2509001597
  • Open Access
  • Article

Coralline algae as integral components of shallow-marineecosystems: Anecdotes of past resilience and future outlook

  • Suman Sarkar *

Received: 02 Jun 2025 | Revised: 27 Jun 2025 | Accepted: 28 Jun 2025 | Published: 02 Jul 2025

Abstract

Coralline red algae are among the major groups of calcified benthic biota thriving in the marine photic zone globally as crustose and erect forms, attached to the substrate or forming free-living nodules (rhodoliths).  Coralline algal beds denoting extremely productive habitats cover wide-ranging coastal shelf and upper slope horizons of the Earth but several gaps persist in our understanding of their systematics, productivity, net carbon flux dynamics and inputs to the oceanic carbon cycle. The current review emphasizes on the taxonomy, ecology and distribution of coralline algae in the shallow-marine ecosystems deciphered both in the context of Recent environments and fossil archives. Numerous discrepancies exist particularly in the taxonomy of fossil coralline algae, strongly dependent on morpho-anatomical study approaches. The communities of biologists and palaeontologists worldwide need to manifest a shared knowledge platform and present a viable nomenclature scheme to facilitate summarizing the critical functional traits associated with coralline algae. Persistent occurrence of several coralline genera from the Cretaceous period to the Holocene epoch reflect high-end resilience across multiple extreme events including K-Pg extinction, PETM, EECO and MECO.  In view of the ongoing global change phenomena like ocean warming, acidification and adverse sea-level fluctuations, future outlook pertaining to the studies of coralline algae should essentially seek both quantitative and qualitative datasets from diverse domains of the Earth. This should be supplemented with special focus on the response of corallines to past hyperthermals and climate change, when corals perished at large scales compared to the relatively tenacious corallines. 

References 

  • 1.
    Aguirre, J., Braga, J.C., 2024. Rhodolith beds in a shifting world: a palaeontological perspective. Aquat. Conserv.: Mar. Freshw. Ecosyst., e70015. doi: 10.1002/aqc.70015.
  • 2.
    Aguirre, J., Braga, J.C., Bassi, D., 2017. Rhodoliths and rhodolith beds in the rock record, in: Riosmena-Rodriguez, R., Nelson, W., Aguirre, J. (Eds.), Rhodolith/Maerl Beds: A Global Perspective. Springer International Publishing, Cham, p. 105–138.
  • 3.
    Aguirre, J., Riding, R., Braga, J.C., 2000. Diversity of coralline red algae: origination and extinction patterns from the Early Cretaceous to the Pleistocene. Paleobiology 26, 651–667. doi: 10.1666/0094-8373.
  • 4.
    Bassi, D., Woelkerling, W.J., Nebelsick, J.H., 2000. Taxonomic and biostratigraphical re-assessments of Subterraniphyllum Elliott (Corallinales, Rhodophyta). Palaeontology 43, 405–425. doi: 10.1111/j.0031-0239.2000.00133.x.
  • 5.
    Basso, D., 2012. Carbonate production by calcareous red algae and global change, in: Basso, D., Granier, B. (Eds.), Calcareous algae and global change: from identification to quantification. Geodiversitas 34, 13–33. doi: 10.5252/g2012n1a2.
  • 6.
    Basso, D., Bracchi, V.A., Bazzicalupo, P., Martini, M., Maspero, F., Bavestrello, G., 2022. Living coralligenous as geo-historical structure built by coralline algae. Front. Earth Sci. 10, 961632. doi: 10.3389/ feart.2022.961632.
  • 7.
    Basso, D., Nalin, R., Nelson, C.S., 2009. Shallow-water Sporolithon rhodoliths from North Island (New Zealand). Palaios 24, 92–103. doi: 10.2110/palo.2008.p08-048r.
  • 8.
    Choat, J.H., Klanten, O.S., Van Herwerden, L., Robertson, D.R., Clements, K.D., 2012. Patterns and processes in the evolutionary history of parrotfishes (Family Labridae). Biol. J. Linn. Soc. 107, 529–557. doi: 10.1111/j.1095-8312.2012.01959.x.
  • 9.
    Coletti, G., Basso, D., 2020. Coralline algae as depth indicators in the Miocene carbonates of the Eratosthenes Seamount (ODP Leg 160, Hole 966F). Geobios 60, 29–46. doi: 10.1016/j.geobios.2020.03. 005.
  • 10.

