • 5.
    Bohaty, S.M., Zachos, J.C., 2003. Significant Southern Ocean warming event in the late middle Eocene. Geology 31, 1017–1020. doi: 10. 1130/G19800.1.
  • 6.
    Bohaty, S.M., Zachos, J.C., Florindo, F., Delaney, M.L., 2009. Coupled greenhouse warming and deep-sea acidification in the middle Eocene. Paleoceanogr. Paleoclimatol. 24, PA2207. doi: 10.1029/ 2008PA001676.
  • 7.
    Bossuyt, F., Milinkovitch, M.C., 2001. Amphibians as Indicators of Early Tertiary “Out-of-India” dispersal of vertebrates. Science 292, 93–95. doi: 10.1126/science.1058875.
  • 8.
    Caballero, R., Huber, M., 2013. State-dependent climate sensitivity in past climates and its implications for future climate projections. Proc. Natl. Acad. Sci. USA 110, 14162–14167. doi: 10.1073/pnas.130336511.
  • 9.

    Chatterjee, S., Goswami, A., Scotese, C.R., 2013. The longest voyage: tectonic, magmatic, and palaeoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Res., 238–267. doi: 10.1016/j.gr.2012.07.001.

  • 10.
    Clementz, M., Bajpai, S., Ravikant, V., Thewissen, J.G.M., Saravanan, N., Singh, I.B., Prasad, V., 2011. Early Eocene warming events and the timing of terrestrial faunal exchange between India and Asia. Geology 39(1), 15–18. doi: 10.1130/G31585.1.
  • 11.
    DeConto, R.M., Galeotti, S., Pagani, M., Tracy, D. et al., 2012. Past extreme warming events linked to massive carbon release from thawing permafrost. Nature 484(7392), 87–91. doi: 10.1038/nature10929.
  • 12.
    Deori, N., Verma, P., Agrawal, S., Thakkar, M.G., Patel, J.M., 2025. Response of tropical rainforest to warming during Middle Eocene Climate Optimum (MECO): evidence from palynological record from the Bartonian deposits of Kutch Basin, Western India. Evol. Earth 3, 100065. doi: 10.1016/j.eve.2025.100065.
  • 13.
    Dickens, G.R., Castillo, M.M., Walker, J.C.G, 1997. A blast of gas in the latest Paleocene: simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology 25, 259–262. doi: 10.1130/0091-7613.
  • 14.
    Gavrilov, Y.O., Shcherbinina, E.A., Oberhnsli, H., 2003. PaleoceneEocene boundary events in the northeastern Peri-Tethys. Geol. Soc. Am. Spec. Pap. 369, 147–168. doi: 10.1130/0-8137-2369-8.147.
  • 15.
    Ghoshmaulik, S., Bhattacharya, S.K., Hazra, M., Roy, P., Khan, M.A. et al., 2023. Triple oxygen isotopes in intertrappean fossil woods: evidence of higher tropical rainfall during Deccan volcanism. Chem. Geol., 121599. doi: 10.1016/j.chemgeo.2023.121599.
  • 16.
    Harper, D.T., Honisch, B., Zeebe, R.E., Shaffer, G., Haynes, L.L., Thomas, H.E., Zachos, J.C., 2020. The magnitude of surface ocean acidification and carbon release during Eocene thermal Maximum 2 (ETM2) and the Paleocene Eocene thermal Maximum (PETM). Paleoceanogr. Paleoclimatol. 35, e2019PA003699. doi: 10.1029/2019PA003699.
  • 17.
    Held, I.M., Soden, B.J., 2006. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699. doi: 10.1175/JCLI3990.1. Hodel, F., Grespan, R., de Raflis, M., Dera, G., Lezin, C. et al., 2021.
  • 18.
    Drake Passage gateway opening and Antarctic Circumpolar Current onset 31 Ma ago: the message of foraminifera and reconsideration of the Neodymium isotope record. Chem. Geol. 570, 120171. doi: 10.1016/j.chemgeo.2021.120171.
  • 19.

    Hnisch et al., 2023. (The Cenozoic CO2 Proxy Integration Project (CenCO2PIP) Consortium). Toward a Cenozoic history of atmospheric CO2 . Science 382, eadi5177. doi: 10.1126/science.adi5177.

