2510001747
  • Open Access
  • Review

Spatiotemporal Dynamics and Driving Mechanisms of Ecohydrological Cycles in Global Drylands: A Review Based on Multi-Source Remote Sensing

  • Jiawei Xie 1, 2, 3,   
  • Fei Gao 1, 2, 3, *,   
  • Laozi Jili 1, 2, 3,   
  • Jing Zhang 1, 2, 3,   
  • Shikun Sun 1, 2, 4,   
  • Fan Gao 5,   
  • Xiaotao Hu 1, 2, 3,   
  • Pingan Jiang 6

Received: 28 Aug 2025 | Revised: 01 Oct 2025 | Accepted: 17 Oct 2025 | Published: 03 Nov 2025

Abstract

Drylands, including hyper-arid, arid, and semi-arid regions, are critical components of the global ecosystem, and their hydrological cycles are highly sensitive to climate change. In this review, we compared widely used remote sensing products and integrated multi-source datasets to examine the spatiotemporal patterns of key hydrological variables between 2001 and 2022. We focused on precipitation, evapotranspiration, soil moisture, groundwater, and terrestrial water storage in drylands, and analyzed their driving mechanisms. During the study period, global precipitation increased significantly at 0.62 mm yr−1, whereas precipitation in drylands declined and the extent of drylands expanded. Evapotranspiration rose at 2.26 mm yr−1, with higher values concentrated in drylands. Soil moisture exhibited a significant decreasing trend of 0.20 mm yr⁻1, particularly in arid and semi-arid regions, indicating intensified surface dryness and reduced soil water availability. Groundwater storage decreased markedly at 2.18 mm yr−1, with severe depletion in several dryland basins. Terrestrial water storage also declined at 3.16 mm yr−1, with widespread negative anomalies across drylands. Correlation analyses indicated general positive associations between NDVI and precipitation and terrestrial water storage, and negative associations with evapotranspiration. The spatiotemporal evolution of hydrological processes in drylands was jointly driven by climate change, natural variability, and human activities: global warming intensifies atmospheric evaporative demand and alters circulation patterns, large-scale oscillations modulate precipitation variability, and human interventions reshape the spatial and temporal distribution of water resources. This review provides a comprehensive synthesis of multi-source remote sensing datasets to quantify hydrological changes and their ecological implications in global drylands, offering new insights into the mechanisms of water scarcity and vegetation responses under climate change. 

Graphical Abstract

References 

  • 1.
    Ambika, A.K.; Mishra, V. Substantial decline in atmospheric aridity due to irrigation in India. Environ. Res. Lett. 2020, 15, 124060.
  • 2.
    An, L.; Wang, J.; Huang, J.; et al. Divergent Causes of Terrestrial Water Storage Decline Between Drylands and Humid Regions Globally. Geophys. Res. Lett. 2021, 48. https://doi.org/10.1029/2021gl095035.
  • 3.
    Bayad, M.; Chau, H.W.; Trolove, S.; et al. Surface runoff and losses of phosphorus from hydrophobic pastoral soils. Agric. Ecosyst. Environ. 2022, 324, 107690. https://doi.org/10.1016/j.agee.2021.107690.
  • 4.
    Beyer, M.; Wallner, M.; Bahlmann, L.; et al. Rainfall characteristics and their implications for rain-fed agriculture: A case study in the Upper Zambezi River Basin. Hydrol. Sci. J. 2016, 61, 321–343.
  • 5.
    Bhattacharya, A. Effect of Soil Water Deficit on Growth and Development of Plants: A Review. In Soil Water Deficit and Physiological Issues in Plants; Springer: Heidelberg, Germany, 2021; pp. 393–488. https://doi.org/10.1007/978-981-33-6276-5_5.
  • 6.
    Bi, W.; Hu, Y.; Weng, B.; et al. Drought–flood abrupt alternation events increase soil nitrogen loss via surface runoff in a typical grain base in China. J. Hydrol. Reg. Stud. 2025, 60, 102543. https://doi.org/10.1016/j.ejrh.2025.102543.
  • 7.
    Bi, W.; Weng, B.; Yan, D.; et al. Soil phosphorus loss increases under drought-flood abrupt alternation in summer maize planting area. Agric. Water Manag. 2022, 262, 107426. https://doi.org/10.1016/j.agwat.2021.107426.
