- 1.
Abramov, O., Kring, D.A., Mojzsis, S.J., 2013. The impact environment of the Hadean Earth. Geochemistry 73, 227–248. doi: 10.1016/j. chemer.2013.08.004.
- 2.
Akanuma, S., Nakajima, Y., Yokobori, S.-I., Kimura, M., Nemoto, N., Mase, T., Miyazono, K.-I., Tanokura, M., Yamagishi, A., 2013. Experimental evidence for the thermophilicity of ancestral life. Proceedings of the National Academy of Sciences 110, 11067–11072. doi: 10.1073/pnas.1308215110.
- 3.
Appel, P.W., 1983. Rare earth elements in the early Archaean Isua ironformation, West Greenland. Precambrian Research 20(2–4), 243–258. doi: 10.1016/0301-9268(83)90075-x.
- 4.
Armstrong, R.L., 1981. Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental growth Earth. Philosophical Transactions of the Royal Society of London, Series A 301, 443–472. doi: 10.1098/rsta.1981.0122.
- 5.
Arndt, N.T., Barnes, S.J., Lesher, C.M., 2008. Komatiite. Cambridge Univ. Press, Cambridge, UK, p. 487. doi: 10.2113/gsecongeo.104.1.146.
- 6.
Arndt, N.T., Nisbet, E.G., 2012. Processes on the Young Earth and the Habitats of Early Life. The Annual Review of Earth and Planetary Sciences 40, 521–549. doi: 10.1146/annurev-earth-042711-105316.
- 7.
Bau, M., Dulski, P., 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research 79, 37–55. doi: 10.1016/0301-9268(95)00087-9.
- 8.
Bau, M., Dulski, P., 1999. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chemical Geology 155(1–2), 77–90. doi: 10.1016/s0009-2541(98)00142-9.
- 9.
Bell, E.A., Boehnke, P., Harrison, T.M., Mao, W.L., 2015. Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proceedings of the National Academy of Sciences 112, 14518–14521. doi: 10.1073/pnas.1517557112.
- 10.
Bell, E.A., Harrison, T.M., 2013. Post-Hadean transitions in Jack Hills zircon provenance: a signal of the Late Heavy Bombardment? Earth and Planetary Science Letters 364, 1–11. doi: 10.1016/j.epsl.2013.01.001.
- 11.
Blttler, C.L., Kump, L.R., Fischer, W.W., Paris, G., Kasbohm, J.J., Higgins, J.A., 2016. Constraints on ocean carbonate chemistry and pCO2 in the Archaean and Palaeoproterozoic. Nature Geoscience 10, 41–45. doi: 10.1038/ngeo2844.
- 12.
Boukar, C.., Badro, J., Samuel, H., 2025. Solidification of Earth’s mantle led inevitably to a basal magma ocean. Nature. doi: 10.1038/s41586-025-08701-z.
- 13.
Brune, S., Williams, S.E., Muller, R.D., 2017. Potential links between continental rifting, CO2 degassing and climate change through time. Nature Geoscience 10, 941–946.
- 14.
Campbell, I.H., Allen, C.M., 2008. Formation of supercontinents linked to increases in atmospheric oxygen. Nature Geoscience 1(8), 554–558. doi: 10.1038/ngeo259.
- 15.
Catling, D.C., Zahnle, K.J., 2020. The Archean atmosphere. Science Advances 6. doi: 10.1126/sciadv.aax1420.
- 16.
Cawood, P.A., Hawkesworth, C.J., Pisarevsky, S.A., Dhuime, B., Capitanio, F.A., Nebel, O., 2018. Geological archive of the onset of plate tectonics. Philosophical Transactions of the Royal Society a Mathematical Physical and Engineering Sciences 376, 20170405. doi: 10.1098/rsta.2017.0405.
- 17.
Charnay, B., Hir, G.L., Fluteau, F., Forget, F., Catling, D.C., 2017. A warm or a cold early Earth? New insights from a 3-D climatecarbon model. Earth and Planetary Science Letters 474, 97–109. doi: 10.1016/j.epsl.2017.06.029.
- 18.
Chen, G., Cheng, Q., Lyons, T.W., Shen, J., Agterberg, F., Huang, N., Zaho, M., 2022. Reconstructing Earth’s atmospheric oxygenation history using machine learning. Nature Communications 13, 5862. doi: 10.1038/s41467-022-33388-5.
