- 1.
Agnini, C., Fornaciari, E., Raffi, I., Catanzariti, R., Plike, H., Backman, J., Rio, D., 2014. Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes. Newsl. Stratigr. 47, 131–181. doi: 10.1127/0078-0421/2014/0042.
- 2.
Anagnostou, E., John, E.H., Edgar, K.M., Foster, G.L., Ridgwell, A., Inglis, G.N. et al., 2016. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature 533, 380–384. doi: 10.1038/nature17423.
- 3.
Bhatia, H., Khan, M.A., Srivastava, G. et al., 2021. Late Cretaceous–Paleogene Indian monsoon climate vis-a-vis movement of the Indian plate, and the birth of the South Asian Monsoon. Gondwana Res. 93, 89–100. doi: 10.1016/j.gr.2021.01.010.
- 4.
Bhatia, H., Lokho, K., Srivastava, G., Ezung, O.C., 2025. Quantifying the equatorial climate shifts in the Indo-Burma range using late Eocene–early Oligocene leaf fossils. Palaeogeogr. Palaeoclimatol. Palaeoecol. 669, 112931. doi: 10.1016/j.palaeo.2025.112931.
- 5.
Bohaty, S.M., Zachos, J.C., 2003. Significant Southern Ocean warming event in the late middle Eocene. Geology 31, 1017–1020. doi: 10. 1130/G19800.1.
- 6.
Bohaty, S.M., Zachos, J.C., Florindo, F., Delaney, M.L., 2009. Coupled greenhouse warming and deep-sea acidification in the middle Eocene. Paleoceanogr. Paleoclimatol. 24, PA2207. doi: 10.1029/ 2008PA001676.
- 7.
Bossuyt, F., Milinkovitch, M.C., 2001. Amphibians as Indicators of Early Tertiary “Out-of-India” dispersal of vertebrates. Science 292, 93–95. doi: 10.1126/science.1058875.
- 8.
Caballero, R., Huber, M., 2013. State-dependent climate sensitivity in past climates and its implications for future climate projections. Proc. Natl. Acad. Sci. USA 110, 14162–14167. doi: 10.1073/pnas.130336511.
- 9.
Chatterjee, S., Goswami, A., Scotese, C.R., 2013. The longest voyage: tectonic, magmatic, and palaeoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Res., 238–267. doi: 10.1016/j.gr.2012.07.001.
- 10.
Clementz, M., Bajpai, S., Ravikant, V., Thewissen, J.G.M., Saravanan, N., Singh, I.B., Prasad, V., 2011. Early Eocene warming events and the timing of terrestrial faunal exchange between India and Asia. Geology 39(1), 15–18. doi: 10.1130/G31585.1.
- 11.
DeConto, R.M., Galeotti, S., Pagani, M., Tracy, D. et al., 2012. Past extreme warming events linked to massive carbon release from thawing permafrost. Nature 484(7392), 87–91. doi: 10.1038/nature10929.
- 12.
Deori, N., Verma, P., Agrawal, S., Thakkar, M.G., Patel, J.M., 2025. Response of tropical rainforest to warming during Middle Eocene Climate Optimum (MECO): evidence from palynological record from the Bartonian deposits of Kutch Basin, Western India. Evol. Earth 3, 100065. doi: 10.1016/j.eve.2025.100065.
- 13.
Dickens, G.R., Castillo, M.M., Walker, J.C.G, 1997. A blast of gas in the latest Paleocene: simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology 25, 259–262. doi: 10.1130/0091-7613.
- 14.
Gavrilov, Y.O., Shcherbinina, E.A., Oberhnsli, H., 2003. PaleoceneEocene boundary events in the northeastern Peri-Tethys. Geol. Soc. Am. Spec. Pap. 369, 147–168. doi: 10.1130/0-8137-2369-8.147.
- 15.
