- Forecasting of urban growth dynamics and supports data-driven urban planning.
- Results show 45% increase in urbanized areas from 2002 to 2023.
- Risks of landscape fragmentation, biodiversity loss, and pressure on agricultural lands.
Urban Expansion and Agricultural Land Conflict in Southern Brazil: Implications for Sustainable Land Use Policy
Received: 29 Nov 2025 | Revised: 06 Jan 2026 | Accepted: 16 Jan 2026 | Published: 26 Jan 2026
This study adopts an integrated simulation framework based on Cellular Automata and Artificial Neural Networks (CA-ANN) to model land use and land cover (LULC) transitions driven by urban expansion. By combining machine learning with spatial modeling, the approach enables the forecasting of urban growth dynamics and supports data-driven urban planning. The objective is to assess urban sprawl in the city of Passo Fundo, southern Brazil, using LULC change simulations from 2002 to 2043. Satellite imagery from 2002 to 2023 indicate for supervised classification of three land cover classes—urbanized areas, forests, and non-urbanized areas—alongside key spatial variables, including hypsometry, proximity to water bodies, railways, central business districts, and road networks. These variables served as inputs to the CA-ANN model to simulate future land use scenarios for 2033 and 2043. Results indicate a 45% increase in urbanized areas from 2002 to 2023, with projections reaching 66% growth by 2043, absolute land area expansion. This urban expansion primarily occurs at the expense of agricultural and forest areas, underscoring the risks of landscape fragmentation, biodiversity loss, and pressure on agricultural lands. The findings highlight the urgency of integrating spatial intelligence into sustainable land governance strategies, particularly in regions where urbanization intersects with agribusiness territories and food security systems.

Urban sprawl | Land Use Simulation | Land use and land cover change | Public policy | Sustainability management | Global south
Chen, L.; Gong, C.; Guo, Y.; et al. Integrating macro-micro perspectives to measure urban land expansion in Minsk, Belarus. J. Urban Manag. 2025, 14, 1–13. https://doi.org/10.1016/j.jum.2025.06.012
Wang, H.; Wang, Q.; Zhang, X.; et al. Mapping global annual urban land cover fractions (2001–2020) derived with multi-objective deep learning. Int. J. Appl. Earth Obs. Geoinf. 2025, 136, 104404. https://doi.org/10.1016/j.jag.2025.104404
Gonzlez-Calle, J.L. Metropolitan expansion and rural change in the peri-urban edge Medellín—Rionegro (Colombia). J. Urban Manag. 2024, 13, 521–540. https://doi.org/10.1016/j.jum.2024.05.007
Liu, S.; Wang, Y.; Gong, P.; et al. Regional warming from urbanization is disproportionate to urban expansion rate. One Earth 2025, 8, 101234. https://doi.org/10.1016/j.oneear.2025.101234
Kafy, A.A.; Dey, N.N.; Saha, M.; et al. Leveraging machine learning algorithms in dynamic modeling of urban expansion, surface heat islands, and carbon storage for sustainable environmental management in coastal ecosystems. J. Environ. Manag. 2024, 370, 122427. https://doi.org/10.1016/j.jenvman.2024.122427
Almulhim, A.I.; Cobbinah, P.B. Dammam metropolitan area: Advancing the pursuit of urban resilience. Habitat Int. 2025, 163, 103499. https://doi.org/10.1016/j.habitatint.2025.103499
Neckel, A.; Da Silva, J.L.; Saraiva, P.P.; et al. Estimation of the economic value of urban parks in Brazil, the case of the City of Passo Fundo. J. Clean. Prod. 2020, 264, 121369. https://doi.org/10.1016/j.jclepro.2020.121369
Mnica, A.N.; Rocha, C.; Arajo, L.S.; et al. From forest to urban: Assessing the impact of land cover on water quality. J. Environ. Manag. 2025, 386, 125739. https://doi.org/10.1016/j.jenvman.2025.125739
Dehghani, A.; Soltani, A.; Nateghi, K. Balancing urban growth and Environmental change: Land use patterns in Tehran and Sydney. Environ. Sustain. Indic. 2025, 26, 100691. https://doi.org/10.1016/j.indic.2025.100691
