- 1.
Duffield J.S.; Lupher M.; Thannickal V.J.; et al. Host responses in tissue repair and fibrosis. Annu. Rev. Pathol., 2013, 8, 241-276.
- 2.
Suarez-Carmona M.; Lesage J.; Cataldo D.; et al. EMT and inflammation: inseparable actors of cancer progression. Mol. Oncol., 2017, 11(7): 805-823.
- 3.
Cho J. G.; Lee A.; Chang W.; et al. Endothelial to Mesenchymal Transition Represents a Key Link in the Interaction between Inflammation and Endothelial Dysfunction. Front. Immunol., 2018, 9, 294.
- 4.
Meng X. M.; Wang S.; Huang X. R.; et al. Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis. Cell Death Dis., 2016, 7(12): e2495.
- 5.
Little K.; Llorián-Salvador M.; Tang M.; et al. Macrophage to myofibroblast transition contributes to subretinal fibrosis secondary to neovascular age-related macular degeneration. J. Neuroinflammation, 2020, 17(1): 355.
- 6.
Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell, 2010, 140(6): 771-776, doi:10.1016/j.cell.2010.03.006.
- 7.
Wynn T. A. Cellular and molecular mechanisms of fibrosis. J. Pathol., 2008, 18(3): 199-210, doi:10.1002/path.2277.
- 8.
Li M.O.; Flavell R.A. Contextual regulation of inflammation: a duet by transforming growth factor-beta and interleukin-10. Immunity 2008, 28(4): 468-476, doi:10.1016/j.immuni.2008.03.003 .
- 9.
Li M.O.; Sanjabi S.; Flavell R.A. Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity, 2006, 25(3): 455-471, doi:10.1016/j.immuni.2006.07.011.
- 10.
Marie J.C.; Liggitt D.; Rudensky A.Y. Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-beta receptor. Immunity, 2006, 25 (3): 441-454, doi:10.1016/j.immuni.2006.07.012.
- 11.
Li M.O.; Flavell R.A. TGF-beta: a master of all T cell trades. Cell, 2008, 134(3): 392-404, doi:10.1016/j.cell.2008.07.025.
- 12.
Zhou L.; Lopes J.E.; Chong M.M.; et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature, 2008, 453(7192): 236-240, doi:10.1038/nature06878.
- 13.
Filippi C.M.; Juedes A.E.; Oldham J.E.; et al. Transforming growth factor-beta suppresses the activation of CD8+ T-cells when naive but promotes their survival and function once antigen experienced: a two-faced impact on autoimmunity. Diabetes, 2008, 57(10): 2684-2692, doi:10.2337/db08-0609.
- 14.
Laouar Y.; Sutterwala F.S.; Gorelik L.; et al. Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma. Nat. Immunol., 2005, 6(6): 600-607, doi:10.1038/ni1197.
- 15.
Laouar Y.; Town T.; Jeng D.; et al. TGF-beta signaling in dendritic cells is a prerequisite for the control of autoimmune encephalomyelitis. Proc. Natl. Acad. Sci., 2008, 105(31): 10865-10870, doi:10.1073/pnas.0805058105.
- 16.
Frangogiannis N. Transforming growth factor-beta in tissue fibrosis. J. Exp. Med., 2020, 217(3): e20190103, doi:10.1084/jem.20190103.
- 17.
Miettinen P.J.; Ebner R.; Lopez A.R.; et al. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J. Cell Biol., 1994, 127(6 Pt 2): 2021-2036, doi:10.1083/jcb.127.6.2021.
- 18.
Derynck R.; Zhang Y. E. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature, 2003, 425(6958): 577-584, doi:10.1038/nature02006.
- 19.
Wendt M.K.; Allington T.M.; SchiemannW. P. Mechanisms of the epithelial-mesenchymal transition by TGF-beta. Future Oncol., 2009, 5(8): 1145-1168, doi:10.2217/fon.09.90.
- 20.
Kriz W.; Kaissling B.; Le Hir M. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J. Clin. Invest. 2011, 214 (2): 468-474, doi:10.1172/jci44595.
- 21.
