2509001599
  • Open Access
  • Article

Archean crustal evolution and building of habitable continents:Insights from the Western Dharwar Craton

  • K.R. Aadhiseshan,   
  • M. Jayananda *

Received: 04 Jun 2025 | Revised: 03 Jul 2025 | Accepted: 03 Jul 2025 | Published: 05 Jul 2025

Abstract

This contribution presents a comprehensive review synthesis addressing the time frame and processes involved in formation of Archean continental crust, surface environments, oxygenation and microbial activity leading to building the habitable continent in the western Dharwar craton (WDC). The WDC preserve ca. 3600-2600 Ma crustal record comprising TTGs, volcanic-sedimentary greenstones and potassic granites.  U-Pb zircon ages and Sm-Nd whole rock isochrons suggest successive stages TTG accretion and greenstone volcanism contribute to episodic continental growth during ca. 3450-3350 Ma, 3300-3200 Ma, ca. 3230-3150 Ma, ca. 3000-2900 Ma, 2700-2600 Ma with crustal reworking ca. 3150 Ma, ca. 3000-2950 Ma, 2600 Ma and ca. 2500 Ma. Elemental and Nd isotope data of ca. 3380-3150 Ma greenstone volcanics reveal their derivation from primitive to deep mantle reservoirs in plume setting whilst ca. 3000-2900 Ma volcanism originated in shallower undepleted mantle caused by asthenosphere upwelling. On the other hand, ca. 2700-2600 Ma volcanics generated by melting of depleted to enriched sources in arc settings.   Collision of arcs with eventual slab breakoff leads to generation and emplacement of Chitradurga-Arsikere-Banavara potassic plutons in the basement or in between the volcanic arcs.

Redox sensitive elements and isotope biomarkers (FE, N and MIF-S) data on the sedimentary record reveal dominantly anoxic environments during ca. 3400-3000 Ma whilst ca. 3000 Ma onwards a shift from anoxic to minimum oxygen on ocean surface with periodic organic production linked to the microbial activity and oxygenation building of habitable continent few hundred million years prior to GOE.

References 

  • 1.
    Aldanmaz, E., Pearce, J.A., Thirlwall, M.F., Mitchell, J.G., 2000. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia. Turkey. Journal of Volcanology and Geothermal Research 102, 67–95. doi: 10.1016/S0377-0273(00)00182-7.
  • 2.
    Anbar, A.D., Duan, Y., Lyons, T.W., Arnold, G.L., Kendall, B., Creaser, R.A., Kaufman, A.J., Gordon, G.W., Scott, C., Garvin, J., Buick, R., 2007. A whiff of oxygen before the great oxidation event? Science , 1903–1906. doi: 10.1126/science.1140325.
  • 3.
    Bedard, J.H., 2018. Stagnant lids and mantle overturns: implications for Archaean tectonics, magma genesis, crustal growth, mantle evolution, and the start of plate tectonics. Geoscience Frontiers 9, 19–49. doi: 10.1016/j.gsf.2017.01.005.
  • 4.
    Bekker, A., Holland, H.D., Wang, P.-L., Rumble III, D., Stein, H.J., Hannah, J.L., Coetzee, L.L., Beukes, N.J., 2004. Dating the rise of atmospheric oxygen. Nature 427, 117–120. doi: 10.1038/nature02260.
  • 5.
    Bidyananda, M., Gerdes, A., Goswami, J.N., 2016. U-Pb and Hf isotope records in detrital and magmatic zircon from Eastern and western Dharwar Craton, southern India: evidence for coeval Archean crustal evolution. Precambrian Research 275, 496–512. doi: 10.1016/j. precamres.2016.01.009.
  • 6.
    Chadwick, B., Ramakrishnan, M., Viswanatha, M.N., 1985. Bababudan a late Archaean intracratonic volcano-sedimentary basin, Karnataka. Southern India. Journal of the Geological Society of India 26, 769–821. doi: 10.17491/jgsi/1985/261101.
  • 7.
    Chadwick, B., Vasudev, V.N., Hegde, G.V., 2000. The Dharwar craton, southern India, interpreted as the result of Late Archaean oblique convergence. Precambrian Research 99(1-2), 91–111. doi: 10.1016/ S0301-9268(99)00055-8.
  • 8.
