- 1.
Aguirre, J., Braga, J.C., 2024. Rhodolith beds in a shifting world: a palaeontological perspective. Aquat. Conserv.: Mar. Freshw. Ecosyst., e70015. doi: 10.1002/aqc.70015.
- 2.
Aguirre, J., Braga, J.C., Bassi, D., 2017. Rhodoliths and rhodolith beds in the rock record, in: Riosmena-Rodriguez, R., Nelson, W., Aguirre, J. (Eds.), Rhodolith/Maerl Beds: A Global Perspective. Springer International Publishing, Cham, p. 105–138.
- 3.
Aguirre, J., Riding, R., Braga, J.C., 2000. Diversity of coralline red algae: origination and extinction patterns from the Early Cretaceous to the Pleistocene. Paleobiology 26, 651–667. doi: 10.1666/0094-8373.
- 4.
Bassi, D., Woelkerling, W.J., Nebelsick, J.H., 2000. Taxonomic and biostratigraphical re-assessments of Subterraniphyllum Elliott (Corallinales, Rhodophyta). Palaeontology 43, 405–425. doi: 10.1111/j.0031-0239.2000.00133.x.
- 5.
Basso, D., 2012. Carbonate production by calcareous red algae and global change, in: Basso, D., Granier, B. (Eds.), Calcareous algae and global change: from identification to quantification. Geodiversitas 34, 13–33. doi: 10.5252/g2012n1a2.
- 6.
Basso, D., Bracchi, V.A., Bazzicalupo, P., Martini, M., Maspero, F., Bavestrello, G., 2022. Living coralligenous as geo-historical structure built by coralline algae. Front. Earth Sci. 10, 961632. doi: 10.3389/ feart.2022.961632.
- 7.
Basso, D., Nalin, R., Nelson, C.S., 2009. Shallow-water Sporolithon rhodoliths from North Island (New Zealand). Palaios 24, 92–103. doi: 10.2110/palo.2008.p08-048r.
- 8.
Choat, J.H., Klanten, O.S., Van Herwerden, L., Robertson, D.R., Clements, K.D., 2012. Patterns and processes in the evolutionary history of parrotfishes (Family Labridae). Biol. J. Linn. Soc. 107, 529–557. doi: 10.1111/j.1095-8312.2012.01959.x.
- 9.
Coletti, G., Basso, D., 2020. Coralline algae as depth indicators in the Miocene carbonates of the Eratosthenes Seamount (ODP Leg 160, Hole 966F). Geobios 60, 29–46. doi: 10.1016/j.geobios.2020.03. 005.
- 10.
Cornwall, C.E., Carlot, J., Branson, O., Courtney, T.A., Harvey, B.P., Perry, C.T., Andersson, A.J., Diaz-Pulido, G., Johnson, M.D., Kennedy, E., Krieger, E.C., Mallela, J., McCoy, S.J., Nugues, M.M., Quinter, E., Ross, C.L., Ryan, E., Saderne, V., Comeau, S., 2023. Crustose coralline algae can contribute more than corals to coral reef carbonate production. Commun. Earth Environ. 4, 105. doi: 10.1038/s43247-023-00766-w.
- 11.
Frieling, J., Gebhardt, H., Huber, M., Adekeye, O.A., Akande, S.O., Reichart, G..J., Middelburg, J.J., Schouten, S., Sluijs, A., 2017. Extreme warmth and heat-stressed plankton in the tropics during the Paleocene-Eocene Thermal Maximum. Sci. Adv. 3, e1600891. doi: 10.1126/sciadv.1600891.
- 12.
Guiry, M.D., Guiry, G.M., 2023. AlgaeBase. National University of Ireland, Galway.
- 13.
Haggart, J.W., Bucur, I.I., Graham, R., Beard, G., 2024. An unusual biofacies in a rocky shoreline succession of Vancuover Island, British Columbia, Canada: first record of Late Cretaceous coralline algae from the northeast Pacific region. Cret. Res. 166, 106008. doi: 10.1016/j.cretres.2024.106008.
- 14.
Halfar, J., Mutti, M., 2005. Global dominance of coralline red-algal facies; a response to Miocene oceanographic events. Geology 33, 481–484. doi: 10.1130/G21462.1.
- 15.
Hind, K.R., Gabrielson, P.W., Lindstrom, S.C., Martone, P.T., 2014. Misleading morphologies and the importance of sequencing type specimens for resolving coralline taxonomy (Corallinales, Rhodophyta): Pachyarthron cretaceum is Corallina officinalis. J. Phycol. 50, 760–764. doi: 10.1111/jpy.12205.
- 16.
Hofmann, L.C., Bischof, K., 2014. Ocean acidification effects on calcifying macroalgae. Aquat. Biol. 22, 261–279. doi: 10.3354/ab00581.
- 17.
Hopkins, M.J., Smith, A.B., 2015. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution. Proc. Natl. Acad. Sci. USA 112, 3758–3763. doi: 10.1073/pnas.1418153112.
- 18.
Hrabovsk, J., Basso, D., Dolkov, N., 2015. Diagnostic characters in fossil coralline algae (Corallinophycidae: Rhodophyta) from the Miocene of southern Moravia (Carpathian Foredeep, Czech Republic). J. Syst. Palaeontol. 14, 499–525. doi: 10.1080/14772019.2015. 1071501.
- 19.
Littler, M.M., Littler, D.S., 2013. The nature of crustose coralline algae and their interactions on reefs. Smithson. Contrib. Mar. Sci. 39, 199–212. doi: 10.5479/si.1943667X.39.199.
- 20.
Littler, M.M., Littler, D.S., Hanisak, M.D., 1991. Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation. J. Exp. Mar. Biol. Ecol. 150, 163–182. doi: 10.1016/0022-0981(91)90066-6.