Meng F.; Li J.; Yang X.; et al. Role of Smad3 signaling in the epithelialmesenchymal transition of the lens epithelium following injury. Int. J. Mol. Med., 2018, 42(2): 851-860, doi:10.3892/ijmm.2018.3662.
- 22.
Zeisberg M.; Hanai J.; Sugimoto H.; et al. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med., 2003 9(7): 964-968, doi:10.1038/nm888.
- 23.
Wang J.; Hu K.; Cai X.; et al. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis. Acta Pharm. Sin. B 2022, 12(1): 18-32, doi:10.1016/j.apsb.2021.07.023.
- 24.
Dolivo D.M.; Larson S.A.; Dominko T. Crosstalk between mitogen-activated protein kinase inhibitors and transforming growth factor-beta signaling results in variable activation of human dermal fibroblasts. Int J Mol Med 2019, 43(1): 325-335, doi:10.3892/ijmm.2018.3949.
- 25.
Ma J.; van der Zon G.; Sanchez-Duffhues G.; et al. TGF-beta-mediated Endothelial to Mesenchymal Transition (EndMT) and the Functional Assessment of EndMT Effectors using CRISPR/Cas9 Gene Editing. J. Vis. Exp., 2021, 168, doi:10.3791/62198.
- 26.
Song S.; Zhang R.; Cao W.; et al . Foxm1 is a critical driver of TGF-beta-induced EndMT in endothelial cells through Smad2/3 and binds to the Snail promoter. J. Cell Physiol., 2019, 234(6): 9052-9064, doi:10.1002/jcp.27583.
- 27.
Ihn H. Pathogenesis of fibrosis: role of TGF-beta and CTGF. Curr. Opin. Rheumatol., 2002, 14(6): 681-685, doi:10.1097/00002281-200211000-00009.
- 28.
Abreu J.G.; Ketpura N.I.; Reversade B.; et al. Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta. Nat. Cell Biol., 2002, 4(8): 599-604, doi:10.1038/ncb826.
- 29.
Idriss H.T.; Naismith J. H. TNF alpha and the TNF receptor superfamily: structure-function relationship(s). Microsc. Res. Tech., 2000, 50(3): 184-195, doi:10.1002/1097-0029(20000801)50:3<184::AID-JEMT2>3.0.CO;2-H.
- 30.
Bradley J.R. TNF-mediated inflammatory disease. J. Pathol., 2008, 214(2): 149-160, doi:10.1002/path.2287.
- 31.
Montrucchio G.; Lupia E.; Battaglia E.; et al. Tumor necrosis factor alpha-induced angiogenesis depends on in situ platelet-activating factor biosynthesis. J. Exp. Med., 1994, 180(1): 377-382, doi:10.1084/jem.180.1.377.
- 32.
Hammam O.; Mahmoud O.; Zahran M.; et al. A Possible Role for TNF-alpha in Coordinating Inflammation and Angiogenesis in Chronic Liver Disease and Hepatocellular Carcinoma. Gastrointest. Cancer Res., 2013, 6(4): 107-114.
- 33.
Pandey A.; Shao H.; Marks R.M.; et al. Role of B61, the ligand for the Eck receptor tyrosine kinase, in TNF-alpha-induced angiogenesis. Science, 1995, 268(5210): 567-569, doi:10.1126/science.7536959.
- 34.
Wang X.; Lin Y. Tumor necrosis factor and cancer, buddies or foes? Acta. Pharmacol. Sin., 2008,29 (11): 1275-1288, doi:10.1111/j.1745-7254.2008.00889.x.
- 35.
Theiss A.L.; Simmons J.G.; Jobin C.; et al. Tumor necrosis factor (TNF) alpha increases collagen accumulation and proliferation in intestinal myofibroblasts via TNF receptor 2. J. Biol. Chem., 2005 280(43): 36099-36109, doi:10.1074/jbc.M505291200.
- 36.
Mederacke I.; Hsu C.C.; Troeger J.S.; et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat. Commun., 2013, 4, 2823, doi:10.1038/ncomms3823.
- 37.