Ghoshmaulik, S., Bhattacharya, S.K., Hazra, M., Roy, P., Khan, M.A. et al., 2023. Triple oxygen isotopes in intertrappean fossil woods: evidence of higher tropical rainfall during Deccan volcanism. Chem. Geol., 121599. doi: 10.1016/j.chemgeo.2023.121599.
- 16.
Harper, D.T., Honisch, B., Zeebe, R.E., Shaffer, G., Haynes, L.L., Thomas, H.E., Zachos, J.C., 2020. The magnitude of surface ocean acidification and carbon release during Eocene thermal Maximum 2 (ETM2) and the Paleocene Eocene thermal Maximum (PETM). Paleoceanogr. Paleoclimatol. 35, e2019PA003699. doi: 10.1029/2019PA003699.
- 17.
Held, I.M., Soden, B.J., 2006. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699. doi: 10.1175/JCLI3990.1. Hodel, F., Grespan, R., de Raflis, M., Dera, G., Lezin, C. et al., 2021.
- 18.
Drake Passage gateway opening and Antarctic Circumpolar Current onset 31 Ma ago: the message of foraminifera and reconsideration of the Neodymium isotope record. Chem. Geol. 570, 120171. doi: 10.1016/j.chemgeo.2021.120171.
- 19.
Hnisch et al., 2023. (The Cenozoic CO2 Proxy Integration Project (CenCO2PIP) Consortium). Toward a Cenozoic history of atmospheric CO2 . Science 382, eadi5177. doi: 10.1126/science.adi5177.
- 20.
Jay, A.E., Widdowson, M., 2008. Stratigraphy, structure and volcanology of the SE Deccan continental flood basalt province: implications for eruptive extent and volumes. J. Geol. Soc. Lond. 165, 177–188. doi: 10.1144/0016-76492006-062.
- 21.
Kale, V.S., 2020. Cretaceous volcanism in peninsular India: RajmahalSylhet and Deccan Traps, in: Gupta, N., Tandon, S.K. (Eds.), Geodynamics of the Indian Plate. Springer International Publishing, Switzerland. doi: 10.1007/978-3-030-15989-4_8.
- 22.
Kapur, V.V., Khosla, A., 2018. Faunal elements from the Deccan volcanosedimentary sequences of India: a reappraisal of biostratigraphic, palaeoecological, and palaeobiogeographic aspects. Geol. J. 54, 2797–2828. doi: 10.1002/gj.3379.
- 23.
Katz, M.E., Cramer, B.S., Mountain, G.S., Katz, S., Miller, K.G., 2001. Uncorking the bottle: what triggered the Paleocene/Eocene thermal maximum methane release? Paleoceanography 16, 549–562. doi: 10.1029/2000PA000615.
- 24.
Kent, D.V., Cramer, B.S., Lanci, L., Wang, D., Wright, J.D., Vander Voo, R., 2003. A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion. Earth Planet. Sci. Lett. 211(1), 13–26. doi: 10.1016/S0012-821X(03)00188-2.
- 25.
Khanolkar, S., Saraswati, P.K., 2019. Eocene foraminiferal biofacies in Kutch Basin (India) in context of palaeoclimate and palaeoecology. J. Palaeogeogr. 8, 21. doi: 10.1186/s42501-019-0038-2.
- 26.
Lakhanpal, R.N., Dayal, R., 1962. Mallotoxylon keriense gen. et sp. nov., a fossil dicotyledonous wood from the Deccan Intertrappean Series. India. J. Paleosci. 11, 149–153. doi: 10.54991/jop.1962.635.
- 27.
McInerney, F.A., Wing, S.L., 2011. The Paleocene-Eocene Thermal Maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci. 39, 489–516. doi: 10 .1146/annurev-earth-040610-133431.
- 28.
Mishra, S., Bansal, M., Prasad, V., Singh, V.P., Murthy, S., Parmar, S. et al., 2024. Did the Deccan Volcanism impact the Indian flora during the Maastrichtian? Earth Sci. Rev. 258, 104950. doi: 10.1016/j. earscirev.2024.104950.