    Cornwall, C.E., Carlot, J., Branson, O., Courtney, T.A., Harvey, B.P., Perry, C.T., Andersson, A.J., Diaz-Pulido, G., Johnson, M.D., Kennedy, E., Krieger, E.C., Mallela, J., McCoy, S.J., Nugues, M.M., Quinter, E., Ross, C.L., Ryan, E., Saderne, V., Comeau, S., 2023. Crustose coralline algae can contribute more than corals to coral reef carbonate production. Commun. Earth Environ. 4, 105. doi: 10.1038/s43247-023-00766-w.

  • 11.

    Frieling, J., Gebhardt, H., Huber, M., Adekeye, O.A., Akande, S.O., Reichart, G..J., Middelburg, J.J., Schouten, S., Sluijs, A., 2017. Extreme warmth and heat-stressed plankton in the tropics during the Paleocene-Eocene Thermal Maximum. Sci. Adv. 3, e1600891. doi: 10.1126/sciadv.1600891.

  • 12.
    Guiry, M.D., Guiry, G.M., 2023. AlgaeBase. National University of Ireland, Galway.
  • 13.
    Haggart, J.W., Bucur, I.I., Graham, R., Beard, G., 2024. An unusual biofacies in a rocky shoreline succession of Vancuover Island, British Columbia, Canada: first record of Late Cretaceous coralline algae from the northeast Pacific region. Cret. Res. 166, 106008. doi: 10.1016/j.cretres.2024.106008.
  • 14.
    Halfar, J., Mutti, M., 2005. Global dominance of coralline red-algal facies; a response to Miocene oceanographic events. Geology 33, 481–484. doi: 10.1130/G21462.1.
  • 15.
    Hind, K.R., Gabrielson, P.W., Lindstrom, S.C., Martone, P.T., 2014. Misleading morphologies and the importance of sequencing type specimens for resolving coralline taxonomy (Corallinales, Rhodophyta): Pachyarthron cretaceum is Corallina officinalis. J. Phycol. 50, 760–764. doi: 10.1111/jpy.12205.
  • 16.
    Hofmann, L.C., Bischof, K., 2014. Ocean acidification effects on calcifying macroalgae. Aquat. Biol. 22, 261–279. doi: 10.3354/ab00581.
  • 17.
    Hopkins, M.J., Smith, A.B., 2015. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution. Proc. Natl. Acad. Sci. USA 112, 3758–3763. doi: 10.1073/pnas.1418153112.
  • 18.
    Hrabovsk, J., Basso, D., Dolkov, N., 2015. Diagnostic characters in fossil coralline algae (Corallinophycidae: Rhodophyta) from the Miocene of southern Moravia (Carpathian Foredeep, Czech Republic). J. Syst. Palaeontol. 14, 499–525. doi: 10.1080/14772019.2015. 1071501.
  • 19.
    Littler, M.M., Littler, D.S., 2013. The nature of crustose coralline algae and their interactions on reefs. Smithson. Contrib. Mar. Sci. 39, 199–212. doi: 10.5479/si.1943667X.39.199.
  • 20.
    Littler, M.M., Littler, D.S., Hanisak, M.D., 1991. Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation. J. Exp. Mar. Biol. Ecol. 150, 163–182. doi: 10.1016/0022-0981(91)90066-6.
  • 21.
    Mart´ınez Lpez, I.G., Leemans, L., van Katwijk, M.M., vila Mosqueda, S.V., van Tussenbroek, B.I., 2024. Coralline algal population explosion in an overgrazed seagrass meadow: conditional outcomes of intraspecific and interspecific interactions. Ecosystems 27, 592–605. doi: 10.1007/s10021-024-00909-w.
  • 22.

    McCoy, S.J., Kamenos, N.A., 2015. Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change. J. Phycol. 51, 6–24. doi: 10.1111/jpy.12262.

  • 23.

    Nelson, W.A., 2009. Calcified macroalgae-critical to coastal ecosystems and vulnerable to change: a review. Mar. Freshw. Res. 60, 787–801. doi :10.1071/MF08335.

