- 1.
Eddy, J.A. Climate and the changing Sun. Clim. Change 1977, 1, 173 190. https://doi.org/10.1007/BF01884410
- 2.
Wolf, R. Extract of a letter to Mr. Carrington. Mon. Not. R. Astron. Soc. 1859, 19, 85 86. https://doi.org/10.1093/mnras/19.3.85
- 3.
Malburet, J. Sur la priode des maxima d'activit solaire. Acad. Sci. Paris. Republished in C. R. Geosci. 2019, 351, 351 354. https://doi.org/10.1016/j.crte.2019.04.001
- 4.
Malburet, J. Sur la cause de la priodicit des taches solaires. L’Astronomie 1925, 39, 503. https://gallica.bnf.fr/ark:/12148/bpt6k9628963x/f369.item
- 5.
Wood, K. Physical sciences: Sunspots and planets. Nature 1972, 240, 91 93. https://doi.org/10.1038/240091a0
- 6.
Charbonneau, P. The planetary hypothesis revived. Nature 2013, 493, 613 614. https://doi.org/10.1038/493613a
- 7.
Scafetta, N.; Bianchini, A. The planetary theory of solar activity variability: A review. Front. Astron. Space Sci. 2022, 9, 937930. https://doi.org/10.3389/fspas.2022.937930
- 8.
Scafetta, N.; Bianchini, A. Overview of the spectral coherence be- tween planetary resonances and solar and climate oscillations. Cli- mate 2023, 11, 77. https://doi.org/10.3390/cli11040077
- 9.
Neff, U.; Burns, S.J.; Mangini, A.; et al. Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature 2001, 411, 290 293. https://doi.org/10.1038/35077048
- 10.
Kirkby, J. Cosmic rays and climate. Surv. Geophys. 2007, 28, 333 375. https://doi.org/10.1007/s10712-008-9030-6
- 11.
Scafetta, N. Multi-scale harmonic model for solar and cli- mate cyclical variation throughout the Holocene based on Jupiter-Saturn tidal frequencies plus the 11-year solar dy- namo cycle. J. Atmos. Sol.-Terr. Phys. 2012, 80, 296 311. https://doi.org/10.1016/j.jastp.2012.02.016
- 12.
Scafetta, N. Detection, attribution, and modeling of cli- mate change: Key open issues. Gondwana Res. 2025. https://doi.org/10.1016/j.gr.2025.05.001
- 13.
Steinhilber, F.; Abreu, J.A.; Beer, J.; et al. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc. Natl. Acad. Sci. USA 2012, 109, 5967 5971. https://doi.org/10.1073/pnas.1118965109
- 14.
Scafetta, N. Does the Sun work as a nuclear fusion amplifier of planetary tidal forcing? A proposal for a physical mechanism based on the mass-luminosity relation. J. Atmos. Sol.-Terr. Phys. 2012, 81–82, 27 40. https://doi.org/10.1016/j.jastp.2012.04.002
- 15.
Scafetta, N. Discussion on the spectral coherence be- tween planetary, solar and climate oscillations: A reply to some critiques. Astrophys. Space Sci. 2014, 354, 275 299. https://doi.org/10.1007/s10509-014-2111-8
- 16.
Scafetta, N. Empirical assessment of the role of the Sun in climate change using balanced multi-proxy solar records. Geosci. Front. 2023, 14, 101650. https://doi.org/10.1016/j.gsf.2023.101650
- 17.
Scafetta, N. Impacts and risks of “realistic” global warming pro- jections for the 21st century. Geosci. Front. 2024, 15, 101774. https://doi.org/10.1016/j.gsf.2023.101774
- 18.
Bendandi, R. Un principio fondamentale dell’Universo; Osservatorio Bendandi: Faenza, Italy, 1931. See also http://daltonsminima.altervista.org/2011/01/10/il-ciclo-undecennale- del-sole-secondo-bendandi/
- 19.
Hung, C.-C. Apparent relations between solar activity and solar tides caused by the planets, NASA Tech. Memo. TM-2007-214817, 2007. Available at: http://ntrs.nasa.gov/search.jsp?R=20070025111
- 20.
