2508001151
  • Open Access
  • Article

Hydrology and the Water Balance: From 1990 of Klemes and Eagleson to Today

  • Allen Hunt 1,   
  • Jasper A. Vrugt 2,   
  • Gabriel Katul 3

Received: 13 May 2025 | Revised: 17 Jul 2025 | Accepted: 28 Jul 2025 | Published: 21 Aug 2025

Abstract

The general structure of hydrologic sciences is discussed in relation to a formulation of the water balance based on ecological optimality and spatio- temporal scaling of flow and transport over disordered networks. The basic physical controls on the function of Earth’s vegetation are discussed. The paper addresses how the curriculum of hydrology can be improved through addressing the components necessary to understand optimal approaches to solve the water balance equation and related hydrological problems. The implications for the past, and future status of hydrology are considered in light of what progress the community has actually made in solving the water balance. The arguments are evaluated by comparing new water balance results with existing theory and with continental- scale evapotranspiration measurements.

Graphical Abstract

References 

  • 1.
    Hfyngaard, J.C. Atmospheric turbulence. Annu. Rev. Fluid Mech. 1992, 205, 33.
  • 2.
    Schneider, T. The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci. 2006, 34, 655–688.
  • 3.
    Hunt, A.G.; Sahimi, M. Flow, transport, and reaction in porous media: Percolation scaling, critical-path analysis, and effective medium approximation. Rev. Geophys. 2017, 55, 993–1078.
  • 4.
    Hunt, A.G.; Sahimi, M. Networks on Networks: The Role of Connectivity in Physics of Geobiology and Geochemistry; IOP Press: Bristol, UK, 2025.
  • 5.
    Bernabé; Y; Bruderer, C. Effect of the variance of pore size distribution on the transport properties of heterogeneous networks. J. Geophys. Res. 1998, 103, 513–524.
  • 6.
    Pike, G.E.; Seager, C.H. Percolation and conductivity: A computer study. I. Phys. Rev. B 1974, 10, 1421.
  • 7.
    Cushman, J.H.; O’Malley, D. Fickian dispersion is anomalous. J. Hydrol. 2015, 531, 161–167.
  • 8.
    Freeze, R.A. A stochastic-conceptual analysis of one-dimensional groundwater flow in nonuniform homogeneous media. Water Resour. Res. 1975, 11, 725–741.
  • 9.
    Gelhar, L.W. Stochastic subsurface hydrology from theory to applications. Water Resour. Res. 1986, 22, 1358–1458.
  • 10.
    NRC (National Research Council). Opportunities in the Hydrologic Sciences. 1991. Available online: https://nap.nationalacademies.org/catalog/1543/opportunities-in-the-hydrologic-sciences (accessed on 30 July 2023).
  • 11.
    Klemes, V. A Hydrological Perspective. J. Hydrol. 1988, 100, 3–28.
  • 12.
    Sivapalan, M.; Blöschl, G. The growth of hydrological understanding: Technologies, ideas, and societal needs shape the field. Water Resour. Res. 2017, 53, 8137–8146.
  • 13.
    Dooge, J.C. Hydrology in perspective. Hydrol. Sci. J. 1988, 33, 61–85.
  • 14.
    Daugharty, D.A. A new paradigm for education in the hydrological sciences. Can. Water Resour. J. 1991, 16, 347–353. https://doi.org/10.4296/cwrj1604347.
  • 15.
    Hunt, A.G.; Faybishenko, B.; Ghanbarian, B. Predicting characteristics of the water cycle from scaling relationships. Water Resour. Res. 2021, 57, e2021WR030808.
  • 16.
    Hunt, A.G.; Sahimi, M.; Ghanbarian, B. Predicting streamflow elasticity based on percolation theory and ecological optimality. AGUAdv. 2023, 4, e2022AV000867.
  • 17.
    Hunt, A.G.; Sahimi, M.; Ghanbarian, B.; et al. Predicting ecosystem net primary productivity by percolation theory and optimality principle. Water Resour. Res. 2024, 60, e2023WR036340.
  • 18.
    Hunt, A.G. Explicit predictions of species richness from net primary productivity: Setting and discussion. Ecol. Model. 2025, 505, 111111.
  • 19.
    Sahimi, M. Applications of Percolation Theory; Taylor & Francis: Abingdon, UK, 1994.
  • 20.
    Hunt, A.; Faybishenko, B.; Ghanbarian, B. Non-linear hydrologic organization. Nonlinear Process. Geophys. 2021, 28, 599–614.
  • 21.
    Gentine, P.; D’Odorico, P.; Lintner, B.R.; et al. Interdependence of climate, soil, and vegetation as constrained by the Budyko curve. Geophys. Res. Lett. 2012, 39, L19404.
  • 22.
    Budyko, M.I. Climate and Life; Academic Press: New York, NY, 1974; 508p.
  • 23.
