2509001607
  • Open Access
  • Article

Laterite formation under tropical weathering: A geochemical characterization

  • P.K. Annie,   
  • Arunima M. Lal *,   
  • Arun J. John,   
  • G.K. Indu,   
  • P. Abhina,   
  • A.S. Revathy

Received: 03 Aug 2025 | Revised: 12 Sep 2025 | Accepted: 12 Sep 2025 | Published: 14 Sep 2025

Abstract

The laterite deposits of the Madayippara in Kannur district, Kerala, is a flat-topped lateritic plateau in Western margin of India.  This study employed geochemical techniques—such as CIA and correlation coefficient analysis—to assess relative weathering and lateritization processes across the selected profile. It is observed that SiO2 and Al₂O₃ are the most abundant oxides in the samples. Fe₂O₃ values suggest strong ferruginization (lateritization) in the upper part of the profile and a corresponding depletion in silica, while the bottom layer exhibits lower Fe₂O₃ content and higher silica levels. The degree of lateritization systematically illustrates samples from various depths according to lateritization intensity, with even the lowest sample falling within the weakly lateritized field. The Weathering Index of Parker (WIP) and Chemical Index of Alteration (CIA) suggest intense tropical weathering leading to the formation of laterites associated with gibbsite-rich layers. The correlation coefficient matrix between different major elements indicates a negative correlation between Fe and Si, reflecting a typical trend in high-grade laterites. Mineralogical studies confirmed the presence of kaolinite, gibbsite, goethite, hematite, and quartz typical of mature laterite profiles. These findings highlight the impact of prolonged tropical weathering on the Madayippara landscape and contribute to a better understanding of the region's geological evolution and resource significance. This study also supports in situ field evidence, indicating that the laterites at Madayippara developed over Tertiary sedimentary rocks during the post-Warkalli lateritisation cycle.