Wilson, I.R.G. The Venus-Earth-Jupiter spin-orbit cou-this Journal and was not involved in the editorial review or pling model. Pattern Recogn. Phys. 2013, 1, 147 158. the decision to publish this article. https://doi.org/10.5194/prp-1-147-2013
- 21.
Tattersall, R. The Hum: Lognormal distribution of planetary- solar resonance. Pattern Recogn. Phys. 2013, 1, 185 198. https://doi.org/10.5194/prp-1-185-2013
- 22.
Stefani, F.; Giesecke, A.; Weber, N.; et al. Synchronized helicity oscillations: A link between planetary tides and the solar cycle? Sol. Phys. 2016, 291, 2197 2212. https://doi.org/10.1007/s11207-016-0968-0
- 23.
Stefani, F.; Giesecke, A.; Weber, N.; et al. On the synchronizability of Tayler-Spruit and Babcock-Leighton type dynamos. Sol. Phys. 2018, 293, 12. https://doi.org/10.1007/s11207-017-1232-y
- 24.
Stefani, F.; Giesecke, A.; Weier, T. A model of a tidally synchronized solar dynamo. Sol. Phys. 2019, 294, 60. https://doi.org/10.1007/s11207-019-1447-1
- 25.
Stefani, F.; Horstmann, G.M.; Klevs, M.; et al. Rieger, Schwabe, Suess-de Vries: The sunny beats of resonance. Sol. Phys. 2024, 299, 51. https://doi.org/10.1007/s11207-024-02295-x
- 26.
Okhlopkov, V.P. 11-Year index of linear configurations of Venus, Earth, and Jupiter and solar activity. Geomagn. Aeron. 2020, 60, 381 390. https://doi.org/10.1134/S0016793220030147
- 27.
Scafetta, N. Solar oscillations and the orbital invariant in- equalities of the solar system. Sol. Phys. 2020, 295, 33. https://doi.org/10.1007/s11207-020-01599-y
- 28.
Scafetta, N.; Milani, F. Spectral structure of the solar inertial mo- tion from 12999 BC to 16998 AD. Publ. Astron. Soc. Pac. 2025, 137, 054402. https://doi.org/10.1088/1538-3873/add37a
- 29.
Scafetta, N. Reconstruction of the interannual to millennial scale pat- terns of the global surface temperature. Atmosphere 2021, 12, 147. https://doi.org/10.3390/atmos12010147
- 30.
Tan, B.; Cheng, Z. The mid-term and long-term solar quasiperiodic cycles and the possible relationship with plane- tary motions. Astrophys. Space Sci. 2013, 343, 511 521. https://doi.org/10.1007/s10509-012-1272-6
- 31.
Ogurtsov, M.G.; Nagovitsyn, Y.A.; Kocharov, G.E.; et al. Long- period cycles of the Sun's activity recorded in direct so- lar data and proxies. Sol. Phys. 2002, 211, 371 394. https://doi.org/10.1023/a:1022411209257
- 32.
Steinhilber, F.; Beer, J.; Frohlich, C. Total solar irradiance dur- ing the Holocene. Geophys. Res. Lett. 2009, 36, L19704. https://doi.org/10.1029/2009GL040142
- 33.
McCracken, K.G. Beer, J.; Steinhilber, F.; et al. A phenomenological study of the cosmic ray variations over the past 9400 years, and their implications regarding solar activity and the solar dynamo. Sol. Phys. 2013, 286, 609 627. https://doi.org/10.1007/s11207-013-0265-0
- 34.
McCracken, K.G.; Beer, J.; Steinhilber, F. Evidence for plane- tary forcing of the cosmic ray intensity and solar activity through- out the past 9400 years. Sol. Phys. 2014, 289, 3207 3229. https://doi.org/10.1007/s11207-014-0510-1
- 35.
Charvtov, I. Can origin of the 2400-year cycle of solar activity be caused by solar inertial motion? Ann. Geophys. 2000, 18, 399 405. https://doi.org/10.1007/s00585-000-0399-x
- 36.
Abreu, J.A.; Beer, J.; Ferriz-Mas, A.; et al. Is there a planetary influence on solar activity? Astron. Astrophys. 2012, 548, A88. https://doi.org/10.1051/0004-6361/201219997
- 37.