- 21.
Mart´ınez Lpez, I.G., Leemans, L., van Katwijk, M.M., vila Mosqueda, S.V., van Tussenbroek, B.I., 2024. Coralline algal population explosion in an overgrazed seagrass meadow: conditional outcomes of intraspecific and interspecific interactions. Ecosystems 27, 592–605. doi: 10.1007/s10021-024-00909-w.
- 22.
McCoy, S.J., Kamenos, N.A., 2015. Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change. J. Phycol. 51, 6–24. doi: 10.1111/jpy.12262.
- 23.
Nelson, W.A., 2009. Calcified macroalgae-critical to coastal ecosystems and vulnerable to change: a review. Mar. Freshw. Res. 60, 787–801. doi :10.1071/MF08335.
- 24.
Pena, V., Vieira, C., Braga, J.C., Aguirre, J., Rosler, A., Baele, G., De Clerck, O., Le Gall, L., 2020. Radiation of the coralline red algae (Corallinophycidae, Rhodophyta) crown group as inferred from a multilocus time-calibrated phylogeny. Mol. Phylogenet. Evol. 150, 106845. doi: 10.1016/j.ympev.2020.106845.
- 25.
Ragazzola, F., Kolzenburg, R., Zekonyte, J., Teichert, S., Jiang, C., Zuljevi c, A., Caragnano, A., Falace, A., 2020. Structural and elemental analysis of the freshwater, low-Mg calcite coralline alga Pneophyllum cetinaensis. Plants 9, 1089. doi: 10.3390/plants9091089.
- 26.
Ramesh, C.H., Koushik, S., Shunmugaraj, T., Ramana Murthy, M.V., 2021. Crustose coralline algae (Corallinales, Rhodophyta) diversity in the Gulf of Mannar marine national park, Southern India. Indian J. Geo-Mar. Sci. 50, 241–245. URL: https://nopr.niscpr.res.in/handle/123456789/56568.
- 27.
Rasser, M.W., Piller, W.E., 1999. Application of neontological taxonomic concepts to Late Eocene coralline algae (Rhodophyta) of the Austrian Molasse Zone. J. Micropalaeontol. 18, 67–80. doi: 10.1144/jm.18.1. 67.
- 28.
Rebelo, A., Johnson, M.E., Rasser, M.W., Silva, L., Melo, C.S., Avila, S.P., 2021. Global biodiversity and biogeography of rhodolith-forming species. Front. Biogeogr. 13, e50646. doi: 10.21425/F5FBG50646.
- 29.
Ries, J.B., 2006. Mg fractionation in crustose coralline algae: geochemical, biological, and sedimentological implications of secular variation in the Mg/Ca ratio of seawater. Geochim. Cosmochim. Acta 70(4), 891–900. doi: 10.1016/j.gca.2005.10.025.
- 30.
Sarkar, S., 2017. Ecology of coralline red algae and their fossil evidences from India. Thalassas 33, 1–14. doi: 10.1007/s41208-016-0017-7.
- 31.
Sarkar, S., 2018. The enigmatic Palaeocene-Eocene coralline Distichoplax: approaching the structural complexities, ecological affinities and extinction hypotheses. Mar. Micropaleontol. 139, 72–83. doi: 10.1016/j.marmicro.2017.12.001.
- 32.
Sarkar, S., 2024. Diverse geniculate coralline algae in Cenozoic fossil records: knowledge gaps and applications in palaeoecology. J. Palaeosci. 73, 157–164. doi: 10.54991/jop.2024.1895.
- 33.
Sarkar, S., Allameh, M., Nasiri, Y., Hadi, M., 2025. Palaeogeographical implications of an ecological paradox: cool-water carbonates in an Early Miocene mid-latitude warm realm (Qom Formation, Central Iran). Lethaia 58, 1–19. doi: 10.18261/let.58.1.6.
- 34.
Sarkar, S., Cotton, L.J., Valdes, P.J., Schmidt, D.N., 2022. Shallow water records of the PETM: novel insights from NE India (Eastern Tethys). Paleoceanogr. Paleoclimatol. 37, e2021PA004257. doi: 10. 1029/2021PA004257.
- 35.
Sarkar, S., Sarkar, S., 2016. Diversity of corals and benthic algae across the shallow-water reefs of Andaman Islands: managing the valuable ecosystems. Environ. Dev. Sustain. 18, 1801–1814. doi: 10.1007/s10668-015-9709-z.
- 36.
Sarkar, S., Sinanoglu, D., zgen Erdem, N., 2024. Crustose red algae in deep time environments: palaeoecological insights from northeastern India and Trkiye (Turkey). Palaeoworld 33, 1681–1696. doi: 10.1016/j.palwor.2024.04.001.
- 37.
Teichert, S., 2014. Hollow rhodoliths increase Svalbard’s shelf biodiversity. Sci. Rep. 4, 6972. doi: 10.1038/srep06972.
- 38.
Teichert, S., 2024. Attached and free-living crustose coralline algae and their functional traits in the geological record and today. Facies 70, 8. doi: 10.1007/s10347-024-00682-1.
- 39.
Teichert, S., Steinbauer, M., Kiessling, W., 2020. A possible link between coral reef success, crustose coralline algae and the evolution of herbivory. Sci. Rep. 10, 17748. doi: 10.1038/s41598-020-73900-9.
- 40.
Twist, B.A., Cornwall, C.E., McCoy, S.J., Gabrielson, P.W., Martone, P.T., Nelson, W.A., 2020. The need to employ reliable and reproducible species identifications in coralline algal research. Mar. Ecol. Prog. Ser. 654, 225–231. doi: 10.3354/meps.