- 19.
Crowe, S.A., Døssing, L.N., Beukes, N.J., Bau, M., Kruger, S.J., Frei, R., Canfield, D.E., 2013. Atmospheric oxygenation three billion years ago. Nature 501, 535–538.
- 20.
Dauphas, N., 2017. The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524. doi: 10.1038/nature20830.
- 21.
Davies, G.F., 2007. Dynamics of the Hadean and Archean mantle. Developments in Precambrian Geology 15, 61–73. doi: 10.1016/S0166-2635(07)15023-4.
- 22.
Dodd, M.S., Papineau, D., Grenne, T., Slack, J.F., Rittner, M., Pirajno, F., O’Neil, J., Little, C.T.S., 2017. Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543, 60–64. doi: 10.1038/nature21377.
- 23.
Dodd, M.S., Papineau, D., She, Z.-B., Manikyamba, C., Wan, Y.-S., O’Neil, J., Karhu, J.A., Rizo, H., Pirajno, F., 2019. Widespread occurrences of variably crystalline 13C-depleted graphitic carbon in banded iron formations. Earth and Planetary Science Letters 512, 163–174. doi: 10.1016/j.epsl.2019.01.054.
- 24.
Dohm, J.M., Maruyama, S., 2015. Habitable Trinity. Geoscience Frontiers 6(1), 95–101. doi: 10.1016/j.gsf.2014.01.005.
- 25.
Douville, E., Bienvenu, P., Charlou, J.L., Donval, J.P., Fouquet, Y., Appriou, P., Gamo, T., 1999. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimica et Cosmochimica Acta 63(5), 627–643. doi: 10.1016/s0016-7037(99)00024-1.
- 26.
Duncan, M.S., Dasgupta, R.D., 2017. Rise of Earth’s atmospheric oxygen controlled by efficient subduction of organic carbon. Nature Geoscience 10, 387–392. doi: 10.1038/ngeo2939.
- 27.
Furukawa, Y., Samejima, T., Nakazawa, H., Kakegawa, T., 2013. Experimental investigation of reduced volatile formation by high-temperature interactions among meteorite constituent materials, water, and nitrogen. Icarus 231, 77–82. doi: 10.1016/j.icarus.2013.11.033.
- 28.
Gillmann, C., Way, M.J., Avice, G., Breuer, D., Golabek, G.J., Hning, D., Krissansen-Totton, J., Lammer, H., O’Rourke, J.G., Persson, M., Plesa, A., Salvador, A., Scherf, M., Zolotov, M.Y., 2022. The longterm evolution of the atmosphere of Venus: processes and feedback mechanisms. Space Science Reviews 218(7). doi: 10.1007/s11214-022-00924-0.
- 29.
Goldblatt, C., Eager-Nash, J.K., Horne, J.E., 2024. Evolution of the Archean atmosphere. arXiv (Cornell University). doi: 10.48550/arxiv.2409.13105.
- 30.
Goldblatt, C., Lenton, T.M., Watson, A.J., 2006. Bistability of atmospheric oxygen and the Great Oxidation. Nature 443, 683–686. doi: 10.1038/nature05169.
- 31.
Govind, A.V., Behera, K., Dash, J.K., Balakrishnan, S., Bhutani, R., Managave, S., Srinivasan, R., 2021. Trace element and isotope Geochemistry of Neoarchean carbonate rocks from the Dharwar craton, southern India: implications for depositional environments and mantle influence on ocean chemistry. Precambrian Research 357, 106137. doi: 10.1016/j.precamres.2021.106137.
- 32.
Greaves, J.S., Richards, A.M.S., Bains, W., Rimmer, P.B., Sagawa, H., Clements, D.L., Seager, S., Petkowski, J.J., Sousa-Silva, C., Ranjan, S., Drabek-Maunder, E., Fraser, H.J., Cartwright, A., Mueller-Wodarg, I., Zhan, Z., Friberg, P., Coulson, I., Lee, E., Hoge, J., 2020. Phosphine gas in the cloud decks of Venus. Nature Astronomy 5(7), 655–664. doi: 10.1038/s41550-020-1174-4.
- 33.
Guo, M., Korenaga, J., 2020. Argon constraints on the early growth of felsic continental crust. Science Advances 6. doi: 10.1126/sciadv.aaz6234.
