- 1.
Hfyngaard, J.C. Atmospheric turbulence. Annu. Rev. Fluid Mech. 1992, 205, 33.
- 2.
Schneider, T. The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci. 2006, 34, 655–688.
- 3.
Hunt, A.G.; Sahimi, M. Flow, transport, and reaction in porous media: Percolation scaling, critical-path analysis, and effective medium approximation. Rev. Geophys. 2017, 55, 993–1078.
- 4.
Hunt, A.G.; Sahimi, M. Networks on Networks: The Role of Connectivity in Physics of Geobiology and Geochemistry; IOP Press: Bristol, UK, 2025.
- 5.
Bernabé; Y; Bruderer, C. Effect of the variance of pore size distribution on the transport properties of heterogeneous networks. J. Geophys. Res. 1998, 103, 513–524.
- 6.
Pike, G.E.; Seager, C.H. Percolation and conductivity: A computer study. I. Phys. Rev. B 1974, 10, 1421.
- 7.
Cushman, J.H.; O’Malley, D. Fickian dispersion is anomalous. J. Hydrol. 2015, 531, 161–167.
- 8.
Freeze, R.A. A stochastic-conceptual analysis of one-dimensional groundwater flow in nonuniform homogeneous media. Water Resour. Res. 1975, 11, 725–741.
- 9.
Gelhar, L.W. Stochastic subsurface hydrology from theory to applications. Water Resour. Res. 1986, 22, 1358–1458.
- 10.
NRC (National Research Council). Opportunities in the Hydrologic Sciences. 1991. Available online: https://nap.nationalacademies.org/catalog/1543/opportunities-in-the-hydrologic-sciences (accessed on 30 July 2023).
- 11.
Klemes, V. A Hydrological Perspective. J. Hydrol. 1988, 100, 3–28.
- 12.
Sivapalan, M.; Blöschl, G. The growth of hydrological understanding: Technologies, ideas, and societal needs shape the field. Water Resour. Res. 2017, 53, 8137–8146.
- 13.
Dooge, J.C. Hydrology in perspective. Hydrol. Sci. J. 1988, 33, 61–85.
- 14.
Daugharty, D.A. A new paradigm for education in the hydrological sciences. Can. Water Resour. J. 1991, 16, 347–353. https://doi.org/10.4296/cwrj1604347.
- 15.
Hunt, A.G.; Faybishenko, B.; Ghanbarian, B. Predicting characteristics of the water cycle from scaling relationships. Water Resour. Res. 2021, 57, e2021WR030808.
- 16.
Hunt, A.G.; Sahimi, M.; Ghanbarian, B. Predicting streamflow elasticity based on percolation theory and ecological optimality. AGUAdv. 2023, 4, e2022AV000867.
- 17.
Hunt, A.G.; Sahimi, M.; Ghanbarian, B.; et al. Predicting ecosystem net primary productivity by percolation theory and optimality principle. Water Resour. Res. 2024, 60, e2023WR036340.
- 18.
Hunt, A.G. Explicit predictions of species richness from net primary productivity: Setting and discussion. Ecol. Model. 2025, 505, 111111.
- 19.
Sahimi, M. Applications of Percolation Theory; Taylor & Francis: Abingdon, UK, 1994.
- 20.
Hunt, A.; Faybishenko, B.; Ghanbarian, B. Non-linear hydrologic organization. Nonlinear Process. Geophys. 2021, 28, 599–614.
- 21.
Gentine, P.; D’Odorico, P.; Lintner, B.R.; et al. Interdependence of climate, soil, and vegetation as constrained by the Budyko curve. Geophys. Res. Lett. 2012, 39, L19404.
- 22.
Budyko, M.I. Climate and Life; Academic Press: New York, NY, 1974; 508p.
- 23.
Budyko, M.I. The Heat Balance of the Earth’s Surface; US Department of Commerce, Weather Bureau: Silver Spring, MD, USA, 1956.
- 24.
Duan, Q.; Schaake, J.; Andréassian, V.; et al. Model parameter estimation experiment (MOPEX): An overview of science strategy and major results from the second and third workshops. J. Hydrol. 2006, 320, 3–17.
- 25.
Baumgartner, A.; Reichel, E. The World Water Balance: Mean Annual Global, Continental and Maritime Precipitation, Evaporation and Runoff; Elsevier: Amsterdam, The Netherlands, 1975.