    Budyko, M.I. The Heat Balance of the Earth’s Surface; US Department of Commerce, Weather Bureau: Silver Spring, MD, USA, 1956.
  • 24.
    Duan, Q.; Schaake, J.; Andréassian, V.; et al. Model parameter estimation experiment (MOPEX): An overview of science strategy and major results from the second and third workshops. J. Hydrol. 2006, 320, 3–17.
  • 25.
    Baumgartner, A.; Reichel, E. The World Water Balance: Mean Annual Global, Continental and Maritime Precipitation, Evaporation and Runoff; Elsevier: Amsterdam, The Netherlands, 1975.
  • 26.
    Fisher, J.B.; Whittaker, R.J.; Malhi, Y. ET come home: Potential evapotranspiration in geographical ecology. Glob. Ecol. Biogeogr. 2011, 20, 1–18.
  • 27.
    Fisher, J.B.; Tu, K.P.; Baldocchi, D.D. Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 2008, 112, 901–919.
  • 28.
    Australian Water Resources Council (AWRC). Review of Australia’s Water Resources 1975; Australian Government Publishing Service: Canberra, Australia, 1976.
  • 29.
    United Nations Educational, Scientific, and Cultural Organization (UNESCO). World Water Balance and Water Resources of the Earth, Studies and Reports in Hydrology; No. 25; UNESCO: Paris, France, 1978; 663p.
  • 30.
    Chiew, F.H.S. Estimation of rainfall elasticity of streamflow in Australia. Hydrol. Sci. J. 2006, 51, 613–625. https://doi.org/ 10.1623/hysj.51.4.613.
  • 31.
    Chiew, F.H.S.; Peel, M.C.; McMahon, T.A.; et al. Precipitation elasticity of streamflow in catchments across the world. In Climate Variability and Change-Hydrological Impacts; IAHS: Oxfordshire, UK, 2006; pp. 256–262.
  • 32.
    Porporato, A. Hydrology without dimensions. Hydrol. Earth Syst. Sci. 2022, 26, 355–374.
  • 33.
    Brutsaert W. Evaporation into the Atmosphere: Theory, History, and Applications; Springer Science: Berlin/Heidelberg, Germany, 1982; 299p.
  • 34.
    Kleidon, A.; Renner, M.; Porada, P. Estimates of the climatological land surface energy and water balance derived from maximum convective power. Hydrol. Earth Syst. Sci. 2014, 18, 2201–2218.
  • 35.
    Hönisch, B.; Royer, D.L.; Breecker, D.O.; et al. Toward a Cenozoic history of atmospheric CO2. Science 2023, 382, eadi5177.
  • 36.
    Williams, C.A.; Reichstein, M.; Buchmann, N.; et al. Climate and vegetation controls on the surface water balance: Synthesis of evapotranspiration measured across a global network of flux towers. Water Resour. Res. 2012, 48, W06523. https://doi.org/10.1029/2011wr011586.
  • 37.
    Wu, C.; Yeh, P.J.-F.; Yao, T.; et al. Controls of Climate Seasonality and Vegetation Dynamics on the Seasonal Variability of Terrestrial Water Storage Under Diverse Climate Regimes. Water Resour. Res. 2025, 61, e2024WR038065.
  • 38.
    Nijzink, R.C.; Schymanski, S.J. Vegetation optimality explains the convergence of catchments on the Budyko curve. Hydrol. Earth Syst. Sci. 2022, 26, 6289–6309.
  • 39.
    Choudhury, B.J. Evaluation of an empirical equation for annual evaporation using field observations and results from a bio-physical model. J. Hydrol. 1999, 216, 99–110.
  • 40.
    Fu, B. The calculation of the evaporation from land surface. Sci. Atmos. Sin. 1981, 5, 23–31. (In Chinese)
  • 41.
    Horton, R. The field, scope, and status of the science of hydrology. Eos Trans. Am. Geophys. Union 1931, 12, 189.
  • 42.
    Berghuijs, W.R.; Gnann, S.J.; Woods, R.A. Unanswered questions on the Budyko framework. Hydrol. Process. 2020, 34, 1–5.
  • 43.
    Greve, P.; Gudmundsson, L.; Orlowsky, B.; et al. Introducing a probabilistic Budyko framework. Geophys. Res. Lett. 2015, 42, 2261–2269.
  • 44.
    Reaver, N.G.F.; Kaplan, D.A.; Klammler, H.; et al. Theoretical and empirical evidence against the Budyko catchment trajectory conjecture. Hydrol. Earth Syst. Sci. 2022, 26, 1507–1525.
  • 45.
    Manabe, S. Climate and the ocean circulation: I. The atmospheric circulation and the hydrology of the earth’s surface. Mon. Weather. Rev. 1969, 97, 739–774.
  • 46.
    Thomas, G.; Henderson-Sellers, A. Global and continental water balance in a GCM. Clim. Chang. 1992, 20, 251–276.
Share this article:
How to Cite
Hunt, A.; Vrugt, J. A.; Katul, G. Hydrology and the Water Balance: From 1990 of Klemes and Eagleson to Today. Hydrology and Water Resources 2025, 1 (1), 1.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.