- 34.
Hamano, K., Abe, Y., Genda, H., 2013. Emergence of two types of terrestrial planet on solidification of magma ocean. Nature 497(7451), 607–610. doi: 10.1038/nature12163.
- 35.
Harshitha, G., Manikyamba, C., Santosh, M., Yang, C.-X., Krishna, A.K., Sai, V.V.S., Reddy, I.P., 2024. Paleo–Mesoarchean sedimentary record in the Dharwar Craton, India: implications for Archean ocean oxygenation. Geoscience Frontiers 15, 101701. doi: 10.1016/j.gsf.2023.101701.
- 36.
Harshitha, G., Yadav, J.K., Manikyamba, C., Santosh, M., Tang, L., Subramanyam, K.S.V., 2025. Spatio-temporal tectonic progression in the Dharwar Craton: insights from volcanic records of Archean greenstone belts. Precambrian Research 417, 107674. doi: 10.1016/j.gsf.2023.101701.
- 37.
Hashizume, K., Pinti, D.L., Orberger, B., Cloquet, C., Jayananda, M., Soyama, H., 2016. A biological switch at the ocean surface as a cause of laminations in a Precambrian iron formation. Earth and Planetary Science Letters 446, 27–36. doi: 10.1016/j.epsl.2016.04.023.
- 38.
Haugaard, R., Pecoits, E., Lalonde, S., Rouxel, O., Konhauser, K., 2015. The Joffre banded iron formation, Hamersley Group, Western Australia: assessing the palaeoenvironment through detailed petrology and chemostratigraphy. Precambrian Research 273, 12–37. doi: 10.1016/j.precamres.2015.10.024.
- 39.
Hawkesworth, C.J., Cawood, P.A., Dhuime, B., 2016. Tectonics and crustal evolution. GSA Today 26, 4–11. doi: 10.1130/GSATG272A.1.
- 40.
Hawkesworth, C., Cawood, P.A., Dhuime, B., 2019. Rates of generation and growth of the continental crust. Geoscience Frontiers 10, 165–173. doi: 10.1016/j.gsf.2018.02.004.
- 41.
Helz, G.R., Vorlicek, T.P., 2019. Precipitation of molybdenum from euxinic waters and the role of organic matter. Chemical Geology 509, 178–193. doi: 10.1016/j.chemgeo.2019.02.001.
- 42.
Herschy, B., Chang, S.J., Blake, R., Lepland, A., Abbott-Lyon, H., Sampson, J., Atlas, Z., Kee, T.P., Pasek, M.A., 2018. Archean phosphorus liberation induced by iron redox geochemistry. Nature Communications 9(1). doi: 10.1038/s41467-018-03835-3.
- 43.
Hickman-Lewis, K., Cavalazzi, B., Sorieul, S., Gautret, P., Foucher, F., Whitehouse, M.J., Jeon, H., Georgelin, T., Cockell, C.S., Westall, F., 2020. Metallomics in deep time and the influence of ocean chemistry on the metabolic landscapes of Earth’s earliest ecosystems. Scientific Reports 10(1). doi: 10.1038/s41598-020-61774-w.
- 44.
Hinz, I.L., Rossi, L., Ma, C., Johnson, J.E., 2023. Simulated diagenesis of the iron-silica precipitates in banded iron formations. American Mineralogist 108(9), 1732–1753. doi: 10.2138/am-2022-8758.
- 45.
Hofmann, A., Wilson, A.H., 2007. Chapter 5.5 Silicified basalts, bedded cherts and other sea floor alteration phenomena of the 3.4 GA Nondweni Greenstone Belt, South Africa, in: Developments in Precambrian Geology, p. 571–605. doi: 10.1016/s0166-2635(07)15055-6.
- 46.
Homann, M., 2019. Earliest life on Earth: evidence from the Barberton Greenstone Belt, South Africa. Earth-Science Reviews 196, 102888. doi: 10.1016/j.earscirev.2019.102888.
- 47.
Ianeselli, A., Atienza, M., Kudella, P.W., Gerland, U., Mast, C.B., Braun, D., 2022. Water cycles in a Hadean CO2 atmosphere drive the evolution of long DNA. Nature Physics 18, 579–585. doi: 10.1038/s41567-022-01516z.
- 48.