  • 8.
    Lin, C.; Bie, Q.; Yao, W. Global Classification of Arid Zones (1970–2020); National Tibetan Plateau Data Center: Beijing, China, 2025. https://doi.org/10.11888/Terre.tpdc.302120.
  • 9.
    Chang, L.L.; Yuan, R.; Gupta, H.V.; et al. Why Is the Terrestrial Water Storage in Dryland Regions Declining? A Perspective Based on Gravity Recovery and Climate Experiment Satellite Observations and Noah Land Surface Model With Multiparameterization Schemes Model Simulations. Water Resour. Res. 2020, 56. https://doi.org/10.1029/2020wr027102.
  • 10.
    Chawla, I.; Karthikeyan, L.; Mishra, A.K. A review of remote sensing applications for water security: Quantity, quality, and extremes. J. Hydrol. 2020, 585, 124826. https://doi.org/10.1016/j.jhydrol.2020.124826.
  • 11.
    Chemke, R. The future poleward shift of Southern Hemisphere summer mid-latitude storm tracks stems from ocean coupling. Nat. Commun. 2022, 13, 1730. https://doi.org/10.1038/s41467-022-29392-4.
  • 12.
    Chen, L.; Liu, L.; Liu, S.; et al. The Application of Remote Sensing Technology in Inland Water Quality Monitoring and Water Environment Science: Recent Progress and Perspectives. Remote Sens. 2025, 17, 667.
  • 13.
    Cheng, Y.; Zhang, X.; Wang, K.; et al. Multidimensional evaluation of satellite-based and reanalysis-based precipitation datasets in the Tibetan Plateau. J. Hydrol. 2025, 660, 133364. https://doi.org/10.1016/j.jhydrol.2025.133364.
  • 14.
    Claassen, M.; Shaw, R.H. Water deficit effects on corn. II. Grain components 1. Agron. J. 1970, 62, 652–655.
  • 15.
    Cui, J.; Lian, X.; Huntingford, C.; et al. Global water availability boosted by vegetation-driven changes in atmospheric moisture transport. Nat. Geosci. 2022, 15, 982–988. https://doi.org/10.1038/s41561-022-01061-7.
  • 16.
    Deines, J.; Archontoulis, S.; Huber, I.; et al. Observational evidence for groundwater influence on crop yields in the United States. Proc. Natl. Acad. Sci. USA 2024, 121, e2400085121. https://doi.org/10.1073/pnas.2400085121.
  • 17.
    Demo, A.H.; Asefa Bogale, G. Enhancing crop yield and conserving soil moisture through mulching practices in dryland agriculture. Front. Agron. 2024, 6, 1361697.
  • 18.
    Fawen, L.; Yutong, L.; Jun, F. Effect of the groundwater fluctuation process on crop growth in Shijin irrigation district. Water Policy 2022, 24, 1394–1413. https://doi.org/10.2166/wp.2022.249.
  • 19.
    Feng, H.; Zhang, M. Global land moisture trends: Drier in dry and wetter in wet over land. Sci. Rep. 2015, 5, 18018. https://doi.org/10.1038/srep18018.
  • 20.
    Folland, C.K.; Palmer, T.N.; Parker, D.E. Sahel rainfall and worldwide sea temperatures, 1901–1985. Nature 1986, 320, 602–607.
  • 21.
    Francis, D.; Fonseca, R. Recent and projected changes in climate patterns in the Middle East and North Africa (MENA) region. Sci. Rep. 2024, 14, 10279. https://doi.org/10.1038/s41598-024-60976-w.
  • 22.
    Giannini, A.; Saravanan, R.; Chang, P. Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science 2003, 302, 1027–1030.
  • 23.
    Giardina, F.; Gentine, P.; Konings, A.G.; et al. Diagnosing evapotranspiration responses to water deficit across biomes using deep learning. New Phytol. 2023, 240, 968–983. https://doi.org/10.1111/nph.19197.
  • 24.
    Girotto, M.; Rodell, M. Terrestrial Water Storage. In Extreme Hydroclimatic Events and Multivariate Hazards in a Changing Environment; Elsevier: Amsterdam, The Netherlands, 2019; pp. 41–64.
  • 25.
    Government of Australia. State of the Climate; Government of Australia: Canberra, Australia, 2024.