TraceyK. J.; Cerami A. Tumor necrosis factor: an updated review of its biology. Crit. Care Med., 1993, 21(10 Suppl): S415-422.
- 38.
Pradere J. P.; Kluwe J.; De Minicis S.; et al. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology, 2013, 58(4): 1461-1473, doi:10.1002/hep.26429.
- 39.
Bates R.C.; Mercurio A.M. Tumor necrosis factor-alpha stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Mol. Biol. Cell, 2003, 14(5): 1790-1800, doi:10.1091/mbc.e02-09-0583.
- 40.
Liao S.J.; Luo J.; Li D.; et al. TGF-beta1 and TNF-alpha synergistically induce epithelial to mesenchymal transition of breast cancer cells by enhancing TAK1 activation. J. Cell Commun. Signal, 2019, 13(3): 369-380, doi:10.1007/s12079-019-00508-8.
- 41.
Dong W.; Sun S.; Cao X.; et al. Exposure to TNFalpha combined with TGFbeta induces carcinogenesis in vitro via NF-kappaB/Twist axis. Oncol. Rep. 2017, 37(3): 1873-1882, doi:10.3892/or.2017.5369.
- 42.
Knittel T.; Mehde M.; Kobold D.; et al. Expression patterns of matrix metalloproteinases and their inhibitors in parenchymal and non-parenchymal cells of rat liver: regulation by TNF-alpha and TGF-beta1. J. Hepatol., 1999, 30(1): 48-60, doi:10.1016/s0168-8278(99)80007-5.
- 43.
Solis-Herruzo J.A.; Brenner D.A.; Chojkier M. Tumor necrosis factor alpha inhibits collagen gene transcription and collagen synthesis in cultured human fibroblasts. J. Biol. Chem., 1988, 263(12): 5841-5845.
- 44.
Mauviel A.; Lapiere J.C.; Halcin C.; et al. Differential cytokine regulation of type I and type VII collagen gene expression in cultured human dermal fibroblasts. J. Biol. Chem., 1994, 269(1): 25-28.
- 45.
Verrecchia F.; Wagner E.F.; Mauviel A. Distinct involvement of the Jun-N-terminal kinase and NF-kappaB pathways in the repression of the human COL1A2 gene by TNF-alpha. EMBO Rep., 2002, 3(11): 1069-1074, doi:10.1093/embo-reports/kvf219.
- 46.
Hernandez-Munoz I.; de la Torre P.; Sánchez-Alcázar J. A.; et al. Tumor necrosis factor alpha inhibits collagen alpha 1(I) gene expression in rat hepatic stellate cells through a G protein. Gastroenterology, 1997, 113(2): 625-640, doi:10.1053/gast.1997.v113.pm9247485.
- 47.
Iraburu M.J.; Domínguez-Rosales J. A.; Fontana L.; et al. Tumor necrosis factor alpha down-regulates expression of the alpha1(I) collagen gene in rat hepatic stellate cells through a p20C/EBPbeta- and C/EBPdelta-dependent mechanism. Hepatology, 2000, 31(5): 1086-1093, doi:10.1053/he.2000.5981.
- 48.
Verrecchia F.; Tacheau C.; Wagner E.F.; et al. A central role for the JNK pathway in mediating the antagonistic activity of pro-inflammatory cytokines against transforming growth factor-beta-driven SMAD3/4-specific gene expression. J. Biol. Chem., 2003, 278(3): 1585-1593, doi:10.1074/jbc.M206927200.
- 49.
Verrecchia F.; Mauviel A. TGF-beta and TNF-alpha: antagonistic cytokines controlling type I collagen gene expression. Cell Signal, 2004, 16(8): 873-880, doi:10.1016/j.cellsig.2004.02.007 .
- 50.
Yamane K.; Ihn H.; Asano Y.; et al. Antagonistic effects of TNF-alpha on TGF-beta signaling through down-regulation of TGF-beta receptor type II in human dermal fibroblasts. J. Immunol., 2003, 171(7): 3855-3862, doi:10.4049/jimmunol.171.7.3855.
- 51.
