- 1.
Ambika, A.K.; Mishra, V. Substantial decline in atmospheric aridity due to irrigation in India. Environ. Res. Lett. 2020, 15, 124060.
- 2.
An, L.; Wang, J.; Huang, J.; et al. Divergent Causes of Terrestrial Water Storage Decline Between Drylands and Humid Regions Globally. Geophys. Res. Lett. 2021, 48. https://doi.org/10.1029/2021gl095035.
- 3.
Bayad, M.; Chau, H.W.; Trolove, S.; et al. Surface runoff and losses of phosphorus from hydrophobic pastoral soils. Agric. Ecosyst. Environ. 2022, 324, 107690. https://doi.org/10.1016/j.agee.2021.107690.
- 4.
Beyer, M.; Wallner, M.; Bahlmann, L.; et al. Rainfall characteristics and their implications for rain-fed agriculture: A case study in the Upper Zambezi River Basin. Hydrol. Sci. J. 2016, 61, 321–343.
- 5.
Bhattacharya, A. Effect of Soil Water Deficit on Growth and Development of Plants: A Review. In Soil Water Deficit and Physiological Issues in Plants; Springer: Heidelberg, Germany, 2021; pp. 393–488. https://doi.org/10.1007/978-981-33-6276-5_5.
- 6.
Bi, W.; Hu, Y.; Weng, B.; et al. Drought–flood abrupt alternation events increase soil nitrogen loss via surface runoff in a typical grain base in China. J. Hydrol. Reg. Stud. 2025, 60, 102543. https://doi.org/10.1016/j.ejrh.2025.102543.
- 7.
Bi, W.; Weng, B.; Yan, D.; et al. Soil phosphorus loss increases under drought-flood abrupt alternation in summer maize planting area. Agric. Water Manag. 2022, 262, 107426. https://doi.org/10.1016/j.agwat.2021.107426.
- 8.
Lin, C.; Bie, Q.; Yao, W. Global Classification of Arid Zones (1970–2020); National Tibetan Plateau Data Center: Beijing, China, 2025. https://doi.org/10.11888/Terre.tpdc.302120.
- 9.
Chang, L.L.; Yuan, R.; Gupta, H.V.; et al. Why Is the Terrestrial Water Storage in Dryland Regions Declining? A Perspective Based on Gravity Recovery and Climate Experiment Satellite Observations and Noah Land Surface Model With Multiparameterization Schemes Model Simulations. Water Resour. Res. 2020, 56. https://doi.org/10.1029/2020wr027102.
- 10.
Chawla, I.; Karthikeyan, L.; Mishra, A.K. A review of remote sensing applications for water security: Quantity, quality, and extremes. J. Hydrol. 2020, 585, 124826. https://doi.org/10.1016/j.jhydrol.2020.124826.
- 11.
Chemke, R. The future poleward shift of Southern Hemisphere summer mid-latitude storm tracks stems from ocean coupling. Nat. Commun. 2022, 13, 1730. https://doi.org/10.1038/s41467-022-29392-4.
- 12.
Chen, L.; Liu, L.; Liu, S.; et al. The Application of Remote Sensing Technology in Inland Water Quality Monitoring and Water Environment Science: Recent Progress and Perspectives. Remote Sens. 2025, 17, 667.
- 13.
Cheng, Y.; Zhang, X.; Wang, K.; et al. Multidimensional evaluation of satellite-based and reanalysis-based precipitation datasets in the Tibetan Plateau. J. Hydrol. 2025, 660, 133364. https://doi.org/10.1016/j.jhydrol.2025.133364.
- 14.
Claassen, M.; Shaw, R.H. Water deficit effects on corn. II. Grain components 1. Agron. J. 1970, 62, 652–655.
- 15.
Cui, J.; Lian, X.; Huntingford, C.; et al. Global water availability boosted by vegetation-driven changes in atmospheric moisture transport. Nat. Geosci. 2022, 15, 982–988. https://doi.org/10.1038/s41561-022-01061-7.
- 16.
Deines, J.; Archontoulis, S.; Huber, I.; et al. Observational evidence for groundwater influence on crop yields in the United States. Proc. Natl. Acad. Sci. USA 2024, 121, e2400085121. https://doi.org/10.1073/pnas.2400085121.
- 17.
Demo, A.H.; Asefa Bogale, G. Enhancing crop yield and conserving soil moisture through mulching practices in dryland agriculture. Front. Agron. 2024, 6, 1361697.
- 18.