Jayananda, M., Santosh, M., Aadhiseshan, K.R., 2018. Formation of Archean (3600–2500 Ma) continental crust in the Dharwar Craton, southern India. Earth-Science Reviews 181, 12–42. doi: 10.1016/j. earscirev.2018.03.013.
- 49.
Johnson, C.M., Zheng, X.-Y., Djokic, T., Van Kranendonk, M.J., Czaja, A.D., Roden, E.E., Beard, B.L., 2022. Early Archean biogeochemical iron cycling and nutrient availability: new insights from a 3.5 Ga landsea transition. Earth-Science Reviews 228, 103992. doi: 10.1016/j.earscirev.2022.103992.
- 50.
Kamber, B.S., 2007. The enigma of the terrestrial protocrust: evidence for its former existence and the importance of its complete disappearance. in: Van Kranendonk, M. J., Smithies, R. H., and Bennett, V., (Eds.), Earth’s Oldest Rocks: Amsterdam, Elsevier, Developments in Precambrian Geology 15, 75–89. doi: 10.1016/S0166-2635(07)15024-6.
- 51.
Kasting, J.F., Pollack, J.B., Crisp, D., 1984. Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early Earth. Jornal of Atmospheric Chemistry 1, 403–428. doi: 10.1007/bf00053803.
- 52.
Keller, C.B., Harrison, T.M., 2020. Constraining crustal silica on ancient Earth. Proceedings of the National Academy of Sciences 117, 21101–21107. doi: 10.1073/pnas.2009431117.
- 53.
Khelen, A.C., Manikyamba, C., Subramanyam, K.S.V., Santosh, M., Ganguly, S., Kalpana, Rao, D.V.S., 2019. Archean seawater composition and depositional environment geochemical and isotopic signatures from the stromatolitic carbonates of Dharwar Craton, India. Precambrian Research 330, 35–57. doi: 10.1016/j.precamres.2019.04.020.
- 54.
Koeberl, C., 2006. Impact processes on the early Earth. Elements 2(4), 211–216. doi: 10.2113/gselements.2.4.211.
- 55.
Konhauser, K.O., Pecoits, E., Lalonde, S.V., Papineau, D., Nisbet, E.G., Barley, M.E., Arndt, N.T., Zahnle, K., Kamber, B.S., 2009. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature 458(7239), 750–753. doi: 10.1038/nature07858.
- 56.
Korenaga, J., 2021. Hadean geodynamics and the nature of early continental crust. Precambrian Research 359, 106178. doi: 10.1016/j. precamres.2021.106178.
- 57.
Kuleshov, V.N., Bychkov, A.Y., Brusnitsyn, A.I., 2024. Features of the REE Geochemistry and Genesis of rocks and ores of the Nchwaning Manganese Deposit (Kalahari Manganese Field, South Africa). Lithology and Mineral Resources 59(5), 569–588. doi: 10.1134/s0024490224700639.
- 58.
Lebrun, T., Massol, H., Chassefiere, E., Davaille, A., Marcq, E., Sarda, P., Leblanc, F., Brandeis, G., 2013. Thermal evolution of an early magma ocean in interaction with the atmosphere. Journal of Geophysical Research, Planets 118(6), 1155–1176. doi: 10.1002/jgre.20068.
- 59.
Liu, L.-G., 2004. The inception of the oceans and CO2-atmosphere in the early history of the Earth. Earth and Planetary Science Letters 227, 179–184. doi: 10.1016/j.epsl.2004.09.006.
- 60.
Manikyamba, C., Balaram, V., Naqvi, S.M., 1993. Geochemical signatures of polygenetic origin of a banded iron formation (BIF) of the Archaean Sandur greenstone belt (schist belt) Karnataka nucleus, India. Precambrian Research 61, 137–164. doi: 10.1016/0301-9268(93)90061-6.
- 61.
Manikyamba, C., Sindhuja, C.S., Khelen, A.C., Pahari, A., 2022. Archean Biogeochemical Cognizance from Dharwar Craton, India a Review. Journal of the Geological Society of India 98, 74–78. doi: 10.1007/s12594-022-1931-3.
- 62.
Marty, B., Avice, G., Bekaert, D.V., Broadley, M.W., 2018. Salinity of the Archaean oceans from analysis of fluid inclusions in quartz. Comptes Rendus Goscience 350, 154–163. doi: 10.1016/j.crte.2017.12. 002.