Fickenscher H.; Hör S.; Küpers H.; et al. The interleukin-10 family of cytokines. Trends Immunol., 2002, 23(2): 89-96, doi:10.1016/s1471-4906(01)02149-4.
- 52.
Richmond J.; Tuzova M.; Cruikshank W.; et al. Regulation of cellular processes by interleukin-16 in homeostasis and cancer. J. Cell. Physiol., 2014, 229(2): 139-147, doi:10.1002/jcp.24441.
- 53.
Dinarello C. A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev., 2018, 281(1): 8-27, doi:10.1111/imr.12621.
- 54.
Sims J.E.; Smith D.E. The IL-1 family: regulators of immunity. Nat. Rev. Immunol., 2010, 10(2): 89-102, doi:10.1038/nri2691.
- 55.
Borthwick L.A. The IL-1 cytokine family and its role in inflammation and fibrosis in the lung. Semin. Immunopathol., 2016, 38(4): 517-534, doi:10.1007/s00281-016-0559-z.
- 56.
Gasse P.; Mary C.; Guenon I.; et al. IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice. J. Clin. Invest., 2007, 117(12): 3786-3799, doi:10.1172/JCI32285.
- 57.
Pauwels N.S.; Bracke K.R.; Dupont L.; et al. Role of IL-1alpha and the Nlrp3/caspase-1/IL-1beta axis in cigarette smoke-induced pulmonary inflammation and COPD. Eur. Respir. J., 2011, 38(5): 1019-1028, doi:10.1183/09031936.00158110.
- 58.
Hogg J.C.; Chu F.; Utokaparch S.; et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N. Engl. J. Med., 2004, 350(26): 2645-2653, doi:10.1056/NEJMoa032158.
- 59.
Wilson M.S.; Madala S.K.; Ramalingam T.; et al. Bleomycin and IL-1beta-mediated pulmonary fibrosis is IL-17A dependent. J. Exp. Med., 2010, 207(3): 535-552, doi:10.1084/jem.20092121 .
- 60.
Kolb M.; Margetts P.J.; Anthony D.C.; et al. Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis. J. Clin. Invest., 2001, 107(12): 1529-1536, doi:10.1172/JCI12568.
- 61.
Guo J.; Gu N.; Chen J.; et al. Neutralization of interleukin-1 beta attenuates silica-induced lung inflammation and fibrosis in C57BL/6 mice. Arch. Toxicol., 2013, 87(11): 1963-1973, doi:10.1007/s00204-013-1063-z.
- 62.
Hill C.; Jones M.G.; Davies D.E.; et al. Epithelial-mesenchymal transition contributes to pulmonary fibrosis via aberrant epithelial/fibroblastic cross-talk. J. Lung Health Dis., 2019, 3(2): 31-35.
- 63.
Li R.; Ong S.L.; Tran L.M.; et al. Chronic IL-1beta-induced inflammation regulates epithelial-to-mesenchymal transition memory phenotypes via epigenetic modifications in non-small cell lung cancer. Sci. Rep., 2020, 10(1): 377, doi:10.1038/s41598-019-57285-y.
- 64.
Masola V.; Carraro A.; Granata S.; et al. In vitro effects of interleukin (IL)-1 beta inhibition on the epithelial-to-mesenchymal transition (EMT) of renal tubular and hepatic stellate cells. J. Transl. Med., 2019, 17(1): 12, doi:10.1186/s12967-019-1770-1.
- 65.
Gieling R.G.; Wallace K.; Han Y. P. Interleukin-1 participates in the progression from liver injury to fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol., 2009, 296(6): G1324-1331, doi:10.1152/ajpgi.90564.2008.
- 66.
Hirano T.; Yasukawa K.; Harada H.; et al. Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature, 1986, 324(6092): 73-76, doi:10.1038/324073a0.
- 67.
Rodriguez-Bayona B.; Ramos-Amaya A.; Lopez-Blanco R.; et al. STAT-3 activation by differential cytokines is critical for human in vivo-generated plasma cell survival and Ig secretion. J. Immunol., 2013, 191(10): 4996-5004, doi:10.4049/jimmunol.1301559.
- 68.