Ogara, D.A.; Akrofi, M.M.; Muthoni, V. Understanding the socio-economic and environmental effects of Port Development on urban and marine environments: A case of Mombasa Port expansion (2006–2021) on urban and marine environments in Kenya. Ocean Coast. Manag. 2025, 267, 107581. https://doi.org/10.1016/j.ocecoaman.2025.107581
Silva, L.F.; Lozano, L.P.; Oliveira, M.L.; et al. Identification of hazardous nanoparticles present in the Caribbean Sea for the allocation of future preservation projects. Mar. Pollut. Bull. 2021, 168, 112425. https://doi.org/10.1016/j.marpolbul.2021.112425
Soares, F.; Silva, M.; Azevedo, I. Urban decarbonization policies and strategies: A sectoral review. Renew. Sustain. Energy Rev. 2025, 215, 115617. https://doi.org/10.1016/j.rser.2025.115617
Liu, C.; Yuan, X.; Ni, G.; et al. Utilizing deep transfer learning to discover changes in landscape patterns in urban wetland parks based on multispectral remote sensing. Ecol. Inform. 2024, 83, 102808. https://doi.org/10.1016/j.ecoinf.2024.102808
De, S.; Das, A.; Mazumder, T.N. A systematic literature review of remote sensing approaches in urban green space research: Towards achieving sustainable development goals. Urban Clim. 2025, 59, 102332. https://doi.org/10.1016/j.uclim.2025.102332
Nkonu, R.S.; Antwi, M. A novel ANN-CA and MCDA integrated framework for predicting urban expansion and its implications on future flood risk, Accra Metropolis. Environ. Dev. 2024, 52, 101061. https://doi.org/10.1016/j.envdev.2024.101061
Amoah, M.K.M.; Gorsevski, P.V. Predicting land use land cover changes and impact on urban wetlands using cellular automata and artificial neural networks approach, a case study in Greater Accra, Ghana. Sci. Afr. 2025, 28, e02767. https://doi.org/10.1016/j.sciaf.2025.e02767
Onsay, E.A.; Carilo, S.A.; Baltar, K.C. Measuring vote-selling and modeling electoral behavior of students and professionals in the Philippine election: Evidence from econometric modeling, machine learning, and Artificial Neural Networks (ANN). DSEF 2025, 7, 100062. https://doi.org/10.1016/j.dsef.2025.100062
Shukla, A.; Pachauri, R.K.; Hussain, A.; et al. Comparative analysis dust accumulation impact on PV performance using artificial neural network and machine learning algorithms. Results Eng. 2025, 26, 105024. https://doi.org/10.1016/j.rineng.2025.105024
Adhab, A.H.; Mahdi, M.S.; Shukla, M.; et al. Estimation of activity coefficient of aqueous ionic liquids using a machine learning method: The artificial neural network coupled with group contribution approach. J. Indian Chem. Soc. 2025, 102, 101924. http://dx.doi.org/10.1016/j.jics.2025.101924
Khalid, W.; Shamim, S.K.; Ahmad, A. Synergistic approach for land use and land cover dynamics prediction in Uttarakhand using cellular automata and artificial neural network. Geomatica, 2024, 76, 100017. https://doi.org/10.1016/j.geomat.2024.100017
Li, S.; Lin, W. A hybrid landscape metric-enhanced cellular automata model (LE-CA) for land use/land cover change simulation: An application to coastal wetlands. Ecol. Model. 2025, 508, 111209. https://doi.org/10.1016/j.ecolmodel.2025.111209
Panda, K.C.; Singh, R.M.; Singh, S.K. Advanced CMD predictor screening approach coupled with cellular automataartificial neural network algorithm for efficient land use-land cover change prediction. J. Clean. Prod. 2024, 449, 141822. https://doi.org/10.1016/j.jclepro.2024.141822
Mansour, S.; Alotaibi, O.; Alnasrallah, M. Geospatial modelling of urban expansion effects on the land ecosystems in Kuwait using random forest and cellular automata. J. Urban Manag. 2025, 22, 44–58. https://doi.org/10.1016/j.jum.2025.05.011
Roy, S.K.; Alam, M.T.; Mojumder, P.; et al. Dynamic assessment and prediction of land use alterations influence on ecosystem service value: A pathway to environmental sustainability. Environ. Sustain. Indic. 2024, 21, 100319. https://doi.org/10.1016/j.indic.2023.100319