Fawen, L.; Yutong, L.; Jun, F. Effect of the groundwater fluctuation process on crop growth in Shijin irrigation district. Water Policy 2022, 24, 1394–1413. https://doi.org/10.2166/wp.2022.249.
- 19.
Feng, H.; Zhang, M. Global land moisture trends: Drier in dry and wetter in wet over land. Sci. Rep. 2015, 5, 18018. https://doi.org/10.1038/srep18018.
- 20.
Folland, C.K.; Palmer, T.N.; Parker, D.E. Sahel rainfall and worldwide sea temperatures, 1901–1985. Nature 1986, 320, 602–607.
- 21.
Francis, D.; Fonseca, R. Recent and projected changes in climate patterns in the Middle East and North Africa (MENA) region. Sci. Rep. 2024, 14, 10279. https://doi.org/10.1038/s41598-024-60976-w.
- 22.
Giannini, A.; Saravanan, R.; Chang, P. Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science 2003, 302, 1027–1030.
- 23.
Giardina, F.; Gentine, P.; Konings, A.G.; et al. Diagnosing evapotranspiration responses to water deficit across biomes using deep learning. New Phytol. 2023, 240, 968–983. https://doi.org/10.1111/nph.19197.
- 24.
Girotto, M.; Rodell, M. Terrestrial Water Storage. In Extreme Hydroclimatic Events and Multivariate Hazards in a Changing Environment; Elsevier: Amsterdam, The Netherlands, 2019; pp. 41–64.
- 25.
Government of Australia. State of the Climate; Government of Australia: Canberra, Australia, 2024.
- 26.
Hssaisoune, M.; Bouchaou, L.; Sifeddine, A.; et al. Moroccan Groundwater Resources and Evolution with Global Climate Changes. Geosciences 2020, 10, 81.
- 27.
Hu, Z.; Zhou, Q.; Chen, X.; et al. Groundwater Depletion Estimated from GRACE: A Challenge of Sustainable Development in an Arid Region of Central Asia. Remote Sens. 2019, 11, 1908.
- 28.
IPCC. Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to ,the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; pp. 2215–2256. https://doi.org/10.1017/9781009157896.022.
- 29.
Jasechko, S.; Seybold, H.; Perrone, D.; et al. Rapid groundwater decline and some cases of recovery in aquifers globally. Nature 2024, 625, 715–721. https://doi.org/10.1038/s41586-023-06879-8.
- 30.
Jin, X.; Kumar, L.; Li, Z.; et al. A review of data assimilation of remote sensing and crop models. Eur. J. Agron. 2018, 92, 141–152. https://doi.org/10.1016/j.eja.2017.11.002.
- 31.
Jung, M.; Reichstein, M.; Ciais, P.; et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954.
- 32.
Kasampalis, D.A.; Alexandridis, T.K.; Deva, C.; et al. Contribution of Remote Sensing on Crop Models: A Review. J. Imaging 2018, 4, 52.
- 33.
Kou, P.; Xu, Q.; Jin, Z.; et al. Analyzing gully erosion and deposition patterns in loess tableland: Insights from small baseline subset interferometric synthetic aperture radar (SBAS InSAR). Sci. Total Environ. 2024, 916, 169873. https://doi.org/10.1016/j.scitotenv.2024.169873.
- 34.
Kou, P.; Xu, Q.; Jin, Z.; et al. Rill erosion on an unpaved loess road surface: Effects and control. Land Degrad. Dev. 2023, 34, 1752–1766. https://doi.org/10.1002/ldr.4566.
- 35.
Kou, P.; Xu, Q.; Jin, Z.; et al. Complex anthropogenic interaction on vegetation greening in the Chinese Loess Plateau. Sci. Total Environ. 2021, 778, 146065. https://doi.org/10.1016/j.scitotenv.2021.146065.
- 36.
Kou, P.; Xu, Q.; Yunus, A.P.; et al. Micro-topographic assessment of rill morphology highlights the shortcomings of current protective measures in loess landscapes. Sci. Total Environ. 2020, 737, 139721. https://doi.org/10.1016/j.scitotenv.2020.139721.
- 37.
Kou, P.; Xu, Q.; Yunus, A.P.; et al. Rill development and its change rate: A field experiment under constant rainfall intensity. Catena 2021, 199, 105112. https://doi.org/10.1016/j.catena.2020.105112.
- 38.
Li, Z.; Zhang, Z.; Zhang, L. Improving regional wheat drought risk assessment for insurance application by integrating scenario-driven crop model, machine learning, and satellite data. Agric. Syst. 2021, 191, 103141. https://doi.org/10.1016/j.agsy.2021.103141.
- 39.