- 63.
Maruyama, S., Ebisuzaki, T., 2016. Origin of the Earth: a proposal of new model called ABEL. Geoscience Frontiers 8(2), 253–274. doi: 10.1016/j.gsf.2016.10.005.
- 64.
Maruyama, S., Kurokawa, K., Ebisuzaki, T., Sawaki, Y., Suda, K., Santosh, M., 2018. Nine requirements for the origin of Earth’s life: not at the hydrothermal vent, but in a nuclear geyser system. Geoscience Frontiers 10(4), 1337–1357. doi: 10.1016/j.gsf.2018.09.011.
- 65.
Maruyama, S., Santosh, M., Azuma, S., 2016. Initiation of plate tectonics in the Hadean: eclogitization triggered by the ABEL Bombardment. Geoscience Frontiers 9(4), 1033–1048. doi: 10.1016/j.gsf.2016.11.009.
- 66.
Matsui, T., Abe, Y., 1986. Impact-induced atmospheres and oceans on Earth and Venus. Nature 322, 526–528. doi: 10.1038/322526a0.
- 67.
Me‘ge, D., 2001. Uniformitarian plume tectonics: the post-Archean Earth and Mars. in Ernst, R.E., and Buchan, K.L., (Eds.), Mantle plumes: Their identification through time. Boulder, Geological Society of America, Special Paper 352, 141-164. doi: 10.1130/0-8137-2352-3.141.
- 68.
Mishima, K., Yamazaki, R., Satish-Kumar, M., Ueno, Y., Hokada, T., Toyoshima, T., 2017. Multiple sulfur isotope geochemistry of Dharwar Supergroup, Southern India: late Archean record of changing atmospheric chemistry. Earth and Planetary Science Letters 464, 69–83. doi: 10.1016/j.epsl.2017.02.007.
- 69.
Moody, E.R.R., lvarez Carretero, S., Mahendrarajah, T.A., Clark, J.W., Betts, H.C., Dombrowski, N., Sznth, L.L., Boyle, R.A., Daines, S., Chen, X., Lane, N., Yang, Z., Shields, G.A., Szllsi, G.J., Spang, A., Pisani, D., Williams, T.A., Lenton, T.M., Donoghue, P.C.J., 2024. The nature of the last universal common ancestor and its impact on the early Earth system. Nature Ecology & Evolution 8(9), 1654–1666. doi: 10.1038/s41559-024-02461-1.
- 70.
Mukherjee, A., Jayananda, M., Nasipuri, P., Aadhiseshan, K.R., Satyanarayanan, M., 2025. Geochemistry and origin of the banded Iron formations (BIFs) from the Western Dharwar craton, southern India: implications for evolving redox conditions of Archean oceans. Geochemistry 85, 126268. doi: 10.1016/j.chemer.2025.126268.
- 71.
Mukherjee, I., Large, R.R., 2020. Co-evolution of trace elements and life in Precambrian oceans: the pyrite edition. Geology 48(10), 1018–1022. doi: 10.1130/g47890.1.
- 72.
Nisbet, E.G., Cheadle, M.J., Arndt, N.T., Bickle, M.J., 1993. Constraining the potential temperature of the Archaean mantle: a review of
- 73.
the evidence from komatiites. Lithos 30, 291–307. doi: 10.1016/0024-4937(93)90042-B.
- 74.
Nisbet, E.G., Sleep, N., 2001. The habitat and nature of early life. Nature 409, 1083–1091. doi: 10.1038/35059210.
- 75.
Noffke, N., Awramik, S.M., 2013. Stromatolites and MISS-Differences between relatives. GSA Today 23, 4–9. doi: 10.1130/gsatg187a.1.
- 76.
Nutman, A.P., Bennett, V.C., Friend, C.R.L., Van Kranendonk, M.J., Chivas, A.R., 2016. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537, 535–538. doi: 10.1038/nature19355.
- 77.
O’Neill, C., Lenardic, A., Moresi, L., Torsvik, T.H., Lee, C.-T.A., 2007. Episodic Precambrian subduction. Earth and Planetary Science Letters 262, 552–562. doi: 10.1016/j.epsl.2007.04.056.
- 78.
Palin, R.M., Santosh, M., 2021. Plate tectonics: what, where, why, and when? Gondwana Research 100, 3–24.
