2509001605
  • Open Access
  • Article

Groundwater potential and sustainability in the Indiansubcontinent

  • E. Shaji 1,*,   
  • M. Santosh 2,3,   
  • K.V. Sarath 1,   
  • P.K. Krishnaprasad 1,   
  • G. Indu 1,   
  • S.G. Dhanil Dev 1

Received: 01 Aug 2025 | Revised: 06 Sep 2025 | Accepted: 06 Sep 2025 | Published: 08 Sep 2025

Abstract

Understanding regional groundwater characteristics is an important aspect for sustainability. The Indian subcontinent is one of the critical regions because of the high population and rapid developmental activities where the groundwater potential plays a crucial role in meeting the water demands for agriculture, domestic, and industrial purposes. Here we evaluate the characteristics of the major aquifer systems in the Indian subcontinent and divide these into three distinct types viz. sedimentary aquifers comprising 48%, followed by metamorphic crystalline aquifers 32% and igneous crystalline aquifers at 20%.  In 2023, India extracted 241.34 BCM of groundwater though all these aquifers, representing approximately 59.26% of the nation's annual extractable groundwater resource. Severe over-exploitation of groundwater is observed in sedimentary aquifers of the Indo-Gangetic alluvial system, notably in Haryana, Punjab, Rajasthan, and Delhi, whereas significant over-exploitation in metamorphic crystalline aquifers is reported of Tamil Nadu and Karnataka, particularly in cities such as Bangalore and Chennai.   Nevertheless, most assessment units are categorized as 'safe,' offering ample opportunity for sustainable groundwater development. Our review shows that 87% of India's groundwater is extracted annually primarily for irrigation purposes. We observe substantial disparities in the distribution and extraction of groundwater for irrigation across the country, exacerbated by increasing water shortages linked to rising temperatures. These findings underscore the urgent need for building efficient irrigation systems in mitigating climate-induced threats. Therefore, to align with the UN Sustainable Development Goals (SDG-6,13 and 15) and safeguard India's productive aquifer units, it is essential to implement managed aquifer recharge schemes across the country.

References 

  • 1.
    Arora, T., Ahmed, S., 2011. Characterization of recharge through complex vadose zone of a granitic aquifer by time-lapse electrical resistivity tomography. Journal of Applied Geophysics 73(1), 35–44. doi: 10.1016/j.jappgeo.2010.11.003.
  • 2.
    Central Ground Water Board (CGWB). Official Website: URL: http: //cgwb.gov.in.
  • 3.
    CGWB, 2012. Central Ground Water Board report on Aquifer system of India. URL: https://www.aims-cgwb.org/principal-aquifer-systems-india.php.
  • 4.

    CGWB, 2022. Dynamic Groundwater Resources of India. URL: https://cgwb.gov.in/cgwbpnm/public/uploads/documents/1686215995950835934file.pdf.

  • 5.

    CGWB, 2023. Dynamic Groundwater Resources of India. URL: https://cgwb.gov.in/cgwbpnm/public/uploads/documents/17056512151889452705file.pdf.

  • 6.

    CGWB, 2024. Dynamic Groundwater Resources of India. URL: https://cgwb.gov.in/cgwbpnm/public/uploads/documents/17357182991031590738file.pdf.