- 29.
Mishra, S., Singh, S.P., Arif, M., Singh, A.K., Srivastava, G., Ramesh, B.R., Prasad, V., 2022. Late Maastrichtian vegetation and palaeoclimate: palynological inferences from the Deccan Volcanic Province of India. Cretac. Res. 133, 105–126. doi: 10.1016/j.cretres.2021. 105126.
- 30.
Osman, M.B., Tierney, J.E., Zhu, J., Tardif, R., Hakim, G.J., King, J., Poulsen, C.J., 2021. Globally resolved surface temperatures since the Last Glacial Maximum. Nature 599, 239–244. doi: 10.1038/ s41586-021-03984-4.
- 31.
Plike, H., Norris, R.D., Herrle, J.O., Wilson, P.A., Coxall, H.K., Lear, C.H., Shackleton, N.J., Tripati, A.K., Wade, B.S., 2006. The heartbeat of the Oligocene climate system. Science 314(5807), 1894–1898. doi: 10.1126/science.1133822.
- 32.
Pierrehumbert, R.T., 2002. The hydrologic cycle in deep-time climate problems. Nature 419, 191–198. doi: 10.1038/nature01088.
- 33.
Pross, J., Contreras, L., Bijl, P.K., Greenwood, D.R., Bohaty, S.M., Schouten, S., Bendle, J.A., Rohl, U., 2012. Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature 488, 73–77. doi: 10.1038/nature11300.
- 34.
Pusok, A.E., Stegman, D.R., 2020. The convergence history of IndiaEurasia records multiple subduction dynamics processes. Sci. Adv. 6(19), eaaz8681. doi: 10.1126/sciadv.aaz8681.
- 35.
Rose, K., Holbrook, L., Rana, R. et al., 2014. Early Eocene fossils suggest that the mammalian order Perissodactyla originated in India. Nature Commun. 5, 5570. doi: 10.1038/ncomms6570.
- 36.
Samant, B., Mohabey, D.M., 2009. Palynoflora from Deccan volcanosedimentary sequence (Cretaceous-Palaeogene transition) of central India: implications for spatio-temporal correlation. J. Biosci. 34, 811–823. doi: 10.1007/s12038-009-0064-9.
- 37.
Samanta, A., Bera, M.K., Ghosh, R., Bera, S., Filley, T., Pande, K., Rathore, S.S., Rai, J., Sarkar, A., 2013. Do the large carbon isotopic excursions in terrestrial organic matter across Paleocene–Eocene boundary in India indicate intensification of tropical precipitation? Palaeogeogr. Palaeoclimatol. Palaeoecol. 387, 91–103. doi: 10.1016/ j.palaeo.2013.07.008.
- 38.
Shukla, A., Mehrotra, R.C., Spicer, R.A., Spicer, T.E.V., Kumar, M., 2014. Cool equatorial terrestrial temperatures and the South Asian monsoon in the Early Eocene: evidence from the Gurha Mine, Rajasthan, India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 412, 187–198. doi: 10.1016/ j.palaeo.2014.08.004.
- 39.
Sluijs, A., Schouten, S., Donders, T.H., Schoon, P.L., Rhl, U., Reichart, G.J., Sangiorgi, F., Kim, J.H., Damst, J.S.S., Brinkhuis, H., 2009. Warm and wet conditions in the Arctic region during Eocene Thermal Maximum 2. Nat. Geosci. 2, 777–780. doi: 10.1038/ngeo668.
- 40.
Smith, S.Y., Manchester, S.R., Samant, B., Mohabey, D.M., Wheeler, E., Baas, P., Kapgate, D., Srivastava, R., Sheldon, N., 2015. Integrating paleobotanical, paleosol, and stratigraphic data to study critical transitions: a case study from the Late Cretaceous–Paleocene of India. Paleontol. Soc. Pap. 21, 137–166. doi: 10.1017/S1089332600002990.