Jain, M. Future land use and land cover simulations with cellular automata-based artificial neural network: A case study over Delhi megacity (India). Heliyon 2024, 10, e34662. https://doi.org/10.1016/j.heliyon.2024.e34662
Gui, B.; Bhardwaj, A.; Sam, L. Cellular automata models for simulation and prediction of urban land use change: Development and prospects. Artif. Intell. Geosci. 2025, 6, 100142. https://doi.org/10.1016/j.aiig.2025.100142
Zhou, Z.; Chen, Y.; Wang, Z.; et al. Integrating cellular automata with long short-term memory neural network to simulate urban expansion using time-series data. Int. J. Appl. Earth Obs. Geoinf. 2024, 127, 103676. https://doi.org/10.1016/j.jag.2024.103676
Gharaibeh, A.A.; Al-Rabee, M.S.; Obeidat, R. Integrating artificial neural networks and neighborhood analysis for enhanced urban growth prediction depending on planned future development areas: A case study of Ar-Ramtha, Jordan. J. Urban Manag. 2025, 14, 1179–1201. https://doi.org/10.1016/j.jum.2025.04.010
IBGE (Brazilian Institute of Geography and Statistics). Cities and States: Passo Fundo, Brazil, 2025. Official Website: https://cidades.ibge.gov.br/brasil/rs/passo-fundo/panorama
Bodah, B.W.; Neckel, A.; Maculan, L.S.; et al. Sentinel-5P TROPOMI satellite application for NO2 and CO studies aiming at environmental valuation. J. Clean. Prod. 2022, 357, 131960. https://doi.org/10.1016/j.jclepro.2022.131960
Llavero-Pasquina, M. Driving ecologically unequal exchange: A global analysis of multinational corporations’ role in environmental conflicts. Glob. Environ. Change 2025, 92, 103006. https://doi.org/10.1016/j.gloenvcha.2025.103006
Neckel, A.; Goellner, E.; Oliveira, M.L.; et al. Geospatial applicability optics of the TROPOspheric monitoring instrument (TROPOMI) on a global scale: An overview. Geosci. Front. 2025, 16, 102008. https://doi.org/10.1016/j.gsf.2025.102008
Pan, X.; Liu, Z.; He, C.; et al. Modeling urban expansion by integrating a convolutional neural network and a recurrent neural network. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102977. https://doi.org/10.1016/j.jag.2022.102977
Rifat, S.A.A.; Liu, W. Predicting future urban growth scenarios and potential urban flood exposure using Artificial Neural Network-Markov Chain model in Miami Metropolitan Area. Land Use Policy 2022, 114, 105994. https://doi.org/10.1016/j.landusepol.2022.105994
Zheng, A.; Ba, R.; Jiang, W.; et al. Intelligent fire modeling in wildland-urban interface: A comprehensive review of current progress, challenges, and future perspectives. J. Saf. Sci. Resil. 2025, 7, 100252. https://doi.org/10.1016/j.jnlssr.2025.100252
Kuhn, R.L. A landscape of consciousness: Toward a taxonomy of explanations and implications. Prog. Biophys. Mol. Biol. 2024, 190, 28–169. https://doi.org/10.1016/j.pbiomolbio.2023.12.003
Parsch, C.; Wagner, B.; Engert, J.E.; et al. Forecasting deforestation and carbon loss across New Guinea using machine learning and cellular automata. Sci. Total Environ. 2025, 970, 178864. https://doi.org/10.1016/j.scitotenv.2025.178864
Kidmose, B. A review of smart vehicles in smart cities: Dangers, impacts, and the threat landscape. Veh. Commun. 2024, 51, 100871. https://doi.org/10.1016/j.vehcom.2024.100871
Yang, H.; Xu, W.; Yu, J.; et al. Exploring the impact of changing landscape patterns on ecological quality in different cities: A comparative study among three megacities in eastern and western China. Ecol. Inform. 2023, 77, 102255. https://doi.org/10.1016/j.ecoinf.2023.102255
Bettinger, P.; Sandoval, S.; Merry, K.; et al. Approaches for simulating alternative futures of complex forested landscapes: A review. Environ. Dev. 2025, 56, 101285. https://doi.org/10.1016/j.envdev.2025.101285
Zou, L.; Chen, J.; Wang, Y.; et al. Simulating tropical forest change using a cellular automata-agent based model. Ecol. Model. 2025, 509, 111256. https://doi.org/10.1016/j.ecolmodel.2025.111256