  • 7.
    Dangar, S., Asoka, A., Mishra, V., 2021. Causes and implications of groundwater depletion in India: a review. Journal of Hydrology 596, 126103. doi: 10.1016/j.jhydrol.2021.126103.
  • 8.
    Das, S., 2023. Groundwater sustainability, security and equity: India Today and Tomorrow. Journal of the Geological Society of India 99(1), 5–8. doi: 10.1007/s12594-023-2260-x.
  • 9.
    Davamani, V., John, J.E., Poornachandhra, C., Gopalakrishnan, B., Arulmani, S., Parameswari, E., Santhosh, A., Srinivasulu, A., Lal, A., Naidu, R., 2024. A critical review of climate change impacts on groundwater resources: a focus on the current status, future possibilities, and role of simulation models. Atmosphere 15(1), 122. doi: 10.3390/atmos15010122.
  • 10.
    Dey, S., Singh, S., Raju, N.J., Mall, R.K., 2024. Hydrogeochemical characterization for groundwater quality and risk assessment in part of central gangetic alluvium, India. Groundwater for Sustainable Development 25, 101108. doi: 10.1016/j.gsd.2024.101108.
  • 11.
    Guhathakurta, P., Rajeevan, M., Sikka, D.R., Tyagi, A., 2015. Observed changes in southwest monsoon rainfall over India during 1901–2011. The International Journal of Climatology 35(8), 1881–1898. doi: 10. 1002/joc.4095.
  • 12.
    Gupta, R., Sharma, P.K., 2023. A review of groundwater-surface water interaction studies in India. Journal of Hydrology 621, 129592. doi: 10.1016/j.jhydrol.2023.129592.
  • 13.
    Lal, M., 2003. Global climate change: India’s monsoon and its variability. Journal of Environmental Studies and Policy 6(1), 1–34. URL: https://www.researchgate.net/publication/281402625.
  • 14.
    Li, P., Elumalai, V., 2025. Hydrogeology and the global significance of groundwater, in: Sustainable Groundwater and Environment: Challenges and Solutions. Springer Nature Switzerland, Cham, p. 1–20. doi: 10.1007/978-3-031-82194-3_1.
  • 15.
    Mukherjee, A., Saha, D., Harvey, C.F., Taylor, R.G., Ahmed, K.M., Bhanja, S.N., 2015. Groundwater systems of the Indian sub-continent. Journal of Hydrology: Regional Studies 4, 1–14. doi: 10.1016/j.ejrh.2015. 03.005.
  • 16.
    Mukherjee, P., Singh, C.K., Mukherjee, S., 2012. Delineation of groundwater potential zones in arid region of India—a remote sensing and GIS approach. Water Resources Management 26, 2643–2672. doi: 10. 1007/s11269-012-0038-9.
  • 17.
    Nair, A.S., Indu, J., 2021. Assessment of groundwater sustainability and identifying factors inducing groundwater depletion in India. Geophysical Research Letters 48(3), e2020GL087255. doi: 10.1029/ 2020GL087255.
  • 18.
    National Aquifer Mapping and Management Program (NAQUIM). Ministry of Water Resources, Government of India. URL:http://mowr.gov.in.
  • 19.
    Panda, D.K., Ambast, S.K., Shamsudduha, M., 2021. Groundwater depletion in northern India: impacts of the sub-regional anthropogenic land-use, socio-politics and changing climate. Hydrological Processes 35(2). e14003. doi: 10.1002/hyp.14003.
  • 20.
    Pattanaik, D.R., Rajeevan, M., 2010. Variability of extreme rainfall events over India during southwest monsoon season. Meteorological Applications: A Journal of Forecasting, Practical Applications Training Techniques and Modelling 17(1), 88–104. doi: 10.1002/met.164.
  • 21.
    Rodell, M., Velicogna, I., Famiglietti, J.S., 2009. Satellite-based estimates of groundwater depletion in India. Nature 460(7258), 999–1002. doi: 10.1038/nature08238.
  • 22.
    Saha, D., Dwivedi, S.N., Ali, S., 2024. Research on groundwater science and management in India. Proceedings of the Indian National Science Academy 90(2), 468–481. doi: 10.1007/s43538-024-00259-0.
  • 23.