  • 26.
    Hssaisoune, M.; Bouchaou, L.; Sifeddine, A.; et al. Moroccan Groundwater Resources and Evolution with Global Climate Changes. Geosciences 2020, 10, 81.
  • 27.
    Hu, Z.; Zhou, Q.; Chen, X.; et al. Groundwater Depletion Estimated from GRACE: A Challenge of Sustainable Development in an Arid Region of Central Asia. Remote Sens. 2019, 11, 1908.
  • 28.
    IPCC. Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to ,the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; pp. 2215–2256. https://doi.org/10.1017/9781009157896.022.
  • 29.
    Jasechko, S.; Seybold, H.; Perrone, D.; et al. Rapid groundwater decline and some cases of recovery in aquifers globally. Nature 2024, 625, 715–721. https://doi.org/10.1038/s41586-023-06879-8.
  • 30.
    Jin, X.; Kumar, L.; Li, Z.; et al. A review of data assimilation of remote sensing and crop models. Eur. J. Agron. 2018, 92, 141–152. https://doi.org/10.1016/j.eja.2017.11.002.
  • 31.
    Jung, M.; Reichstein, M.; Ciais, P.; et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954.
  • 32.
    Kasampalis, D.A.; Alexandridis, T.K.; Deva, C.; et al. Contribution of Remote Sensing on Crop Models: A Review. J. Imaging 2018, 4, 52.
  • 33.
    Kou, P.; Xu, Q.; Jin, Z.; et al. Analyzing gully erosion and deposition patterns in loess tableland: Insights from small baseline subset interferometric synthetic aperture radar (SBAS InSAR). Sci. Total Environ. 2024, 916, 169873. https://doi.org/10.1016/j.scitotenv.2024.169873.
  • 34.
    Kou, P.; Xu, Q.; Jin, Z.; et al. Rill erosion on an unpaved loess road surface: Effects and control. Land Degrad. Dev. 2023, 34, 1752–1766. https://doi.org/10.1002/ldr.4566.
  • 35.
    Kou, P.; Xu, Q.; Jin, Z.; et al. Complex anthropogenic interaction on vegetation greening in the Chinese Loess Plateau. Sci. Total Environ. 2021, 778, 146065. https://doi.org/10.1016/j.scitotenv.2021.146065.
  • 36.
    Kou, P.; Xu, Q.; Yunus, A.P.; et al. Micro-topographic assessment of rill morphology highlights the shortcomings of current protective measures in loess landscapes. Sci. Total Environ. 2020, 737, 139721. https://doi.org/10.1016/j.scitotenv.2020.139721.
  • 37.
    Kou, P.; Xu, Q.; Yunus, A.P.; et al. Rill development and its change rate: A field experiment under constant rainfall intensity. Catena 2021, 199, 105112. https://doi.org/10.1016/j.catena.2020.105112.
  • 38.
    Li, Z.; Zhang, Z.; Zhang, L. Improving regional wheat drought risk assessment for insurance application by integrating scenario-driven crop model, machine learning, and satellite data. Agric. Syst. 2021, 191, 103141. https://doi.org/10.1016/j.agsy.2021.103141.
  • 39.
    Liu, G.; Wang, W. Competing effects of vegetation greening-induced changes in summer evapotranspiration and precipitation on water yield in the Yangtze River Basin based on WRF simulations. Water Resour. Res. 2025, 61, e2024WR038663.
  • 40.
    Liu, X.; Feng, X.; Ciais, P.; et al. Widespread decline in terrestrial water storage and its link to teleconnections across Asia and eastern Europe. Hydrol. Earth Syst. Sci. 2020, 24, 3663–3676. https://doi.org/10.5194/hess-24-3663-2020.
  • 41.
    Liu, X.; Peng, X.; Li, Y.; et al. Environmental influences on evapotranspiration in wheat-maize rotation systems under diverse hydrological regimes in the Guanzhong Plain, China. Agric. Water Manag. 2024, 306, 109204. https://doi.org/10.1016/j.agwat.2024.109204.
  • 42.
    Luo, M.; Liu, Y.; Luo, R.; et al. Anthropogenic Impacts on the Water Cycle over Drylands in the Northern Hemisphere. J. Clim. 2023, 36, 453–466. https://doi.org/10.1175/JCLI-D-22-0037.1.