References 

  • 1.
    Abasaghi, F., Mahboubi, A., Mahmudi Gharaie, M.H., Khanehbad, M., 2023. Mineralogy and geochemistry of Permian–Triassic lateriticbauxitic horizons, eastern and central Alborz, Iran: implications for provenance, palaeogeography, and palaeoclimate. Geological Journal 58(1), 170–194. doi: 10.1002/gj.4585.
  • 2.
    Abedini, A., Calagari, A.A., Mikaeili, K., 2023. Geochemical characteristics of laterites: the Ailibaltalu deposit, Iran. Bulletin of the Mineral Research and Exploration 2014(148). Article no 5. URL: https://bmta.researchcommons.org/journal/vol2014/iss148/5, doi: 10.19111/bmre.55769.
  • 3.
    Adeola, A.J., Dada, R.G., 2017. Mineralogical and geochemical trends in lateritic weathering profiles on basement rocks in Awa-Oruijebu and its environ, Southwestern Nigeria. Global Journal of Geological Sciences 15, 1–11. doi: 10.4314/gjgs.v15i1.1.
  • 4.
    Aquino, K.A., Arcilla, C.A., Schardt, C., Tupaz, C.A.J., 2022. Mineralogical and geochemical characterization of the Sta. Cruz nickel laterite
  • 5.
    deposit, Zambales, Philippines. Minerals 12(3), 305. doi: 10.3390/min12030305.
  • 6.
    Beauvais, A., Tardy, Y., 1993. Degradation and dismantling of iron crusts under climatic changes in Central Africa. Chemical Geology 107(3–4), 277–280. doi: 10.1016/0009-2541(93)90190-T.
  • 7.
    Bourman, R.P., 1993. Perennial problems in the study of laterite: a review. Australian Journal of Earth Sciences 40(4), 387–401.
  • 8.
    Bourman, R.P., 1996. Towards distinguishing transported and in situ ferricretes: data from southern Australia. AGSO Journal of Australian Geology and Geophysics 16, 231–241.
  • 9.
    Bourman, R.P., Ollier, C.D., 2002. A critique of the Schellmann definition and classification of ‘laterite’ . CATENA 47(2), 117–131. doi: 10.1016/S0341-8162(01)00178-3.
  • 10.
    Brindley, G.W., Brown, G. (Eds.), 1980. Crystal structures of clay minerals and their X-ray identification. Mineralogical Society, London. doi: 10.1180/mono-5.
  • 11.
    Budihal, R., Pujar, G., 2018. Major and trace elements geochemistry of laterites from the Swarnagadde Plateau, Uttar Kannada District, Karnataka, India. Journal of Geosciences and Geomatics 6(1), 12–20. doi: 10.12691/jgg-6-1-2.
  • 12.
    Devaraju, T.C., Khanadali, S.D., 1993. Lateritic bauxite profiles of southwestern and southern India—characteristics and tectonic significance. Current Science 64(12), 919–921. URL: https://www.jstor.org/stable/24096209.
  • 13.
    Economou-Eliopoulos, M., Laskou, M., Eliopoulos, D.G., Megremi, I., Kalatha, S., Eliopoulos, G.D., 2021. Origin of critical metals in Fe–Ni laterites from the Balkan Peninsula: opportunities and environmental risk. Minerals 11(9), 1009. doi: 10.3390/min11091009.
  • 14.
    Fedo, C.M., Nesbitt, H.W., Young, G.M., 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23(10), 921–924. doi: 10.1130/0091-7613(1995)023.
  • 15.
    Fu, W., Yang, J., Yang, M., Pang, B., Liu, X., Niu, H., Huang, X., 2014. Mineralogical and geochemical characteristics of a serpentinite-derived laterite profile from East Sulawesi, Indonesia: implications for the lateritization process and Ni supergene enrichment in the tropical rainforest. Journal of Asian Earth Sciences 93, 74–88. doi: 10.1016/j.jseaes.2014.06.030.
  • 16.
    Ghosh, S., Guchhait, S.K., 2015. Characterization and evolution of primary and secondary laterites in northwestern Bengal Basin, West Bengal, India. Journal of Palaeogeography 4(2), 203–230. doi: 10.3724/SP.J.1261.2015.00074.
  • 17.
    Giorgis, I., Bonetto, S., Giustetto, R., Lawane, A., Pantet, A., Rossetti, P., Thomassin, J.-H., Vinai, R., 2014. The lateritic profile of Balkouin, Burkina Faso: geochemistry, mineralogy and genesis. Journal of African Earth Sciences 90, 31–48. doi: 10.1016/j.jafrearsci.2013. 11.006.
  • 18.
    Guinoiseau, D., Fekiacova, Z., Allard, T., Druhan, J.L., Balan, E., Bouchez, J., 2021. Tropical weathering history recorded in the silicon isotopes of lateritic weathering profiles. Geophysical Research Letters 48, e2021GL092957. doi: 10.1029/2021GL092957.
  • 19.
    Indu, G.K., John, A.J., Lal, A.M., Anjana, R., Amrutha, K., Athulya, R., 2025. Provenance and paleoenvironmental dynamics of the Cheruvathur Formation in Northern Kerala, India: geological and geochemical perspectives. Arabian Journal of Geosciences 18, 168. doi: 10. 1007/s12517-025-12309-y.
  • 20.
    Jeans, C.V., Moore, D.M., Reynolds, Jr, R.C., 1997. X-ray diffraction and the identification and analysis of clay minerals. 2nd ed., Oxford University Press, Oxford and New York.
  • 21.
    Keller, W.D., 1956. Clay minerals as influenced by environments of their formation. AAPG Bulletin 40(11), 2689–2710. doi: 10.1306/5CEAE5CE-16BB-11D7-8645000102C1865D.
  • 22.
    Maignien, R., 1966. Review of research on laterites (Natural Resources Research, No. 19). UNESCO, Paris.
  • 23.