    Saha, D., Ray, R.K., 2018. Groundwater resources of India: potential, challenges and management, in: Groundwater Development and Management: Issues and Challenges in South Asia. Springer International Publishing, Cham, p. 19–42. doi: 10.1007/978-3-319-75115-3_2.
  • 24.
    Sahoo, S., Singha, C., Govind, A., Sharma, P., 2025. Review of aquifer storage and recovery opportunities and challenges in India. Environmental Earth Sciences 84(5), 122. doi: 10.1007/ s12665-025-12124-4.
  • 25.
    Scanlon, B.R., Fakhreddine, S., Rateb, A., de Graaf, I., Famiglietti, J., Gleeson, T., Grafton, R.Q., Jobbagy, E., Kebede, S., Kolusu, S.R., Konikow, L.F., 2023. Global water resources and the role of groundwater in a resilient water future. Nature Reviews Earth & Environment 4(2), 87–101. doi: 10.1038/s43017-022-00378-6.
  • 26.
    Shaji, E., Santosh, M., Sarath, K.V., Prakash, P., Deepchand, V., Divya, B.V., 2021. Arsenic contamination of groundwater: a global synopsis with focus on the Indian Peninsula. Geoscience Frontiers 12(3), 101079. doi: 10.1016/j.gsf.2020.08.015.
  • 27.
    Shaji, E., Sarath, K.V., Santosh, M., Krishnaprasad, P.K., Arya, B.K., Babu, M.S., 2024. Fluoride contamination in groundwater: a global review of the status, processes, challenges, and remedial measures. Geoscience Frontiers 15(2), 101734. doi: 10.1016/j.gsf. 2023.101734.
  • 28.
    Shaw, R., Luo, Y., Cheong, T.S., Abdul Halim, S., Chaturvedi, S., Hashizume, M., Insarov, G.E., Ishikawa, Y., Jafari, M., Kitoh, A., Pulhin, J., Singh, C., Vasant, K., Zhang, Z., 2022. Asia, in: Prtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegr´ıa, A., Craig, M., Langsdorf, S., Lschke, S., Mller, V., Okem, A., Rama, B. (Eds.), Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA, p. 1457–1579. doi: 10.1017/9781009325844.012.
  • 29.
    Siebert, S., Burke, J., Faures, J.M., Frenken, K., Hoogeveen, J., Dll, P., Portmann, F.T., 2010. Groundwater use for irrigation–a global inventory. Hydrology and Earth System Sciences 14(10), 1863–1880. doi: 10.5194/hess-14-1863-2010.
  • 30.
    Singh, D.K., Singh, A.K., 2002. Groundwater situation in India: problems and perspective. International Journal of Water Resources Development 18(4), 563–580. doi: 10.1080/0790062022000017400.
  • 31.
    Singh, V.K., Pandey, H.K., Singh, S.K., Soni, P., 2023. Groundwater analysis using gravity recovery, climate experiment and google earth engine: Bundelkhand region, India. Physics and Chemistry of the Earth, Parts A/B/C 130, 103401. doi: 10.1016/j.pce.2023.103401.
  • 32.
    Swain, S., Taloor, A.K., Dhal, L., Sahoo, S., Al-Ansari, N., 2022. Impact of climate change on groundwater hydrology: a comprehensive review and current status of the Indian hydrogeology. Applied Water Science 12(6), 120. doi: 10.1007/s13201-022-01652-0.
  • 33.
    Taloor, A.K., Sharma, S., Suryakiran, S., Sharma, R., Sharma, M., 2024. Groundwater contamination and health risk assessment in Indian subcontinent: a geospatial approach. Current Opinion in Environmental Science & Health 39, 100555. doi: 10.1016/j.coesh.2024.100555.
  • 34.
    Yahaya, I., Li, Z., Zhou, J., Jiang, S., Su, B., Huang, J., Xu, R., Havea, P.H., Jiang, T., 2024. Estimations of potential evapotranspiration from CMIP6 multi-model ensemble over Africa. Atmospheric Research 300, 107255. doi: 10.1016/j.atmosres.2024.107255.
Share this article:
How to Cite
Shaji, E., Santosh, M., Sarath, K. V., Krishnaprasad, P. K., Indu, G., & Dev, S. G. D. (2025). Groundwater potential and sustainability in the Indiansubcontinent. Habitable Planet, 1(1&2), 249–270. https://doi.org/10.63335/j.hp.2025.0019
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.