  • 20.
    Jay, A.E., Widdowson, M., 2008. Stratigraphy, structure and volcanology of the SE Deccan continental flood basalt province: implications for eruptive extent and volumes. J. Geol. Soc. Lond. 165, 177–188. doi: 10.1144/0016-76492006-062.
  • 21.
    Kale, V.S., 2020. Cretaceous volcanism in peninsular India: RajmahalSylhet and Deccan Traps, in: Gupta, N., Tandon, S.K. (Eds.), Geodynamics of the Indian Plate. Springer International Publishing, Switzerland. doi: 10.1007/978-3-030-15989-4_8.
  • 22.
    Kapur, V.V., Khosla, A., 2018. Faunal elements from the Deccan volcanosedimentary sequences of India: a reappraisal of biostratigraphic, palaeoecological, and palaeobiogeographic aspects. Geol. J. 54, 2797–2828. doi: 10.1002/gj.3379.
  • 23.
    Katz, M.E., Cramer, B.S., Mountain, G.S., Katz, S., Miller, K.G., 2001. Uncorking the bottle: what triggered the Paleocene/Eocene thermal maximum methane release? Paleoceanography 16, 549–562. doi: 10.1029/2000PA000615.
  • 24.
    Kent, D.V., Cramer, B.S., Lanci, L., Wang, D., Wright, J.D., Vander Voo, R., 2003. A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion. Earth Planet. Sci. Lett. 211(1), 13–26. doi: 10.1016/S0012-821X(03)00188-2.
  • 25.
    Khanolkar, S., Saraswati, P.K., 2019. Eocene foraminiferal biofacies in Kutch Basin (India) in context of palaeoclimate and palaeoecology. J. Palaeogeogr. 8, 21. doi: 10.1186/s42501-019-0038-2.
  • 26.
    Lakhanpal, R.N., Dayal, R., 1962. Mallotoxylon keriense gen. et sp. nov., a fossil dicotyledonous wood from the Deccan Intertrappean Series. India. J. Paleosci. 11, 149–153. doi: 10.54991/jop.1962.635.
  • 27.
    McInerney, F.A., Wing, S.L., 2011. The Paleocene-Eocene Thermal Maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci. 39, 489–516. doi: 10 .1146/annurev-earth-040610-133431.
  • 28.
    Mishra, S., Bansal, M., Prasad, V., Singh, V.P., Murthy, S., Parmar, S. et al., 2024. Did the Deccan Volcanism impact the Indian flora during the Maastrichtian? Earth Sci. Rev. 258, 104950. doi: 10.1016/j. earscirev.2024.104950.
  • 29.
    Mishra, S., Singh, S.P., Arif, M., Singh, A.K., Srivastava, G., Ramesh, B.R., Prasad, V., 2022. Late Maastrichtian vegetation and palaeoclimate: palynological inferences from the Deccan Volcanic Province of India. Cretac. Res. 133, 105–126. doi: 10.1016/j.cretres.2021. 105126.
  • 30.
    Osman, M.B., Tierney, J.E., Zhu, J., Tardif, R., Hakim, G.J., King, J., Poulsen, C.J., 2021. Globally resolved surface temperatures since the Last Glacial Maximum. Nature 599, 239–244. doi: 10.1038/ s41586-021-03984-4.
  • 31.
    Plike, H., Norris, R.D., Herrle, J.O., Wilson, P.A., Coxall, H.K., Lear, C.H., Shackleton, N.J., Tripati, A.K., Wade, B.S., 2006. The heartbeat of the Oligocene climate system. Science 314(5807), 1894–1898. doi: 10.1126/science.1133822.
  • 32.
    Pierrehumbert, R.T., 2002. The hydrologic cycle in deep-time climate problems. Nature 419, 191–198. doi: 10.1038/nature01088.
  • 33.
    Pross, J., Contreras, L., Bijl, P.K., Greenwood, D.R., Bohaty, S.M., Schouten, S., Bendle, J.A., Rohl, U., 2012. Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature 488, 73–77. doi: 10.1038/nature11300.
  • 34.
    Pusok, A.E., Stegman, D.R., 2020. The convergence history of IndiaEurasia records multiple subduction dynamics processes. Sci. Adv. 6(19), eaaz8681. doi: 10.1126/sciadv.aaz8681.
  • 35.
    Rose, K., Holbrook, L., Rana, R. et al., 2014. Early Eocene fossils suggest that the mammalian order Perissodactyla originated in India. Nature Commun. 5, 5570. doi: 10.1038/ncomms6570.
  • 36.
    Samant, B., Mohabey, D.M., 2009. Palynoflora from Deccan volcanosedimentary sequence (Cretaceous-Palaeogene transition) of central India: implications for spatio-temporal correlation. J. Biosci. 34, 811–823. doi: 10.1007/s12038-009-0064-9.
  • 37.
    Samanta, A., Bera, M.K., Ghosh, R., Bera, S., Filley, T., Pande, K., Rathore, S.S., Rai, J., Sarkar, A., 2013. Do the large carbon isotopic excursions in terrestrial organic matter across Paleocene–Eocene boundary in India indicate intensification of tropical precipitation? Palaeogeogr. Palaeoclimatol. Palaeoecol. 387, 91–103. doi: 10.1016/ j.palaeo.2013.07.008.
  • 38.
    Shukla, A., Mehrotra, R.C., Spicer, R.A., Spicer, T.E.V., Kumar, M., 2014. Cool equatorial terrestrial temperatures and the South Asian monsoon in the Early Eocene: evidence from the Gurha Mine, Rajasthan, India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 412, 187–198. doi: 10.1016/ j.palaeo.2014.08.004.
  • 39.
    Sluijs, A., Schouten, S., Donders, T.H., Schoon, P.L., Rhl, U., Reichart, G.J., Sangiorgi, F., Kim, J.H., Damst, J.S.S., Brinkhuis, H., 2009. Warm and wet conditions in the Arctic region during Eocene Thermal Maximum 2. Nat. Geosci. 2, 777–780. doi: 10.1038/ngeo668.
  • 40.
    Smith, S.Y., Manchester, S.R., Samant, B., Mohabey, D.M., Wheeler, E., Baas, P., Kapgate, D., Srivastava, R., Sheldon, N., 2015. Integrating paleobotanical, paleosol, and stratigraphic data to study critical transitions: a case study from the Late Cretaceous–Paleocene of India. Paleontol. Soc. Pap. 21, 137–166. doi: 10.1017/S1089332600002990.
  • 41.
    Sprain, C.J., Renne, P.R., Vanderkluysen, L., Pande, K., Self, S., Mittal, T., 2019. The eruptive tempo of Deccan volcanism in relation to the Cretaceous Paleogene boundary. Science 363, 866–870. doi: 10.1126/science.aav1446.
  • 42.
    Srivastava, G., Bhatia, H., Verma, P., Singh, Y.P., Agrawal, S., Utescher, T., Mehrotra, R.C., 2024. A transient shift in equatorial hydrology and vegetation during the Eocene Thermal Maximum 2. Geosci. Front. 15, 101838. doi: 10.1016/j.gsf.2024.101838.
  • 43.
    Srivastava, G., Bhatia, H., Verma, P., Singh, Y.P., Utescher, T., Mehrotra, R.C., 2023. High rainfall afforded resilience to tropical rainforests during Early Eocene Climate Optimum. Palaeogeogr. Palaeoclimatol. Palaeoecol. 628, 111762. doi: 10.1016/j.palaeo.2023.111762.
  • 44.