Liu, G.; Wang, W. Competing effects of vegetation greening-induced changes in summer evapotranspiration and precipitation on water yield in the Yangtze River Basin based on WRF simulations. Water Resour. Res. 2025, 61, e2024WR038663.
- 40.
Liu, X.; Feng, X.; Ciais, P.; et al. Widespread decline in terrestrial water storage and its link to teleconnections across Asia and eastern Europe. Hydrol. Earth Syst. Sci. 2020, 24, 3663–3676. https://doi.org/10.5194/hess-24-3663-2020.
- 41.
Liu, X.; Peng, X.; Li, Y.; et al. Environmental influences on evapotranspiration in wheat-maize rotation systems under diverse hydrological regimes in the Guanzhong Plain, China. Agric. Water Manag. 2024, 306, 109204. https://doi.org/10.1016/j.agwat.2024.109204.
- 42.
Luo, M.; Liu, Y.; Luo, R.; et al. Anthropogenic Impacts on the Water Cycle over Drylands in the Northern Hemisphere. J. Clim. 2023, 36, 453–466. https://doi.org/10.1175/JCLI-D-22-0037.1.
- 43.
Maina, F.Z.; Kumar, S.V.; Albergel, C.; et al. Warming, increase in precipitation, and irrigation enhance greening in High Mountain Asia. Commun. Earth Environ. 2022, 3, 43. https://doi.org/10.1038/s43247-022-00374-0.
- 44.
Martínez-Vilalta, J.; Garcia-Forner, N. Water potential regulation, stomatal behaviour and hydraulic transport under drought: Deconstructing the iso/anisohydric concept. Plant Cell Environ. 2017, 40, 962–976.
- 45.
McCabe, G.J.; Palecki, M.A.; Betancourt, J.L. Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad.Sci. USA 2004, 101, 4136–4141.
- 46.
Meixner, T.; Manning, A.H.; Stonestrom, D.A.; et al. Implications of projected climate change for groundwater recharge in the western United States. J. Hydrol. 2016, 534, 124–138. https://doi.org/10.1016/j.jhydrol.2015.12.027.
- 47.
Ndehedehe, C.E.; Adeyeri, O.E. Changes in Drought Characteristics and Heatwave Propagation Over Groundwater Basins in Australia. Earth Syst. Environ. 2024, 1-20. https://doi.org/10.1007/s41748-024-00463-4.
- 48.
NeSmith, D.; Ritchie, J. Effects of soil water-deficits during tassel emergence on development and yield component of maize (Zea mays). Field Crops Res. 1992, 28, 251–256.
- 49.
Park, J.; Bader, J.; Matei, D. Anthropogenic Mediterranean warming essential driver for present and future Sahel rainfall. Nat. Clim. Change 2016, 6, 941–945. https://doi.org/10.1038/nclimate3065.
- 50.
Quichimbo, E.A.; Singer, M.B.; Michaelides, K.; et al. DRYP 1.0: A parsimonious hydrological model of DRYland Partitioning of the water balance. Geosci. Model Dev. 2021, 14, 6893–6917. https://doi.org/10.5194/gmd-14-6893-2021.
- 51.
Ramezani Etedali, H.; Gorginpaveh, F.; Elbeltagi, A.; et al. Estimation of actual evapotranspiration and water requirements of strategic crops under different stresses. Sci. Rep. 2025, 15, 7778. https://doi.org/10.1038/s41598-025-92481-z.
- 52.
Sardans, J.; Miralles, A.; Tariq, A.; et al. Growing aridity poses threats to global land surface. Commun. Earth Environ. 2024, 5, 776. https://doi.org/10.1038/s43247-024-01935-1.
- 53.
Scanlon, B.R.; Faunt, C.C.; Longuevergne, L.; et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl. Acad. Sci. USA 2012, 109, 9320–9325. https://doi.org/10.1073/pnas.1200311109.
- 54.
Seo, K.W.; Ryu, D.; Jeon, T.; et al. Abrupt sea level rise and Earth’s gradual pole shift reveal permanent hydrological regime changes in the 21st century. Science 2025, 387, 1408–1413. https://doi.org/10.1126/science.adq6529.
- 55.
Sharma, R.K.; Kumar, S.; Vatta, K.; et al. Impact of recent climate change on corn, rice, and wheat in southeastern USA. Sci. Rep. 2022, 12, 16928. https://doi.org/10.1038/s41598-022-21454-3.
- 56.
Shoaib, M.; Banerjee, B.P.; Hayden, M.; et al. Roots’ drought adaptive traits in crop improvement. Plants 2022, 11, 2256.