- 79.
Papineau, D., Gregorio, B.T., Stroud, R.M., Steele, A., Pecoits, E., Konhauser, K., Wang, J., Fogel, M.L., 2010. Ancient graphite in the Eoarchean quartz-pyroxene rocks from Akilia in southern West Greenland II: isotopic and chemical compositions and comparison with Paleoproterozoic banded iron formations. Geochimica et Cosmochimica Acta 74, 5884–5905. doi: 10.1016/j.gca.2010.07.002.
- 80.
Papineau, D., She, Z., Dodd, M.S., Iacoviello, F., Slack, J.F., Hauri, E., Shearing, P., Little, C.T.S., 2022. Metabolically diverse primordial microbial communities in Earth’s oldest seafloor-hydrothermal jasper. Science Advances 8. doi: 10.1126/sciadv.abm2296.
- 81.
Partin, C.A., Bekker, A., Planavsky, N.J., Scott, C.T., Gill, B.C., Li, C., Podkovyrov, V., Maslov, A., Konhauser, K.O., Lalonde, S.V., Love, G.D., Poulton, S.W., Lyons, T.W., 2013. Largescale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales. Earth and Planetary Science Letters 369-370, 284–293.
- 82.
Pasek, M., Lauretta, D., 2007. Extraterrestrial flux of potentially prebiotic C, N, and P to the early Earth. Origins of Life and Evolution of Biospheres 38(1), 5–21. doi: 10.1007/s11084-007-9110-5.
- 83.
Payne, J.L., Boyer, A.G., Brown, J.H., Finnegan, S., Kowalewski, et al. 2008. Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proceedings of the National Academy of Sciences 106(1), 24–27. doi: 10.1073/pnas.0806314106.
- 84.
Peng, Y., Kusky, T., Wang, L., Luan, Z., Wang, C., Liu, X., Zhong, Y., Evans, N.J., 2022. Passive margins in accreting Archaean archipelagos signal continental stability promoting early atmospheric oxygen rise. Nature Communications 13. doi: 10.1038/s41467-022-35559-w.
- 85.
Pourmand, A., Dauphas, N., Ireland, T.J., 2011. A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: revising CI-chondrite and Post-Archean Australian Shale (PAAS) abundances. Chemical Geology 291, 38–54. doi: 10.1016/j.chemgeo.2011.08.011.
- 86.
Robbins, L.J., Lalonde, S.V., Planavsky, N.J., Partin, C.A., Reinhard, et al. 2016. Trace elements at the intersection of marine biological and geochemical evolution. Earth-Science Reviews 163, 323–348. doi: 10.1016/j.earscirev.2016.10.013.
- 87.
Rosas, J.C., Korenaga, J., 2018. Rapid crustal growth and efficient crustal recycling in the early Earth: implications for Hadean and Archean geodynamics. Earth and Planetary Science Letters 494, 42–49. doi: 10.1016/j.epsl.2018.04.051.
- 88.
Rosing, M.T., 1999. 13 C-Depleted Carbon Microparticles in >3700Ma Sea-Floor Sedimentary Rocks from West Greenland. Science 283, 674–676. doi: 10.1126/science.283.5402.674.
- 89.
Sagan, C., Chyba, C., 1997. The early Sun paradox: organic shielding of ultraviolet-labile greenhouse gases. Science 276, 1217–1221. doi: 10.1126/science.276.5316.1217.
- 90.
Saito, M.A., Sigman, D.M., Morel, F.M.M., 2003. The bioinorganic chemistry of the ancient ocean: the co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean-Proterozoic boundary? Inorganica Chimica Acta 356, 308–318. doi: 10.1016/s0020-1693(03)00442-0.
- 91.
Santosh, M., Arai, T., Maruyama, S., 2017. Hadean Earth and primordial continents: the cradle of prebiotic life. Geoscience Frontiers 8(2), 309–327. doi: 10.1016/j.gsf.2016.07.005.
- 92.
Santosh, M., Groves, D.I., Yang, C.-X., 2024. Habitable planet to sustainable civilization: global climate change with related clean energy transition reliant on declining critical metal resources. Gondwana Research 130, 220–233. doi: 10.1016/j.gr.2024.01.013.
- 93.