- 41.
Sprain, C.J., Renne, P.R., Vanderkluysen, L., Pande, K., Self, S., Mittal, T., 2019. The eruptive tempo of Deccan volcanism in relation to the Cretaceous Paleogene boundary. Science 363, 866–870. doi: 10.1126/science.aav1446.
- 42.
Srivastava, G., Bhatia, H., Verma, P., Singh, Y.P., Agrawal, S., Utescher, T., Mehrotra, R.C., 2024. A transient shift in equatorial hydrology and vegetation during the Eocene Thermal Maximum 2. Geosci. Front. 15, 101838. doi: 10.1016/j.gsf.2024.101838.
- 43.
Srivastava, G., Bhatia, H., Verma, P., Singh, Y.P., Utescher, T., Mehrotra, R.C., 2023. High rainfall afforded resilience to tropical rainforests during Early Eocene Climate Optimum. Palaeogeogr. Palaeoclimatol. Palaeoecol. 628, 111762. doi: 10.1016/j.palaeo.2023.111762.
- 44.
Srivastava, G., Spicer, R.A., Spicer, T.E.V., Yang, J., Kumar, M., Mehrotra, R.C., Mehrotra, N.C., 2012. Megaflora and palaeoclimate of a Late Oligocene tropical delta, Makum Coalfield, Assam: evidence for the early development of the South Asia Monsoon. Palaeogeogr. Palaeoclimatol. Palaeoecol. 342-343, 130–142. doi: 10.1016/j.palaeo.2012.05.002.
- 45.
Svensen, H., Planke, S., Malthe-Sorenssen, A., Jamtveit, B., Myklebust, R., Eidem, T.R., Rey, S.S., 2004. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429(6991), 542–545. doi: 10.1038/nature02566.
- 46.
Thakre, D., Samant, B., Mohabey, D.M., Manchester, S.R., Sangode, S., 2024. Palynology of the uppermost Cretaceous to lowermost Paleocene Deccan volcanic associated sediments of the Mandla Lobe, central India. Palynology 48(2), 2288669. doi: 10.1080/01916122.2023. 2288669.
- 47.
Westerhold, T., Dallanave, E., Penman, D., Schoene, B., Rhl, U., Gussone, N., Kuroda, J., 2025. Earth orbital rhythms links timing of Deccan trap volcanism phases and global climate change. Sci. Adv. 11, eadr8584. doi: 10.1126/sciadv.adr8584.
- 48.
Wheeler, E.A., Srivastava, R., Manchester, S.R., Baas, P., 2017. Surprisingly modern latest Cretaceous–earliest Paleocene woods of India. IAWA J. 38, 456–542. doi: 10.1163/22941932-20170174.
- 49.
Wilf, P., Cuneo, N.R., Johnson, K.R., Hicks, J.F., Wing, S.L., Obradovich, J.D., 2003. High plant diversity in Eocene South America: evidence from Patagonia. Science 300, 122–125. doi: 10.1126/science.1080475.
- 50.
Wing, S.L., Bown, T.M., Obradovich, J.D., 1991. Early Eocene biotic and climatic change in interior western North America. Geology 19, 1189–1192. doi: 10.1130/0091-7613.
- 51.
Woodburne, M.O., Gunnell, G.F., Stucky, R.K., 2009. Climate directly influences Eocene mammal faunal dynamics in North America. Proc. Natl. Acad. Sci. USA 106, 13399–13403. doi: 10.1073/pnas.
- 52.
Zachos, J.C., Dickens, G.R., Zeebe, R.E., 2008. An early Cenozoic perspective on greenhouse warming and carbon cycle dynamics. Nature 451, 279–283. doi: 10.1038/nature06588.
- 53.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K., 2001. Trends, rhythms and aberrations in global climate 65 Ma to present. Science 292, 686–693. doi: 10.1126/science.1059412.