Scafetta, N.; Milani, F.; Bianchini, A.; et al. On the astronomical origin of the Hallstatt oscillation found in radiocarbon and climate records throughout the Holocene. Earth-Sci. Rev. 2016, 162, 24 43. https://doi.org/10.1016/j.earscirev.2016.09.004
- 38.
Kutschera, W.; Patzelt, G.; Steier, P.; et al. The Tyrolean Iceman and his glacial environment during the Holocene. Radiocarbon 2017, 59, 395 405. https://doi.org/10.1017/RDC.2016.70
- 39.
Alley, R.B.; et al. GISP2 Ice Core Temperature and Ac- cumulation Data. In IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2004-013; NOAA/NGDC Paleoclimatology Program: Boulder, CO, USA, 2004. https://www.ncei.noaa.gov/access/paleo-search/study/6080
- 40.
Cauquoin, A.; Raisbeck, G.M.; Jouzel, J.; et al. No evidence for planetary influence on solar activity 330,000 years ago. As-tron. Astrophys. 2014, 561, A132. https://doi.org/10.1051/0004- 6361/201322879
- 41.
Smythe, C.M.; Eddy, J.A. Planetary tides during Maunder sunspot. Nature 1977, 266, 434 435. https://doi.org/10.1038/266434a0
- 42.
Poluianov, S.; Usoskin, I. Critical analysis of a hypothesis of the planetary tidal influence on solar activity. Sol. Phys. 2014, 289, 2333 2342. https://doi.org/10.1007/s11207-014-0475-0
- 43.
Abreu, J.A.; Albert, C.; Beer, J.; et al. Response to: “Critical Analysis of a Hypothesis of the Planetary Tidal Influence on Solar Activity”. Sol. Phys. 2014, 289, 2343 2344. https://doi.org/10.1007/s11207- 014-0473-2
- 44.
Bard, E.; Raisbeck, G.; Yiou, F.; et al. Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus B 2000, 52, 985 992. https://doi.org/10.1034/j.1600-0889.2000.d01-7.x
- 45.
Ljungqvist, F.C. A new reconstruction of temperature variability in the extra-tropical Northern Hemisphere during the last two mil- lennia. Geogr. Ann. Ser. A Phys. Geogr. 2010, 92, 339 351. https://doi.org/10.1111/j.1468-0459.2010.00399.x
- 46.
Moberg, A.; Sonechkin, D.M.; Holmgren, K.; et al. Highly vari- able Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 2005, 433, 613 617. https://doi.org/10.1038/nature03265
- 47.
Reimer, P.J.; Baillie, M.G.L.; Bard, E.; et al. Intcal04 terrestrial ra- diocarbon age calibration, 0 26 cal kyr BP. Radiocarbon 2004, 46, 1029 1058. https://doi.org/10.1017/S0033822200032999
- 48.
Usoskin, I.; Gallet, Y.; Lopes, F.; et al. Solar activity dur- ing the Holocene: The Hallstatt cycle and its consequence for grand minima and maxima. Astron. Astrophys. 2016, 587, A150. https://doi.org/10.1051/0004-6361/201527295
- 49.
Bray, J. Glaciation and solar activity since the Fifth Cen- tury BC and the solar cycle. Nature 1968, 220, 672 674. https://doi.org/10.1038/220672a0
- 50.
Vasiliev, S.S.; Dergachev, V.A. The 2400-year cycle in at- mospheric radiocarbon concentration: Bispectrum of 14C data over the last 8000 years. Ann. Geophys. 2002, 20, 115 120. https://doi.org/10.5194/angeo-20-115-2002
- 51.
Charvtov, I. Can origin of the 2400-year cycle of solar activity be caused by solar inertial motion? Ann. Geophys. 2000, 18, 399 405. https://doi.org/10.1007/s00585-000-0399-x
- 52.
Cionco, R.G.; Pavlov, D.A. Solar barycentric dynamics from a new solar-planetary ephemeris. Astron. Astrophys. 2018, 615, A153. https://doi.org/10.1051/0004-6361/201732349
- 53.
Fairbridge, R.W.; Shirley, J.H. Prolonged minima and the 179-yr cycle of the solar inertial motion. Sol. Phys. 1987, 110, 191 210. https://doi.org/10.1007/BF00148211
- 54.