Kopf M.; Baumann H.; Freer G.; et al. Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature, 1994, 368(6469): 339-342, doi:10.1038/368339a0.
- 69.
Ramsay A.J.; Husband A.J.; Ramshaw I.A.; et al. The role of interleukin-6 in mucosal IgA antibody responses in vivo. Science, 1994, 264(5158): 561-563, doi:10.1126/science.8160012.
- 70.
Tsukamoto H.; Fujieda K.; Hirayama M.; et al. Soluble IL6R Expressed by Myeloid Cells Reduces Tumor-Specific Th1 Differentiation and Drives Tumor Progression. Cancer Res., 2017, 77(9): 2279-2291, doi:10.1158/0008-5472.CAN-16-2446.
- 71.
Rincon M.; Anguita J.; Nakamura T.; et al. Interleukin (IL)-6 directs the differentiation of IL-4-producing CD4+ T cells. J. Exp. Med., 1997, 185(3): 461-469, doi:10.1084/jem.185.3.461.
- 72.
Johnson B.Z.; Stevenson A.W.; Prele C.M.; et al. The Role of IL-6 in Skin Fibrosis and Cutaneous Wound Healing. Biomedicines, 2020, 8(5): doi:10.3390/biomedicines8050101.
- 73.
Pedroza M.; Alcorn J.L.; Galas D.; et al. Interleukin-6 contributes to inflammation and remodeling in a model of adenosine mediated lung injury. PLoS One, 2011, 6(7): e22667, doi:10.1371/journal.pone.0022667.
- 74.
Sato S.; Hasegawa M.; Takehara K. Serum levels of interleukin-6 and interleukin-10 correlate with total skin thickness score in patients with systemic sclerosis. J. Dermatol. Sci., 2001, 27(2): 140-146, doi:10.1016/s0923-1811(01)00128-1.
- 75.
Migita K.; Abiru S.; Maeda Y.; et al. Serum levels of interleukin-6 and its soluble receptors in patients with hepatitis C virus infection. Hum. Immunol. 2006, 67(1-2): 27-32, doi:10.1016/j.humimm.2006.02.025.
- 76.
Zhong H.; Belardinelli L.; Maa T.; et al. Synergy between A2B adenosine receptors and hypoxia in activating human lung fibroblasts. Am. J. Respir. Cell Mol. Biol., 2005, 32(1): 2-8, doi:10.1165/rcmb.2004-0103OC.
- 77.
Dai Y.; Zhang W.; Wen J.; et al. A2B adenosine receptor-mediated induction of IL-6 promotes CKD. J. Am. Soc. Nephrol., 2011, 22(5): 890-901, doi:10.1681/ASN.2010080890.
- 78.
Melendez G.C.; McLarty J.L.; Levick S.P.; et al. Interleukin 6 mediates myocardial fibrosis, concentric hypertrophy, and diastolic dysfunction in rats. Hypertension, 2010, 56(2): 225-231, doi:10.1161/HYPERTENSIONAHA.109.148635.
- 79.
Tanaka T.; Narazaki M.; Kishimoto T. Therapeutic targeting of the interleukin-6 receptor. Annu. Rev. Pharmacol. Toxicol., 2012, 52, 199-219, doi:10.1146/annurev-pharmtox-010611-134715.
- 80.
Fielding C.A.; Jones G.W.; McLoughlin R.M. ; et al. Interleukin-6 signaling drives fibrosis in unresolved inflammation. Immunity, 2014, 40(1): 40-50, doi:10.1016/j.immuni.2013.10.022.
- 81.
O’Donoghue R.J.; Knight D.A.; Richards C.D.; et al. Genetic partitioning of interleukin-6 signalling in mice dissociates Stat3 from Smad3-mediated lung fibrosis. EMBO Mol. Med., 2012, 4(9): 939-951, doi:10.1002/emmm.201100604.
- 82.
Shima Y.; Kuwahara Y.; Murota H.; et al. The skin of patients with systemic sclerosis softened during the treatment with anti-IL-6 receptor antibody tocilizumab. Rheumatology (Oxford), 2010, 49(12): 2408-2412, doi:10.1093/rheumatology/keq275.