Sasselov, D.D., Grotzinger, J.P., Sutherland, J.D., 2020. The origin of life as a planetary phenomenon. Science Advances 6. doi: 10.1126/sciadv.aax3419.
- 94.
Schidlowski, M., 1988. A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333, 313–318. doi: 10.1038/333313a0.
- 95.
Schopf, J.W., Kudryavtsev, A.B., Czaja, A.D., Tripathi, A.B., 2007. Evidence of Archean life: stromatolites and microfossils. Precambrian Research 158, 141–155. doi: 10.1016/j.precamres.2007.04.009.
- 96.
Schulze-Makuch, D., Irwin, L.N., 2018. Life in the Universe, Springer eBooks. doi: 10.1007/978-3-319-97658-7.
- 97.
Scott, C., Planavsky, N.J., Dupont, C.L., Kendall, B., Gill, B.C., Robbins, L.J., Husband, K.F., Arnold, G.L., Wing, B.A., Poulton, S.W., Bekker, A., Anbar, A.D., Konhauser, K.O., Lyons, T.W., 2012. Bioavailability of zinc in marine systems through time. Nature Geoscience 6(2), 125–128. doi: 10.1038/ngeo1679.
- 98.
Shimizu, H., Yokobori, S.-I., Ohkuri, T., Yokogawa, T., Nishikawa, K., Yamagishi, A., 2007. Extremely thermophilic translation system in the common ancestor commonote: ancestral mutants of glycyl-tRNA synthetase from the extreme thermophile thermus thermophilus. Journal of Molecular Biology 369, 1060–1069. doi: 10.1016/j.jmb.2007.04. 001.
- 99.
Sindhuja, C.S., Manikyamba, C., Saha, S., Narayanan, S., Sridhar, B., 2022. Geochemical and carbon isotopic studies of carbonaceous phyllites from Dharwar craton, India – reconstruction of Precambrian depositional environment. Precambrian Research 372, 106575. doi: 10. 1016/j.precamres.2022.106575.
- 100.
Sleep, N.H., 2010. The Hadean-Archaean environment. Cold Spring Harbor Perspectives in Biology 2, a002527. doi: 10.1101/cshperspect. a002527.
- 101.
Sleep, N.H., Windley, B.F., 1982. Archaean plate tectonics: constraints and inferences. Journal of Geology 90, 363–379. doi: 10.1086/628691.
- 102.
Sleep, N.H., Zahnle, K., Neuhoff, P.S., 2001. Initiation of clement surface conditions on the earliest Earth. Proceedings of the National Academy of Sciences 98, 3666–3672. doi: 10.1073/pnas.071045698.
- 103.
Smith, D.E., Zuber, M.T., Solomon, S.C., Phillips, R.J., Head, J.W., Garvin, J.B., Banerdt, W.B., Muhleman, D.O., Pettengill, G.H., Neumann, G.A., Lemoine, F.G., Abshire, J.B., Aharonson, O., Brown, C.D., Hauck, S.A., Ivanov, A.B., McGovern, P.J., Zwally, H.J., Duxbury, T.C., 1999. The global topography of Mars and implications for surface evolution. Science 284, 1495–1503. doi: 10.1126/science.284.5419.1495.
- 104.
Squyres, S.W., Janes, D.M., Baer, G., Bindschadler, D.L., Schubert, G., Sharpton, V.L., Stofan, E.R., 1992. The morphology and evolution of coronae on Venus. Journal of Geophysical Research 97(E8), 13611–13634. doi: 10.1029/92JE01213.
- 105.
Takeuchi, Y., Furukawa, Y., Kobayashi, T., Sekine, T., Terada, N., Kakegawa, T., 2020. Impact-induced amino acid formation on Hadean Earth and Noachian Mars. Scientific Reports 10. doi: 10.1038/s41598-020-66112-8.
- 106.
Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Sci, Oxford, p. 312. doi: 10.1017/S0016756800032167.
- 107.
Trower, E.J., Lowe, D.R., 2016. Sedimentology of the ∼3.3 Ga upper Mendon Formation, Barberton Greenstone Belt, South Africa. Precambrian Research 281, 473–494. doi: 10.1016/j.precamres.2016.06.003.
- 108.
Van Kranendonk, M.J., 2010. Two types of Archean continental crust: plume and plate tectonics on early Earth. American Journal of Science 310, 1187–1209. doi: 10.2475/10.2010.01.
- 109.