- 57.
Singh, N.K.; Saia, S.M.; Bhattacharya, R.; et al. Unraveling the causal influences of drought and crop production on groundwater levels across the contiguous United States. PNAS Nexus 2025, 4, pgaf129. https://doi.org/10.1093/pnasnexus/pgaf129.
- 58.
Sutton, R.T.; Hodson, D.L. Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J. Clim. 2007, 20, 891–907.
- 59.
Tamarin-Brodsky, T.; Kaspi, Y. Enhanced poleward propagation of storms under climate change. Nat. Geosci. 2017, 10, 908–913.
- 60.
Tariq, A.; Graciano, C.; Sardans, J.; et al. Decade-long unsustainable vegetation management practices increase macronutrient losses from the plant-soil system in the Taklamakan Desert. Ecol. Indic. 2022, 145, 109653.
- 61.
Todd Jarvis, W. Groundwater Around the World: A Geographic Synopsis. Ground Water 2013, 51, 486.
- 62.
UNEP. World Atlas of Desertification; UNEP: Nairobi, Kenya, 1992.
- 63.
UNESCO. United Nations World Water Development Report 2022: Groundwater: Making the Invisible Visible; UNESCO: Paris, France, 2022.
- 64.
Urrego, J.P.F.; Huang, B.; Næss, J.S.; et al. Meta-analysis of leaf area index, canopy height and root depth of three bioenergy crops and their effects on land surface modeling. Agric. For. Meteorol. 2021, 306, 108444. https://doi.org/10.1016/j.agrformet.2021.108444.
- 65.
Vizy, E.K.; Cook, K.H. Mechanisms by which Gulf of Guinea and eastern North Atlantic sea surface temperature anomalies can influence African rainfall. J. Clim. 2001, 14, 795–821.
- 66.
Walker, G.R.; Crosbie, R.S.; Chiew, F.H.S.; et al. Groundwater Impacts and Management under a Drying Climate in Southern Australia. Water 2021, 13, 3588.
- 67.
Wang, C.; Li, S.; Kang, S.; et al. Evapotranspiration and potential water saving effect evaluation of mulched maize fields in China. J. Hydrol. 2024, 630, 130658. https://doi.org/10.1016/j.jhydrol.2024.130658.
- 68.
Xu, B.; Yang, Q.; Ma, Z. Decadal characteristics of global land annual precipitation variation on multiple spatial scales. Chin. J. Atmos. Sci. 2017, 41, 593–602.
- 69.
Yan, X.; Cheng, P.; Zhang, Q.; et al. Comparisons of climate change characteristics in typical arid regions of the Northern Hemisphere. Front. Environ. Sci. 2022, 10, 1033326.
- 70.
Yan, X.; Cheng, P.; Zhang, Q.; et al. Progress in joint application of crop models and hydrological models. Agric. Water Manag. 2024, 295, 108746. https://doi.org/10.1016/j.agwat.2024.108746.
- 71.
Yu, Y.Y.; Turner, N.C.; Gong, Y.H.; et al. Benefits and limitations to straw-and plastic-film mulch on maize yield and water use efficiency: A meta-analysis across hydrothermal gradients. Eur. J. Agron. 2018, 99, 138–147.
- 72.
Yuan, X.; Wang, W.; Cui, J.; et al. Vegetation changes and land surface feedbacks drive shifts in local temperatures over Central Asia. Sci. Rep. 2017, 7, 3287. https://doi.org/10.1038/s41598-017-03432-2.
- 73.
Zhang, G.; Xu, T.; Yin, W.; et al. A machine learning downscaling framework based on a physically constrained sliding window technique for improving resolution of global water storage anomaly. Remote Sens. Environ. 2024, 313, 114359. https://doi.org/10.1016/j.rse.2024.114359.
- 74.
Zhang, Y.; Zhang, Y.; Lian, X.; et al. Enhanced dominance of soil moisture stress on vegetation growth in Eurasian drylands. Natl. Sci. Rev. 2023, 10, nwad108. https://doi.org/10.1093/nsr/nwad108.
- 75.
Zhao, M.; A, G.; Zhang, J.; et al. Ecological restoration impact on total terrestrial water storage. Nat. Sustain. 2020, 4, 56–62. https://doi.org/10.1038/s41893-020-00600-7.
- 76.
Zhao, M.; McCormick, E.L.; A, G.; et al. Substantial root-zone water storage capacity observed by GRACE and GRACE/FO. Hydrol. Earth Syst. Sci. 2025, 29, 2293–2307. https://doi.org/10.5194/hess-29-2293-2025.