    Melfi, A.J., Trescases, J.-J., Carvalho, A., de Oliveira, S.M.B., Ribeiro Filho, E., Formoso, M.L.L., 1988. The lateritic ore deposits of Brazil. Sciences Geologiques Bulletin 41(1), 5–36.
  • 24.
    Nadłonek, W., Bojakowska, I., 2018. Variability of chemical weathering indices in modern sediments of the Vistula and Odra Rivers (Poland). Applied Ecology and Environmental Research 16(3), 2453–2473. doi: 10. 15666/aeer/1603_24532473.
  • 25.
    Nahon, D.B., 1991. Introduction to the petrology of soils and chemical weathering. John Wiley & Sons, New York.
  • 26.
    Narayanaswami, M.S., 1992. Geochemistry and genesis of laterite in parts of Cannanore District, North Kerala. Ph.d. thesis. Cochin University of Science and Technology. Kochi, India.
  • 27.
    Nesbitt, H.W., Young, G.M., 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta 48(7), 1523–1534. doi: 10.1016/0016-7037(84)90408-3.
  • 28.
    Nesbitt, H.W., Young, G.M., 1989. Formation and diagenesis of weathering profiles. The Journal of Geology 97(2), 129–147. doi: 10.1086/629290.
  • 29.
    Ngueumdjo, Y., Wouatong, A.S.L., Ngapgue, F., et al. 2020. A petrographic, mineralogical, and geochemical characterizations of the lateritic hardpans of Bamendjou in the western region of Cameroon. SN Applied Sciences 2, 1481. doi: 10.1007/s42452-020-3131-3.
  • 30.
    Parker, A., 1970. An index of weathering for silicate rocks. Geological Magazine 107(6), 501–504. doi: 10.1017/S0016756800058581.
  • 31.
    Sari, D.V., Wibowo, G.S., Nurdiyansyah, A., 2024. Bedrock characterization and geochemical evolution of whole-rock weathering profile at GAG Ni laterite deposit, Southwest Papua, Indonesia. IOP Conference Series: Earth and Environmental Science, 1422, 012002. doi: 10.1088/1755-1315/1422/1/012002.
  • 32.
    Schaefer, C.E.G.R., Fabris, J.D., Ker, J.C., 2008. Minerals in the clay fraction of Brazilian Latosols (Oxisols): a review. Clay Minerals 43(1), 137–154. doi: 10.1180/claymin.2008.043.1.11.
  • 33.
    Schellmann, W., 1986. A new definition of laterite. Lateritisation Processes, IGCP-127. Geological Survey of India, Memoirs 120, 1–7.
  • 34.
    Selby, M.J., 1993. Hillslope materials and processes. 2nd ed., Oxford University Press, Oxford.
  • 35.
    Subramanian, K.S., 1978. How old are laterites in the Indian Peninsula? – A suggestion. Journal of the Geological Society of India 19(6), 269–272. doi: 10.17491/jgsi/1978/190606.
  • 36.
    Tardy, Y., 1997. Petrology of Laterites and Tropical Soils. A.A. Balkema/CRC Press, Rotterdam.
  • 37.
    Thorne, R., Roberts, S., Herrington, R., 2012. Climate change and the formation of nickel laterite deposits. Geology 40(4), 331–334. doi: 10.1130/G32549.1.
  • 38.
    Valeton, I., Biermann, M., Reche, R., Rosenberg, F., 1987. Genesis of nickel laterites and bauxites in Greece during the Jurassic and Cretaceous, and their relation to ultrabasic parent rocks. Ore Geology Reviews 2(3), 359–404. doi: 10.1016/0169-1368(87)90011-4.
  • 39.
    Vijaya Kumar, T., Rao, Y.B., Plavsa, D., Collins, A.S., Tomson, J.K., Gopal, B.V., Babu, E.V.S.S.K., 2017. Zircon U-Pb ages and Hf isotopic systematics of charnockite gneisses from the Ediacaran–Cambrian highgrade metamorphic terranes, southern India: constraints on crust formation, recycling, and Gondwana correlations. GSA Bulletin 129(5–6), 625–648.
  • 40.
    Widdowson, M., 2009. Laterite, in: Gornitz, V. (Ed.), Encyclopedia of Paleoclimatology and Ancient Environments. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. doi: 10.1007/978-1-4020-4411-3_127.
  • 41.
    Wille, M., Babechuk, M.G., Kleinhanns, I.C., Stegmaier, J., Suhr, N., Widdowson, M., Kamber, B.S., Schoenberg, R., 2018. Silicon and chromium stable isotopic systematics during basalt weathering and lateritisation: a comparison of variably weathered basalt profiles in the Deccan Traps, India. Geoderma 314, 190–204. doi: 10.1016/j.geoderma.2017.10.051.
  • 42.
    Wilson, M.J., 2020. Dissolution and formation of quartz in soil environments: a review. Soil Science Annual 71(2), 99–110. doi: 10.37501/soilsa/122398.
  • 43.
    Yadav, P.K., Das, M., 2021. Geology, structure and geochemical features of the laterites with anomalous Ti-V-Cr and REE of the Dhandraul Formation of the Vindhyan Supergroup, Eastern India. Journal of the Geological Society of India 97(6), 603–614. doi: 10.1007/s12594-021-1735-x.
  • 44.
    Zhao, L., Niu, S., Zhou, S., Li, L., Huang, F., Wang, Y., Niu, X., Chen, T., Mo, L., Zhang, M., 2024. New insight into genesis of the Maojun laterite Fe–Mn deposit in the Lanshan area, Hunan Province, South China: evidence from detailed mineralogical and geochemical studies. Ore Geology Reviews 165, 105900. doi: 10.1016/j.oregeorev.2024.105900.
Share this article:
How to Cite
Annie, P. K., Lal, A. M., John, A. J., Indu, G. K., Abhina, P., & Revathy, A. S. (2025). Laterite formation under tropical weathering: A geochemical characterization. Habitable Planet, 1(1&2), 271–285. https://doi.org/10.63335/j.hp.2025.0020
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.