  • 24.
    Pena, V., Vieira, C., Braga, J.C., Aguirre, J., Rosler, A., Baele, G., De Clerck, O., Le Gall, L., 2020. Radiation of the coralline red algae (Corallinophycidae, Rhodophyta) crown group as inferred from a multilocus time-calibrated phylogeny. Mol. Phylogenet. Evol. 150, 106845. doi: 10.1016/j.ympev.2020.106845.
  • 25.
    Ragazzola, F., Kolzenburg, R., Zekonyte, J., Teichert, S., Jiang, C., Zuljevi c, A., Caragnano, A., Falace, A., 2020. Structural and elemental analysis of the freshwater, low-Mg calcite coralline alga Pneophyllum cetinaensis. Plants 9, 1089. doi: 10.3390/plants9091089.
  • 26.
    Ramesh, C.H., Koushik, S., Shunmugaraj, T., Ramana Murthy, M.V., 2021. Crustose coralline algae (Corallinales, Rhodophyta) diversity in the Gulf of Mannar marine national park, Southern India. Indian J. Geo-Mar. Sci. 50, 241–245. URL: https://nopr.niscpr.res.in/handle/123456789/56568.
  • 27.
    Rasser, M.W., Piller, W.E., 1999. Application of neontological taxonomic concepts to Late Eocene coralline algae (Rhodophyta) of the Austrian Molasse Zone. J. Micropalaeontol. 18, 67–80. doi: 10.1144/jm.18.1. 67.
  • 28.
    Rebelo, A., Johnson, M.E., Rasser, M.W., Silva, L., Melo, C.S., Avila, S.P., 2021. Global biodiversity and biogeography of rhodolith-forming species. Front. Biogeogr. 13, e50646. doi: 10.21425/F5FBG50646.
  • 29.
    Ries, J.B., 2006. Mg fractionation in crustose coralline algae: geochemical, biological, and sedimentological implications of secular variation in the Mg/Ca ratio of seawater. Geochim. Cosmochim. Acta 70(4), 891–900. doi: 10.1016/j.gca.2005.10.025.
  • 30.
    Sarkar, S., 2017. Ecology of coralline red algae and their fossil evidences from India. Thalassas 33, 1–14. doi: 10.1007/s41208-016-0017-7.
  • 31.
    Sarkar, S., 2018. The enigmatic Palaeocene-Eocene coralline Distichoplax: approaching the structural complexities, ecological affinities and extinction hypotheses. Mar. Micropaleontol. 139, 72–83. doi: 10.1016/j.marmicro.2017.12.001.
  • 32.
    Sarkar, S., 2024. Diverse geniculate coralline algae in Cenozoic fossil records: knowledge gaps and applications in palaeoecology. J. Palaeosci. 73, 157–164. doi: 10.54991/jop.2024.1895.
  • 33.
    Sarkar, S., Allameh, M., Nasiri, Y., Hadi, M., 2025. Palaeogeographical implications of an ecological paradox: cool-water carbonates in an Early Miocene mid-latitude warm realm (Qom Formation, Central Iran). Lethaia 58, 1–19. doi: 10.18261/let.58.1.6.
  • 34.
    Sarkar, S., Cotton, L.J., Valdes, P.J., Schmidt, D.N., 2022. Shallow water records of the PETM: novel insights from NE India (Eastern Tethys). Paleoceanogr. Paleoclimatol. 37, e2021PA004257. doi: 10. 1029/2021PA004257.
  • 35.

    Sarkar, S., Sarkar, S., 2016. Diversity of corals and benthic algae across the shallow-water reefs of Andaman Islands: managing the valuable ecosystems. Environ. Dev. Sustain. 18, 1801–1814. doi: 10.1007/s10668-015-9709-z.

  • 36.
    Sarkar, S., Sinanoglu, D., zgen Erdem, N., 2024. Crustose red algae in deep time environments: palaeoecological insights from northeastern India and Trkiye (Turkey). Palaeoworld 33, 1681–1696. doi: 10.1016/j.palwor.2024.04.001.
  • 37.
    Teichert, S., 2014. Hollow rhodoliths increase Svalbard’s shelf biodiversity. Sci. Rep. 4, 6972. doi: 10.1038/srep06972.
  • 38.
    Teichert, S., 2024. Attached and free-living crustose coralline algae and their functional traits in the geological record and today. Facies 70, 8. doi: 10.1007/s10347-024-00682-1.
  • 39.
    Teichert, S., Steinbauer, M., Kiessling, W., 2020. A possible link between coral reef success, crustose coralline algae and the evolution of herbivory. Sci. Rep. 10, 17748. doi: 10.1038/s41598-020-73900-9.
  • 40.
    Twist, B.A., Cornwall, C.E., McCoy, S.J., Gabrielson, P.W., Martone, P.T., Nelson, W.A., 2020. The need to employ reliable and reproducible species identifications in coralline algal research. Mar. Ecol. Prog. Ser. 654, 225–231. doi: 10.3354/meps.
Share this article:
How to Cite
Sarkar, S. (2025). Coralline algae as integral components of shallow-marineecosystems: Anecdotes of past resilience and future outlook. Habitable Planet, 1(1&2), 185–196. https://doi.org/10.63335/j.hp.2025.0015
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.