    Chardon, D., Choukroune, P., Jayananda, M., 1996. Strain patterns, de’collement and incipient sagducted greenstone terrains in the Archaean Dharwar craton (south India). Journal of Structural Geology 18, 991–1004. doi: 10.1016/0191-8141(96)00031-4.
  • 9.
    Chardon, D., Choukroune, P., Jayananda, M., 1998. Sinking of the Dharwar basin (South India): implications for Archaean tectonics. Precambrian Research 91(1-2), 15–39. doi: 10.1016/S0301-9268(98) 00037-0.
  • 10.
    Chardon, D., Jayananda, M., Chetty, T.R.K., Peucat, J.-J., 2008. Precambrian continental strain and shear zone patterns: the South Indian case. Journal of Geophysical Research 113, B08402. doi: 10.1029/ 2007JB005299.
  • 11.
    Chardon, D., Jayananda, M., Peucat, J.-J., 2011. Lateral constrictional flow of hot orogenic crust: insights from the Neoarchean of south India, geological and geophysical implications for orogenic Plateaux. Geochemistry Geophysics Geosystems 12, Q02005. doi: 10.1029/ 2010GC003398.
  • 12.
    Corfu, F., Hegde, V.S., 2020. U–Pb systematics of the western Dharwar Craton Glimpses of a billion-year history of crustal evolution and relations to ancient supercratons. Journal of South American Earth Sciences 102, 102659. doi: 10.1016/j.jsames.2020.102659.
  • 13.
    Dasgupta, A., Bhowmik, S.K., Dasgupta, S., Avila, J., Ireland, T.R., 2019. Mesoarchaean clockwise metamorphic PT path from the Western Dharwar Craton. Lithos 342, 370–390. doi: 10.1016/j.lithos. 2019.06.006.
  • 14.
    Fedo, C.M., Wayne Nesbitt, H., Young, G.M., 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23(10), 921. doi: 10 .1130/0091-7613(1995)023<0921:UTEOPM>2 .3 . CO;2.
  • 15.
    Giri, A., Anand, R., Balakrishnan, S., Dash, J.K., Sarma, D.S., 2019. Neoarchean magmatism in Shimoga greenstone belt, India: evidence for subduction-accretion processes in the evolution of the western Dharwar stratigraphy. Lithos 330–331, 177–193. doi: 10.1016/j.lithos.2019.02.015.
  • 16.
    Govind, A.V., Behera, K., Dash, J.K., Balakrishnan, S., Rajneesh, B., Shreyas, M., Srinivasan, R., 2021. Trace element and isotope Geochemistry of Neoarchean carbonate rocks from the Dharwar craton, southern India: implications for depositional environments and mantle influence on ocean chemistry. Precambrian Research 357, 106137. doi: 10.1016/j.precamres.2021.106137.
  • 17.
    Guitreau, M., Mukasa, S.B., Loudin, L., Krishnan, S., 2017. New constraints on the early formation of the Western Dharwar Craton (India) from igneous zircon U-Pb and Lu-Hf isotopes. Precambrian Research 302, 33–49. doi: 10.1016/j.precamres.2017.09.016.
  • 18.
    Harshitha, G., Manikyamba, C., Santosh, M., Yang, C.-X., Krishna, A.K., Sai, V.V.S., Reddy, I.P., 2024. Paleo-Mesoarchean sedimentary record in the Dharwar Craton, India: implications for Archean Ocean oxygenation. Geoscience Frontiers 15, 101701. doi: 10.1016/j.gsf.2023. 101701.
  • 19.
    Hashizume, K., Pinti, D.L., Orberger, B., Cloquet, C., Jayananda, M., Soyama, H., 2016. A biological switch at the ocean surface as a cause of laminations in a Precambrian iron formation. Earth and Planetary Science Letters 446, 27–36. doi: 10.1016/j.epsl.2016.04.023.
  • 20.
    Jayananda, M., Aadhiseshan, K.R., Kusiak, M.A., Wilde, S.A., Sekhamo, K.U., Guitreau, M., Gireesh, R.V., 2020. Multi-stage crustal growth and Neoarchean geodynamics in the Eastern Dharwar Craton, southern India. Gondwana Research 78, 228–260. doi: 10.1016/j.gr.2019.09. 005.
  • 21.