  • 43.
    Maina, F.Z.; Kumar, S.V.; Albergel, C.; et al. Warming, increase in precipitation, and irrigation enhance greening in High Mountain Asia. Commun. Earth Environ. 2022, 3, 43. https://doi.org/10.1038/s43247-022-00374-0.
  • 44.
    Martínez-Vilalta, J.; Garcia-Forner, N. Water potential regulation, stomatal behaviour and hydraulic transport under drought: Deconstructing the iso/anisohydric concept. Plant Cell Environ. 2017, 40, 962–976.
  • 45.
    McCabe, G.J.; Palecki, M.A.; Betancourt, J.L. Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad.Sci. USA 2004, 101, 4136–4141.
  • 46.
    Meixner, T.; Manning, A.H.; Stonestrom, D.A.; et al. Implications of projected climate change for groundwater recharge in the western United States. J. Hydrol. 2016, 534, 124–138. https://doi.org/10.1016/j.jhydrol.2015.12.027.
  • 47.
    Ndehedehe, C.E.; Adeyeri, O.E. Changes in Drought Characteristics and Heatwave Propagation Over Groundwater Basins in Australia. Earth Syst. Environ. 2024, 1-20. https://doi.org/10.1007/s41748-024-00463-4.
  • 48.
    NeSmith, D.; Ritchie, J. Effects of soil water-deficits during tassel emergence on development and yield component of maize (Zea mays). Field Crops Res. 1992, 28, 251–256.
  • 49.
    Park, J.; Bader, J.; Matei, D. Anthropogenic Mediterranean warming essential driver for present and future Sahel rainfall. Nat. Clim. Change 2016, 6, 941–945. https://doi.org/10.1038/nclimate3065.
  • 50.
    Quichimbo, E.A.; Singer, M.B.; Michaelides, K.; et al. DRYP 1.0: A parsimonious hydrological model of DRYland Partitioning of the water balance. Geosci. Model Dev. 2021, 14, 6893–6917. https://doi.org/10.5194/gmd-14-6893-2021.
  • 51.
    Ramezani Etedali, H.; Gorginpaveh, F.; Elbeltagi, A.; et al. Estimation of actual evapotranspiration and water requirements of strategic crops under different stresses. Sci. Rep. 2025, 15, 7778. https://doi.org/10.1038/s41598-025-92481-z.
  • 52.
    Sardans, J.; Miralles, A.; Tariq, A.; et al. Growing aridity poses threats to global land surface. Commun. Earth Environ. 2024, 5, 776. https://doi.org/10.1038/s43247-024-01935-1.
  • 53.
    Scanlon, B.R.; Faunt, C.C.; Longuevergne, L.; et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl. Acad. Sci. USA 2012, 109, 9320–9325. https://doi.org/10.1073/pnas.1200311109.
  • 54.
    Seo, K.W.; Ryu, D.; Jeon, T.; et al. Abrupt sea level rise and Earth’s gradual pole shift reveal permanent hydrological regime changes in the 21st century. Science 2025, 387, 1408–1413. https://doi.org/10.1126/science.adq6529.
  • 55.
    Sharma, R.K.; Kumar, S.; Vatta, K.; et al. Impact of recent climate change on corn, rice, and wheat in southeastern USA. Sci. Rep. 2022, 12, 16928. https://doi.org/10.1038/s41598-022-21454-3.
  • 56.
    Shoaib, M.; Banerjee, B.P.; Hayden, M.; et al. Roots’ drought adaptive traits in crop improvement. Plants 2022, 11, 2256.
  • 57.
    Singh, N.K.; Saia, S.M.; Bhattacharya, R.; et al. Unraveling the causal influences of drought and crop production on groundwater levels across the contiguous United States. PNAS Nexus 2025, 4, pgaf129. https://doi.org/10.1093/pnasnexus/pgaf129.
  • 58.
    Sutton, R.T.; Hodson, D.L. Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J. Clim. 2007, 20, 891–907.
  • 59.
    Tamarin-Brodsky, T.; Kaspi, Y. Enhanced poleward propagation of storms under climate change. Nat. Geosci. 2017, 10, 908–913.
  • 60.
    Tariq, A.; Graciano, C.; Sardans, J.; et al. Decade-long unsustainable vegetation management practices increase macronutrient losses from the plant-soil system in the Taklamakan Desert. Ecol. Indic. 2022, 145, 109653.