USGS (United States Geological Survey). Earth Explorer Platform, 2025; U.S. Geological Survey (USGS): Reston, VA, USA, 2025. Official Website: https://earthexplorer.usgs.gov/
Sorsa, Y.; Abate, B.; Arba, Y. Analyzing historical land use land cover changes using machine learning approach integrated with geospatial techniques in Omo Gibe River Basin, Ethiopia. Environ. Chall. 2025, 20, 101296. https://doi.org/10.1016/j.envc.2025.101296
Aszkowski, P.; Ptak, B.; Kraft, M.; et al. Deepness: Deep neural remote sensing plugin for QGIS. SoftwareX 2023, 23, 101495. https://doi.org/10.1016/j.softx.2023.101495
Jakimow, B.; Janz, A.; Thiel, F.; et al. EnMAP-Box: Imaging spectroscopy in QGIS. SoftwareX 2023, 23, 101507. https://doi.org/10.1016/j.softx.2023.101507
Mafiana, C.F.; Izunobi, J.U.; Iduseri, E.O.; et al. Sustainable development goals and effects of Land-Use–Land-Cover (LULC) changes on vegetation using Kubanni River Basin, Zaria, Nigeria as a case-in-point. Ecohydrol. Hydrobiol. 2025, 25, 100694. https://doi.org/10.1016/j.ecohyd.2025.100694
Rodríguze-Ortega, J.; Tabik, S.; Benhammou, Y.; et al. Land use and land cover fraction estimation for Sentinel-2 RGB images: A new LULC mapping task. Remote Sens. Appl. Soc. Environ. 2025, 39, 101626. https://doi.org/10.1016/j.rsase.2025.101626
López-Ballesteros, A.; Srinivasan, R.; Senent-Aparicio, J. Introducing MapSWAT: An open source QGIS plugin integrated with google earth engine for efficiently generating ready-to-use SWAT+ input maps. Environ. Model. Softw. 2024, 179, 106108. https://doi.org/10.1016/j.envsoft.2024.106108
Facun, L.P.; Maria, M.Y.S.; Ducao, R.; et al. QGIS Shoreline Change Analysis Tool (QSCAT): A fast, open-source shoreline change analysis plugin for QGIS. Environ. Model. Softw. 2025, 184, 106263. https://doi.org/10.1016/j.envsoft.2024.106263
Julien, A.; Giguet-Covex, C.; Messager, E.; et al. Performance of the REVEALS model to reconstruct present mountain vegetation cover in the North-Western Alps: A model evaluation for past land cover reconstruction. Quat. Sci. Rev. 2025, 349, 109089. https://doi.org/10.1016/j.quascirev.2024.109089
Benitez, F.L.; Mena, C.F.; Laso, F.; et al. Trajectories of farming systems reshape land use/land cover dynamics in the agricultural zones of the Galapagos Islands. Agric. Syst. 2026, 231, 104506. http://dx.doi.org/10.1016/j.agsy.2025.104506
Babitha, A.; Andrushia, A.D.; Anand, N.; et al. Land use and land cover change detection from multisource satellite imagery—A hybrid convolutional neural network approach. Eng. Appl. Artif. Intell. 2025, 161, 112187. https://doi.org/10.1016/ j.engappai.2025.112187
Mupepi, O.; Marambanyika, T.; Matsa, M.M.; et al. Land use and land cover changes in sub-catchments of Zimbabwe and their implications on wetland and catchment soil water conditions. Phys. Chem. Earth 2025, 141, 104081. https://doi.org/10.1016/j.pce.2025.104081
Korcelski, C.; Neckel, A.; Bodah, B.W.; et al. Terrestrial nanoparticles and geospatial optics: Implications for environmental impact from anthropogenic contaminants in the Caribbean region. Sci. Total Environ. 2025, 963, 178503. https://doi.org/10.1016/j.scitotenv.2025.178503
Khan, A.; Sudheer, M. Machine learning-based monitoring and modeling for spatio-temporal urban growth of Islamabad. Egypt. J. Remote Sens. Space Sci. 2022, 25, 541–550. https://doi.org/10.1016/j.ejrs.2022.03.012
Shomope, I.; Tawalbeh, M.; Al-Othman, A.; et al. Predicting biohydrogen production from dark fermentation of organic waste biomass using Multilayer Perceptron Artificial Neural Network (MLP–ANN). Comput. Chem. Eng. 2025, 192, 108900. https://doi.org/10.1016/j.compchemeng.2024.108900
Blissag, B.; Yebdri, D.; Kessar, C. Spatiotemporal change analysis of LULC using remote sensing and CA-ANN approach in the Hodna basin, NE of Algeria. Phys. Chem. Earth 2024, 133, 103535. https://doi.org/10.1016/j.pce.2023.103535