    Jayananda, M., Chardon, D., Peucat, J.J., Fanning, C.M., 2015. Paleoto Mesoarchean TTG accretion and continental growth in the western Dharwar craton, Southern India: constraints from SHRIMP U–Pb zircon geochronology, whole-rock geochemistry and Nd–Sr isotopes. Precambrian Research 268, 295–322. doi: 10.1016/j.precamres.2015.07.015.
  • 22.
    Jayananda, M., Duraiswami, R.A., Aadhiseshan, K.R., Gireesh, R.V., Prabhakar, B.C., Kafo, Kowe-u, Tushipokla, Namratha, R., 2016. Physical volcanology and geochemistry of Paleoarchean komatiite lava flows from the western Dharwar craton, southern India: implications for Archaean mantle evolution and crustal growth. International Geology Review 58-13, 1569–1595. doi: 10.1080/00206814.2016.1172350.
  • 23.
    Jayananda, M., Guitreau, M., Aadhiseshan, K.R., Miyazaki, T., Chung, S.L., 2023. Origin of the oldest (3600–3200 Ma) cratonic core in the Western Dharwar Craton, Southern India: implications for evolving tectonics of the Archean Earth. Earth-Science Reviews 236, 104278. doi: 10.1016/j.earscirev.2022.104278.
  • 24.
    Jayananda, M., Kano, T., Peucat, J.J., Channabasappa, S., 2008. 3.35 Ga komatiite volcanism in the western Dharwar craton, southern India: constraints from Nd isotopes and whole-rock geochemistry. Precambrian Research 162(1-2), 160–179. doi: 10.1016/j.precamres.2007.07.010.
  • 25.
    Jayananda, M., Martin, G., Tarun Thomas, T., Martin, H., Aadhiseshan, K.R., Gireesh, R.V., Peucat, J.-J., Satyanarayanan, M., 2019. Geochronology and geochemistry of Meso to Neoarchean magmatic epidote-bearing potassic granites, Western Dharwar Craton (Bellur–Nagamangala–Pandavpura corridor), Southern India: implications for the successive stages of crustal reworking and cratonization, in: Dey, S., Moyen, J.-F. (Eds.), Archean Granitoids of India: Windows into Early Earth Tectonics. Geological Society, London, Special Publications. volume 489. doi: 10.1144/SP489-2018-125.
  • 26.
    Jayananda, M., Santosh, M., Aadhiseshan, K.R., 2018. Formation of Archean (3600–2500 Ma) continental crust in the Dharwar Craton, southern India. Earth-Science Reviews 181, 12–42. doi: 10.1016/j. earscirev.2018.03.013.
  • 27.
    Jayananda, M., Tsutsumi, Y., Miyazaki, T., Gireesh, R.V., Kapfo, K.U., Hidaka, H., Kano, T., 2013. Geochronological constraints on Mesoand Neoarchean regional metamorphism and magmatism in the Dharwar craton, southern India. Journal of Asian Earth Sciences 78, 18–38. doi: 10.1016/j.jseaes.2013.04.033.
  • 28.
    Kaempf, J., Clark, C., Johnson, T.E., Jayananda, M., Julian, A., Payne, J., Sajeev, K., Martin, H., 2025. Archean polymetamorphism in the Central Dharwar Craton, Southern India. Journal of Metamorphic Petrology 43(1), 71–95. doi: 10.1111/jmg.12798.
  • 29.
    Khelen, A.C., Manikyamba, C., Subramanyam, K.S.V., Santosh, M., Ganguly, S., Kalpana, M.S., Subba Rao, D.V., 2019. Archean seawater composition and depositional environment – Geochemical and isotopic signatures from the stromatolitic carbonates of Dharwar Craton, India. Precambrian Research 330, 35–57. doi: 10.1016/j.precamres.2019.04.020.
  • 30.
    Khelen, A.C., Manikyamba, C., Tang, L., Santosh, M., Subramanyam, K.S.V., Singh, T.D., 2020. Detrital zircon U-Pb geochronology of stromatolitic carbonates from the greenstone belts of Dharwar Craton and Cuddapah basin of Peninsular India. Geoscience Frontiers 11, 229–242. doi: 10.1016/j.gsf.2019.04.010.
  • 31.