  • 61.
    Todd Jarvis, W. Groundwater Around the World: A Geographic Synopsis. Ground Water 2013, 51, 486.
  • 62.
    UNEP. World Atlas of Desertification; UNEP: Nairobi, Kenya, 1992.
  • 63.
    UNESCO. United Nations World Water Development Report 2022: Groundwater: Making the Invisible Visible; UNESCO: Paris, France, 2022.
  • 64.
    Urrego, J.P.F.; Huang, B.; Næss, J.S.; et al. Meta-analysis of leaf area index, canopy height and root depth of three bioenergy crops and their effects on land surface modeling. Agric. For. Meteorol. 2021, 306, 108444. https://doi.org/10.1016/j.agrformet.2021.108444.
  • 65.
    Vizy, E.K.; Cook, K.H. Mechanisms by which Gulf of Guinea and eastern North Atlantic sea surface temperature anomalies can influence African rainfall. J. Clim. 2001, 14, 795–821.
  • 66.
    Walker, G.R.; Crosbie, R.S.; Chiew, F.H.S.; et al. Groundwater Impacts and Management under a Drying Climate in Southern Australia. Water 2021, 13, 3588.
  • 67.
    Wang, C.; Li, S.; Kang, S.; et al. Evapotranspiration and potential water saving effect evaluation of mulched maize fields in China. J. Hydrol. 2024, 630, 130658. https://doi.org/10.1016/j.jhydrol.2024.130658.
  • 68.
    Xu, B.; Yang, Q.; Ma, Z. Decadal characteristics of global land annual precipitation variation on multiple spatial scales. Chin. J. Atmos. Sci. 2017, 41, 593–602.
  • 69.
    Yan, X.; Cheng, P.; Zhang, Q.; et al. Comparisons of climate change characteristics in typical arid regions of the Northern Hemisphere. Front. Environ. Sci. 2022, 10, 1033326.
  • 70.
    Yan, X.; Cheng, P.; Zhang, Q.; et al. Progress in joint application of crop models and hydrological models. Agric. Water Manag. 2024, 295, 108746. https://doi.org/10.1016/j.agwat.2024.108746.
  • 71.
    Yu, Y.Y.; Turner, N.C.; Gong, Y.H.; et al. Benefits and limitations to straw-and plastic-film mulch on maize yield and water use efficiency: A meta-analysis across hydrothermal gradients. Eur. J. Agron. 2018, 99, 138–147.
  • 72.
    Yuan, X.; Wang, W.; Cui, J.; et al. Vegetation changes and land surface feedbacks drive shifts in local temperatures over Central Asia. Sci. Rep. 2017, 7, 3287. https://doi.org/10.1038/s41598-017-03432-2.
  • 73.
    Zhang, G.; Xu, T.; Yin, W.; et al. A machine learning downscaling framework based on a physically constrained sliding window technique for improving resolution of global water storage anomaly. Remote Sens. Environ. 2024, 313, 114359. https://doi.org/10.1016/j.rse.2024.114359.
  • 74.
    Zhang, Y.; Zhang, Y.; Lian, X.; et al. Enhanced dominance of soil moisture stress on vegetation growth in Eurasian drylands. Natl. Sci. Rev. 2023, 10, nwad108. https://doi.org/10.1093/nsr/nwad108.
  • 75.
    Zhao, M.; A, G.; Zhang, J.; et al. Ecological restoration impact on total terrestrial water storage. Nat. Sustain. 2020, 4, 56–62. https://doi.org/10.1038/s41893-020-00600-7.
  • 76.
    Zhao, M.; McCormick, E.L.; A, G.; et al. Substantial root-zone water storage capacity observed by GRACE and GRACE/FO. Hydrol. Earth Syst. Sci. 2025, 29, 2293–2307. https://doi.org/10.5194/hess-29-2293-2025.
Share this article:
How to Cite
Xie, J.; Gao, F.; Jili, L.; Zhang, J.; Sun, S.; Gao, F.; Hu, X.; Jiang, P. Spatiotemporal Dynamics and Driving Mechanisms of Ecohydrological Cycles in Global Drylands: A Review Based on Multi-Source Remote Sensing. Hydrology and Water Resources 2025, 1 (1), 3.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.