Ali, M.A.; Jamal, S.; Wahid, N.; et al. Leveraging CA-ANN modelling for SDGs alignment: Previse future land use patterns and their influence on Mirik Lake of sub-Himalayan region. World Dev. Sustain. 2025, 6, 100218. https://doi.org/10.1016/j.wds.2025.100218
Foody, G.M. Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Sens. Environ. 2020, 239, 111630. https://doi.org/10.1016/j.rse.2019.111630
Ismaeel, W.A.; Kumar, J.S. An approach for built-up area extraction using different indices and deep neural network (DNN) model. Infrared Phys. Technol. 2024, 142, 105558. https://doi.org/10.1016/j.infrared.2024.105558
Tola, B.; Deyassa, G. A modeling approach for evaluating and predicting the impacts of land use land cover changes on groundwater recharge in Walga Watershed, Upper Omo Basin, Central Ethiopia. J. Hydrol. Reg. Stud. 2024, 51, 101659. https://doi.org/10.1016/j.ejrh.2024.101659
Zhang, R.; Wen, L.; Jin, Y.; et al. Synergistic impacts of carbon emission trading policy and innovative city pilot policy on urban land green use efficiency in China. Sustain. Cities Soc. 2024, 118, 105955. https://doi.org/10.1016/j.scs.2024.105955
Dinh, T.; Tran, D.; Dobešová, Z.; et al. An efficient fusionbased deep learning framework for land use and land cover image clustering. Eng. Appl. Artif. Intell. 2025, 161, 112061. https://doi.org/10.1016/j.engappai.2025.112061
Maze, M.; Attaher, S.; Taqi, M.O.; et al. Enhanced agricultural land use/land cover classification in the Nile Delta using Sentinel-1 and Sentinel-2 data and machine learning. ISPRS J. Photogramm. Remote Sens. 2025, 229, 239–253. https://doi.org/10.1016/j.isprsjprs.2025.08.019
Zhou, Y.; Ferdinand, M.S.; Van Wesemael, J.; et al. A framework for mapping conservation agricultural fields using optical and radar time series imagery. Remote Sens. Environ. 2025, 328, 114858. https://doi.org/10.1016/j.rse.2025.114858
Cáceres, N.R.; Garcia-Martinez, A.; De Cózar, J.C.G. Use of GIS and BIM tools in determining the life cycle impact of urban systems. Case study: Residential buildings which apply the Eco-Efficiency Matrix in the city of Quito, Ecuador. J. Clean. Prod. 2022, 383, 135485. https://doi.org/10.1016/j.jclepro.2022.135485
Moravej, M.; Kenway, S.; Renouf, M.; et al. Population and land cover projections under greyfield development: Implications for densification, urban forest, water performance, and heat. Cities, 2025, 167, 106323. https://doi.org/10.1016/j.cities.2025.106323
Qi, L.; Najam, H.; Oskenbayev, Y.; et al. Impact of rapid urban construction land expansion on spatial inequalities of ecosystem health in China: Evidence from national, economic regional, and urban agglomeration perspectives. Ecol. Indic. 2025, 172, 113196. https://doi.org/10.1016/j.ecolind.2025.113196
Grahani, B.P.; Flores, F.P.; Prasetyo, Y.T.; et al. Assessing factors influencing flood preparedness among Jakarta residents: A multilayer perceptron artificial neural network based on protection motivation theory. Environ. Dev. 2026, 57, 101358. https://doi.org/10.1016/j.envdev.2025.101358
Jabali, O. Urban infrastructure under occupation: Reimagining sustainability in Beita municipality. City Environ. Interact. 2025, 28, 100250. https://doi.org/10.1016/j.cacint.2025.100250
Lima, K.C.O.; Ferraz, L.L.; Santana, G.M.; et al. Integrated use of the analytical hierarchy process method for mapping areas susceptible to flooding in the urban area in a city in southwest Bahia, Brazil. J. S. Am. Earth Sci. 2025, 167, 105778. https://doi.org/10.1016/j.jsames.2025.105778
Baidoo, R.; Arko-Adjei, A.; Poku-Boansi, M.; et al. Land use and land cover changes implications on biodiversity in the Owabi catchment of Atwima Nwabiagya North District, Ghana. Heliyon 2023, 9, e15238. https://doi.org/10.1016/j.heliyon.2023.e15238

This work is licensed under a Creative Commons Attribution 4.0 International License.