    Komiya, T., Yamamoto, S., Aoki, S., Sawaki, Y., Ishikawa, A., Tashiro, T., Koshida, K., Shimojo, M., Aoki, K., Collerson, K.D., 2015. Geology of the Eoarchean, N3.95 Ga, Nulliak supracrustal rocks in the Saglek Block, Northern Labrador, Canada: the oldest geological evidence for plate tectonics. Tectonophysics 662, 40–62. doi: 10.1016/j.tecto.2015.05.003.
  • 32.
    Krapez, B., Srinivasa Sarma, D., Ram Mohan, M., McNaughton, N.J., Rasmussen, B., Wilde, S.A., 2020. Tectonostratigraphy of the Late Archean Dharwar Supergroup, Dharwar Craton, India: defining a tectonic history from spatially linked but temporally distinct intracontinental and arc-related basins. Earth-Science Reviews 201, 102966. doi: 10.1016/j.earscirev.2019.102966.
  • 33.
    Kumar, A., Bhaskar Rao, Y.J., Sivaraman, T.V., Gopalan, K., 1996. Sm-Nd ages of Archaean metavolcanics of the Dharwar craton, South India. Precambrian Research 80, 205–216. doi: 10.1016/S0301-9268(96)00015-0.
  • 34.
    Ma, Haitao, Dilek, Y., Lian, D., Cai, P., Jayananda, M., Aadhiseshan, K.R., Yang, J., 2024. Parental magma and mantle source compositions of chromitites in the Mesoarchean Nuggihalli greenstone belt, India: evidence for Archean subduction zone magmatism. Journal of the Geological Society, London 182, 1–12. doi: 10.1144/jgs2024-158.
  • 35.
    Mallens, J., Guitreau, M., Jayananda, M., Gannoun, A., Fonquerine, C., Voyer, E., Aadhiseshan, K.R., 2023. Detrital zircon evidence for Mesoarchean continental collision in the Western Dharwar craton (India). Goldschmidt abstract. doi: 10.7185/gold2023 .
  • 36.
    Manikyamba, C., Ganguly, S., Santosh, M., Tang, L., Sindhuja, C.S., Pahari, A., Singh, T.D., Saha, A., 2021. Tectonic juxtaposition of plume and subduction derived magmatic sequences in the Bababudan greenstone terrane, western Dharwar Craton, India: constraining crustal accretion processes in a Neoarchean subduction-collision orogeny. Precambrian Research 355, 106097. doi: 10.1016/j.precamres.2021.106097.
  • 37.
    Mishima, K., Yamazaki, R., Satish-Kumar, M., Ueno, Y., Hokada, T., Toyoshima, T., 2017. Multiple sulfur isotope geochemistry of Dharwar Supergroup, Southern India: late Archean record of changing atmospheric chemistry. Earth and Planetary Science Letters 464, 69–83. doi: 10.1016/j.epsl.2017.02.007.
  • 38.
    Mitra, A., Dey, S., Das, P., Zong, K., Liu, Y., 2023. Nucleation and growth of western Dharwar Craton: a Paleoarchean to Mesoarchean evolutionary history recorded in sediment geochemistry and detrital zircon U-Pb-Hf isotopes-trace elements. Lithos 448-449, 107148. doi: 10.1016/j.lithos.2023.107148.
  • 39.
    Mukherjee, A., Jayananda, M., Pritam, N., Aadhiseshan, K.R., Satyanarayanan, M., 2025. Geochemistry and origin of the banded Iron formations (BIFs) from the Western Dharwar craton, southern India: implications for evolving redox conditions of Archean oceans. Geochemistry 85, 126268. doi: 10.1016/j.chemer.2025.126268.
  • 40.
    Nebel, O., Vandenburg, E.D., Capitanio, F.A., Smithies, R.H., Mulder, J., Cawood, P.A., 2024. Early Earth “subduction”: short-lived, off-craton, shuffle tectonics, and no plate boundaries. Precambrian Research 408, 107431. doi: 10.1016/j.precamres.2024.107431.
  • 41.
    Nutman, A.P., Chadwick, B., Krishna Rao, B., Vasudev, V.N., 1996. SHRIMP U/Pb zircon ages of acid volcanic rocks in the Chitradurga and Sandur groups, and granites adjacent to the Sandur schist belt, Karnataka. Journal of the Geological Society of India 47, 153–164. doi: 10.17491/jgsi/1996/470202.
  • 42.