Bertolucci, S.; Zioutas, K.; Hofmann, S.; et al. The Sun and its plan- ets as detectors for invisible matter. Phys. Dark Univ. 2017, 17, 13. https://doi.org/10.1016/j.dark.2017.06.001
- 55.
Petrakou, E. Planetary statistics and forecasting for solar flares. Adv. Space Res. 2021, 68, 2963 2973. https://doi.org/10.1016/j.asr.2021.05.034
- 56.
Scafetta, N.; Willson, R.C. Planetary harmonics in the historical Hungarian aurora record (1523 1960). Planet. Space Sci. 2013, 78, 38 44. https://doi.org/10.1016/j.pss.2013.01.005
- 57.
Sharp, G.J. Are Uranus & Neptune responsible for solar grand min- ima and solar cycle modulation? Int. J. Astron. Astrophys. 2013, 3, 260 273. https://doi.org/10.4236/ijaa.2013.33031
- 58.
Abreu, J.A.; Beer, J.; Ferriz-Mas, A.; et al. Is there a planetary influence on solar activity? Astron. Astrophys. 2012, 548, A88. https://doi.org/10.1051/0004-6361/201219997
- 59.
Lopes, F.; Le Moul, J.L.; Courtillot, V.; et al. On the shoulders of Laplace. Phys. Earth Planet. Inter. 2021, 316, 106693. https://doi.org/10.1016/j.pepi.2021.106693
- 60.
Brohan, P.; Kennedy, J.J.; Harris, I.; et al. Uncertainty esti- mates in regional and global observed temperature changes: A new dataset from 1850. J. Geophys. Res. 2006, 111, D12106. https://doi.org/10.1029/2005JD006548
- 61.
Scafetta, N. Empirical evidence for a celestial origin of the climate oscillations and its implications. J. Atmos. Sol.-Terr. Phys. 2010, 72, 951 970. https://doi.org/10.1016/j.jastp.2010.04.015
- 62.
Keeling, C.D.; Whorf, T.P. The 1,800-year oceanic tidal cycle: A possible cause of rapid climate change. Proc. Natl. Acad. Sci. USA 2000, 97, 3814 3819. https://doi.org/10.1073/pnas.97.8.3814
- 63.
Wood, K. Physical sciences: Sunspots and planets. Nature 1972, 240, 91 93. https://doi.org/10.1038/240091a0
- 64.
Connolly, R.; Soon, W.; Connolly, M.; et al. How much has the Sun influenced Northern Hemisphere temperature trends? An ongoing debate. Res. Astron. Astrophys. 2021, 21, 131. https://doi.org/10.1088/1674-4527/21/6/131
- 65.
Eyring, V.; Bony, S.; Meehl, G.A.; et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental de- sign and organization. Geosci. Model Dev. 2016, 9, 1937 1958. https://doi.org/10.5194/gmd-9-1937-2016
- 66.
Morice, C.P.; Kennedy, J.J.; Rayner, N.A.; et al. Quantifying uncer-tainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 dataset. J. Geophys. Res. 2012, 117, D08101. https://doi.org/10.1029/2011JD017187
- 67.
Morice, C.P.; Kennedy, J.J.; Rayner, N.A.; et al. An updated as- sessment of near-surface temperature change from 1850: The HadCRUT5 data set. J. Geophys. Res. Atmos. 2021, 126, e2019JD032361. https://doi.org/10.1029/2019JD032361
- 68.
Scafetta, N.; Mazzarella, A. Spectral coherence between climate os- cillations and the M ≥ 7 earthquake historical worldwide record. Nat. Hazards 2015, 76, 1807 1829. https://doi.org/10.1007/s11069-014- 1571-z
- 69.
Bragato, P.L. Italian seismicity and Vesuvius' eruptions synchronize on a quasi 60-year oscillation. Earth Space Sci. 2015, 2, 453 467. https://doi.org/10.1002/2014EA000030
- 70.
Wolff, C.L.; Patrone, P.N. A new way that planets can affect the Sun. Sol. Phys. 2010, 266, 227 246. https://doi.org/10.1007/s11207-010-9628-y