    Srivastava, G., Spicer, R.A., Spicer, T.E.V., Yang, J., Kumar, M., Mehrotra, R.C., Mehrotra, N.C., 2012. Megaflora and palaeoclimate of a Late Oligocene tropical delta, Makum Coalfield, Assam: evidence for the early development of the South Asia Monsoon. Palaeogeogr. Palaeoclimatol. Palaeoecol. 342-343, 130–142. doi: 10.1016/j.palaeo.2012.05.002.

  • 45.
    Svensen, H., Planke, S., Malthe-Sorenssen, A., Jamtveit, B., Myklebust, R., Eidem, T.R., Rey, S.S., 2004. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429(6991), 542–545. doi: 10.1038/nature02566.
  • 46.
    Thakre, D., Samant, B., Mohabey, D.M., Manchester, S.R., Sangode, S., 2024. Palynology of the uppermost Cretaceous to lowermost Paleocene Deccan volcanic associated sediments of the Mandla Lobe, central India. Palynology 48(2), 2288669. doi: 10.1080/01916122.2023. 2288669.
  • 47.
    Westerhold, T., Dallanave, E., Penman, D., Schoene, B., Rhl, U., Gussone, N., Kuroda, J., 2025. Earth orbital rhythms links timing of Deccan trap volcanism phases and global climate change. Sci. Adv. 11, eadr8584. doi: 10.1126/sciadv.adr8584.
  • 48.
    Wheeler, E.A., Srivastava, R., Manchester, S.R., Baas, P., 2017. Surprisingly modern latest Cretaceous–earliest Paleocene woods of India. IAWA J. 38, 456–542. doi: 10.1163/22941932-20170174.
  • 49.

    Wilf, P., Cuneo, N.R., Johnson, K.R., Hicks, J.F., Wing, S.L., Obradovich, J.D., 2003. High plant diversity in Eocene South America: evidence from Patagonia. Science 300, 122–125. doi: 10.1126/science.1080475.

  • 50.
    Wing, S.L., Bown, T.M., Obradovich, J.D., 1991. Early Eocene biotic and climatic change in interior western North America. Geology 19, 1189–1192. doi: 10.1130/0091-7613.
  • 51.
    Woodburne, M.O., Gunnell, G.F., Stucky, R.K., 2009. Climate directly influences Eocene mammal faunal dynamics in North America. Proc. Natl. Acad. Sci. USA 106, 13399–13403. doi: 10.1073/pnas.
  • 52.
    Zachos, J.C., Dickens, G.R., Zeebe, R.E., 2008. An early Cenozoic perspective on greenhouse warming and carbon cycle dynamics. Nature 451, 279–283. doi: 10.1038/nature06588.
  • 53.
    Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K., 2001. Trends, rhythms and aberrations in global climate 65 Ma to present. Science 292, 686–693. doi: 10.1126/science.1059412.
Share this article:
How to Cite
Srivastava, G., & Bhatia, H. (2025). Climatic shifts and floristic responses during India’s tectonicvoyage from Gondwana to Asia. Habitable Planet, 1(1&2), 171–184. https://doi.org/10.63335/j.hp.2025.0014
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.