- 26.
Fisher, J.B.; Whittaker, R.J.; Malhi, Y. ET come home: Potential evapotranspiration in geographical ecology. Glob. Ecol. Biogeogr. 2011, 20, 1–18.
- 27.
Fisher, J.B.; Tu, K.P.; Baldocchi, D.D. Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 2008, 112, 901–919.
- 28.
Australian Water Resources Council (AWRC). Review of Australia’s Water Resources 1975; Australian Government Publishing Service: Canberra, Australia, 1976.
- 29.
United Nations Educational, Scientific, and Cultural Organization (UNESCO). World Water Balance and Water Resources of the Earth, Studies and Reports in Hydrology; No. 25; UNESCO: Paris, France, 1978; 663p.
- 30.
Chiew, F.H.S. Estimation of rainfall elasticity of streamflow in Australia. Hydrol. Sci. J. 2006, 51, 613–625. https://doi.org/ 10.1623/hysj.51.4.613.
- 31.
Chiew, F.H.S.; Peel, M.C.; McMahon, T.A.; et al. Precipitation elasticity of streamflow in catchments across the world. In Climate Variability and Change-Hydrological Impacts; IAHS: Oxfordshire, UK, 2006; pp. 256–262.
- 32.
Porporato, A. Hydrology without dimensions. Hydrol. Earth Syst. Sci. 2022, 26, 355–374.
- 33.
Brutsaert W. Evaporation into the Atmosphere: Theory, History, and Applications; Springer Science: Berlin/Heidelberg, Germany, 1982; 299p.
- 34.
Kleidon, A.; Renner, M.; Porada, P. Estimates of the climatological land surface energy and water balance derived from maximum convective power. Hydrol. Earth Syst. Sci. 2014, 18, 2201–2218.
- 35.
Hönisch, B.; Royer, D.L.; Breecker, D.O.; et al. Toward a Cenozoic history of atmospheric CO2. Science 2023, 382, eadi5177.
- 36.
Williams, C.A.; Reichstein, M.; Buchmann, N.; et al. Climate and vegetation controls on the surface water balance: Synthesis of evapotranspiration measured across a global network of flux towers. Water Resour. Res. 2012, 48, W06523. https://doi.org/10.1029/2011wr011586.
- 37.
Wu, C.; Yeh, P.J.-F.; Yao, T.; et al. Controls of Climate Seasonality and Vegetation Dynamics on the Seasonal Variability of Terrestrial Water Storage Under Diverse Climate Regimes. Water Resour. Res. 2025, 61, e2024WR038065.
- 38.
Nijzink, R.C.; Schymanski, S.J. Vegetation optimality explains the convergence of catchments on the Budyko curve. Hydrol. Earth Syst. Sci. 2022, 26, 6289–6309.
- 39.
Choudhury, B.J. Evaluation of an empirical equation for annual evaporation using field observations and results from a bio-physical model. J. Hydrol. 1999, 216, 99–110.
- 40.
Fu, B. The calculation of the evaporation from land surface. Sci. Atmos. Sin. 1981, 5, 23–31. (In Chinese)
- 41.
Horton, R. The field, scope, and status of the science of hydrology. Eos Trans. Am. Geophys. Union 1931, 12, 189.
- 42.
Berghuijs, W.R.; Gnann, S.J.; Woods, R.A. Unanswered questions on the Budyko framework. Hydrol. Process. 2020, 34, 1–5.
- 43.
Greve, P.; Gudmundsson, L.; Orlowsky, B.; et al. Introducing a probabilistic Budyko framework. Geophys. Res. Lett. 2015, 42, 2261–2269.
- 44.
Reaver, N.G.F.; Kaplan, D.A.; Klammler, H.; et al. Theoretical and empirical evidence against the Budyko catchment trajectory conjecture. Hydrol. Earth Syst. Sci. 2022, 26, 1507–1525.
- 45.
Manabe, S. Climate and the ocean circulation: I. The atmospheric circulation and the hydrology of the earth’s surface. Mon. Weather. Rev. 1969, 97, 739–774.
- 46.
Thomas, G.; Henderson-Sellers, A. Global and continental water balance in a GCM. Clim. Chang. 1992, 20, 251–276.