    Ojakangas, R.W., Srinivasan, R., Hegde, V.S., Chandrakant, S.M., Srikantia, S.V., 2014. The Talya Conglomerate: an Archean (∼2.7 Ga) glaciomarine formation, Western Dharwar Craton. Southern India. Current Science 106, 387–396. URL: https://www.jstor.org/stable/24099899.
  • 43.
    Pearce, J.A., Ernst, R.E., Peate, D.W., Rogers, C., 2021. LIP printing: use of immobile element proxies to characterize Large Igneous Provinces in the geologic record. Lithos 392-393, 106068. doi: 10. 1016/j.lithos.2021.106068.
  • 44.
    Polat, A., 2012. Growth of Archean continental crust in oceanic island arcs. Geology 40, 383–384. doi: 10.1130/focus042012.1.
  • 45.
    Ravindran, A., Mezger, K., Balakrishnan, S., Berndt, J., Ranjan, S., Upadhyay, D., 2023. Formation of Paleo to Meso-Archean continental crust in the western Dharwar Craton, India: constraints from U-Pb zircon ages and Hf-Pb-Sr isotopes of granitoids and sedimentary rocks. Chemical Geology 615, 121196. doi: 10.1016/j.chemgeo.2022.121196.
  • 46.
    Reinhard, C.T., Planavsky, N.J., 2020. Biogeochemical controls on the redox evolution of Earth’s oceans and atmosphere. Elements 16, 191–196. doi: 10.2138/gselements.16.3.191.
  • 47.
    Roberts, N.M.W., Santosh, M., 2018. Capturing the Mesoarchean emergence of continental crust in the Coorg Block, southern India. Geophysical Research Letters 45. doi: 10.1029/2018GL078114.
  • 48.
    Russell, J., Chadwick, B., Krishna Rao, B., Vasudev, V.N., 1996. Whole rock Pb/Pb isotopic ages of late Archean limestones, Karnataka, India. Precambrian Research 78, 261–272. doi: 10.1016/0301-9268(95) 00082-8.
  • 49.
    Sindhuja, C.S., Manikyamba, C., Saha, S., Narayanan, S., Sridhar, B., 2022. Geochemical and carbon isotopic studies of carbonaceous phyllites from Dharwar craton, India – Reconstruction of Precambrian depositional environment. Precambrian Research 372, 106575. doi: 10.1016/j.precamres.2022.106575.
  • 50.
    Sreehari, L., Toyoshima, T., Satish-Kumar, M., Takahashi, T., Ueda, H., 2021. Structural and geochemical evidence for a failed rift crustal evolution model in Western Dharwar Craton. South India. Lithos 388–389, 106020. doi: 10.1016/j.lithos.2021.106020.
  • 51.
    Srinivasan, R., Ojakangas, R.W., 1986. Sedimentology of quartz–pebble conglomerates and quartzites of the Archean Bababudan Group: evidence for early crustal stability. The Journal of Geology 94, 199–214. doi: 10.1086/629023.
  • 52.
    Swami Nath, Ramakrishnan, M., 1981. Early Precambrian Supracrustals of Southern Karnataka, Memoire 112. Geological Survey of India.
  • 53.
    Thomazo, C., Pinti, D.L., Busigny, V., Ader, M., Hashizume, K., Philippot, P., 2009. Biological activity and Earth’s surface evolutions: insights from carbon, sulfur, nitrogen and iron stable isotopes in the rock record. Comptes Rendus Palvol 8, 665–678. doi: 10.1016/j.crpv.2009.02. 003.
  • 54.
    Ugarkar, A.G., Chandan Kumar, B., Malapur, M.A., Manuvachari, T.B., Kerr, A.C., 2017. Petrography and geochemistry of Archaean greywackes from the northern part of the Dharwar-Shimoga greenstone belt, western Dharwar craton: implications for nature of provenance. Journal of the Geological Society of India 89, 547–553. doi: 10.1007/s12594-017-0643-6.
  • 55.
    Wyman, D., 2018. Do cratons preserve evidence of stagnant lid tectonics? Geoscience Frontiers 9, 3–17. doi: 10.1016/j.gsf.2017.02.001.
Share this article:
How to Cite
Aadhiseshan, K. R., & Jayananda, M. (2025). Archean crustal evolution and building of habitable continents:Insights from the Western Dharwar Craton. Habitable Planet, 1(1&2), 197–220. https://doi.org/10.63335/j.hp.2025.0016
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.