Viehmann, S., Reitner, J., Tepe, N., Hohl, S.V., Van Kranendonk, M., Hofmann, T., Koeberl, C., Meister, P., 2020. Carbonates and cherts as archives of seawater chemistry and habitability on a carbonate platform 3.35 Ga ago: insights from Sm/Nd dating and trace element analysis from the Strelley Pool Formation, Western Australia. Precambrian Research 344, 105742. doi: 10.1016/j.precamres.2020.105742.
- 110.
Wang, Z., Zhang, J., Zong, K., Kusky, T.M., Wang, Y., 2023. Plate tectonics: the stabilizer of Earth’s habitability. Journal of Earth Science 34(6), 1645–1662. doi: 10.1007/s12583-023-1864-9.
- 111.
Warren, A.O., Kite, E.S., 2023. Narrow range of early habitable Venus scenarios permitted by modeling of oxygen loss and radiogenic argon degassing. Proceedings of the National Academy of Sciences 120(11). doi: 10.1073/pnas.2209751120.
- 112.
Way, M.J., Del Genio, A.D., 2020. Venusian Habitable Climate Scenarios: modeling Venus through time and applications to slowly rotating VenusLike exoplanets. Journal of Geophysical Research Planets 125(5). doi: 10.1029/2019je006276.
- 113.
Weiss, M.C., Sousa, F.L., Mrnjavac, N., Neukirchen, S., Roettger, M., Nelson-Sathi, S., Martin, W.F., 2016. The physiology and habitat of the last universal common ancestor. Nature Microbiology 1. doi: 10.1038/nmicrobiol.2016.116.
- 114.
Westall, F., Foucher, F., Cavalazzi, B., De Vries, S.T., Nijman, W., et al. 2011. Volcaniclastic habitats for early life on Earth and Mars: a case study from ∼3.5Ga-old rocks from the Pilbara, Australia. Planetary and Space Science 59, 1093–1106. doi: 10.1016/j.pss.2010.09.006.
- 115.
Westall, F., Hning, D., Avice, G., Gentry, D., Gerya, T., Gillmann, C., Izenberg, N., Way, M.J., Wilson, C., 2023. The habitability of Venus. Space Science Reviews 219. doi: 10.1007/s11214-023-00960-4.
- 116.
Westall, F., Xiao, S., 2024. Precambrian Earth: co-evolution of life and geodynamics. Precambrian Research 414, 107589. doi: 10.1016/j.precamres.2024.107589.
- 117.
Wille, M., Nebel, O., Van Kranendonk, M.J., Schoenberg, R., Kleinhanns, I.C., Ellwood, M.J., 2013. Mo–Cr isotope evidence for a reducing Archean atmosphere in 3.46–2.76Ga black shales from the Pilbara, Western Australia. Chemical Geology 340, 68–76. doi: 10.1016/j. chemgeo.2012.12.018.
- 118.
Wu, L., Percak-Dennett, E.M., Beard, B.L., Roden, E.E., Johnson, C.M., 2012. Stable iron isotope fractionation between aqueous Fe(II) and model Archean ocean Fe-Si coprecipitates and implications for iron isotope variations in the ancient rock record. Geochimica Et Cosmochimica Acta 84, 14–28. doi: 10.1016/j.gca.2012.01.007.
- 119.
Young, G.M., 2013. Precambrian supercontinents, glaciations, atmo-spheric oxygenation, metazoan evolution and an impact that may have changed the second half of Earth history. Geoscience Frontiers 4(3), 247–261. doi: 10.1016/j.gsf.2012.07.003.
- 120.
Zahnle, K., Arndt, N., Cockell, C.S., Halliday, A., Nisbet, E., Selsis, F., Sleep, N.H., 2007. Emergence of a habitable planet. Space Science Reviews 129, 35–78. doi: 10.1007/s11214-007-9225-z.
- 121.
Zellner, N.E.B., 2017. Cataclysm No More: new views on the timing and delivery of lunar impactors. Origins of Life and Evolution of Biospheres 47, 261–280. doi: 10.1007/s11084-017-9536-3.
- 122.
Zhang, S., Li, Y., Leng, W., Gurnis, M., 2023. Photoferrotrophic bacteriainitiated plate tectonics in the Neoarchean. Geophysical Research Letters 50. doi: 10.1029/2023gl103553.