- 83.
Barata J.T.; Durum S.K.; Seddon B. Flip the coin: IL-7 and IL-7R in health and disease. Nat. Immunol., 2019, 20(12): 1584-1593, doi:10.1038/s41590-019-0479-x.
- 84.
Dubinett S.M.; Huang M.; Dhanani S.; et al. Down-regulation of macrophage transforming growth factor-beta messenger RNA expression by IL-7. J. Immunol., 1993, 151(12): 6670-6680.
- 85.
Huang M.; Sharma S.; Zhu L.X.; et al. IL-7 inhibits fibroblast TGF-beta production and signaling in pulmonary fibrosis. J. Clin. Invest., 2002, 109(7): 931-937, doi:10.1172/JCI14685.
- 86.
Hsieh P.F.; Liu S.F.; Lee T.C.; et al. The role of IL-7 in renal proximal tubule epithelial cells fibrosis. Mol. Immunol., 2012, 50(1-2): 74-82, doi:10.1016/j.molimm.2011.12.004.
- 87.
Jimenez-Sousa M.A.; Gómez-Moreno A.Z.; Pineda-Tenor D.; et al. The IL7RA rs6897932 polymorphism is associated with progression of liver fibrosis in patients with chronic hepatitis C: Repeated measurements design. PLoS One, 2018, 13(5): e0197115, doi:10.1371/journal.pone.0197115.
- 88.
Li B.; Li Y.; Li S.; et al. Circ_MTM1 knockdown inhibits the progression of HBV-related liver fibrosis via regulating IL7R expression through targeting miR-122-5p. Am. J. Transl. Res., 2022, 14(4): 2199-2211.
- 89.
Zlotnik A.; Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity, 2000, 12(2): 121-127, doi:10.1016/s1074-7613(00)80165-x.
- 90.
Cyster J. G. Leukocyte migration: scent of the T zone. Curr. Biol., 2000, 10(1): R30-33, doi:10.1016/s0960-9822(99)00253-5.
- 91.
Bonecchi R.; Galliera E.; Borroni E.M.; et al. Chemokines and chemokine receptors: an overview. Front. Biosci., (Landmark Ed) 2009, 14(2): 540-551, doi:10.2741/3261.
- 92.
Baggiolini M.; Moser B.; Clark-Lewis I. Interleukin-8 and related chemotactic cytokines. The Giles Filley Lecture. Chest, 1994, 105(3): 95S-98S, doi:10.1378/chest.105.3_supplement.95s .
- 93.
Luster A.D.; Weinshank R.L.; Feinman R.; et al. Molecular and biochemical characterization of a novel gamma-interferon-inducible protein. J. Biol. Chem., 1988, 263(24): 12036-12043.
- 94.
Yang L.; Herrera J.; Gilbertsen A.; et al. IL-8 mediates idiopathic pulmonary fibrosis mesenchymal progenitor cell fibrogenicity. Am. J. Physiol. Lung Cell Mol. Physiol., 2018, 314(1): L127-L136, doi:10.1152/ajplung.00200.2017.
- 95.
Carre P.C.; et al. Increased expression of the interleukin-8 gene by alveolar macrophages in idiopathic pulmonary fibrosis. A potential mechanism for the recruitment and activation of neutrophils in lung fibrosis. J. Clin. Invest., 1991, 88(6): 1802-1810, doi:10.1172/JCI115501.
- 96.
Lee J.S.; Shin J.H.; Choi B. S. Serum levels of IL-8 and ICAM-1 as biomarkers for progressive massive fibrosis in coal workers' pneumoconiosis. J. Korean Med. Sci., 2015, 30(2): 140-144, doi:10.3346/jkms.2015.30.2.140.
- 97.
Zimmermann H.W.; Seidler S.; Gassler N.; et al. Interleukin-8 is activated in patients with chronic liver diseases and associated with hepatic macrophage accumulation in human liver fibrosis. PLoS One, 2011, 6(6): e21381, doi:10.1371/journal.pone.0021381.
- 98.
Dai Y.; Dean T.P.; Church M.K.; et al. Desensitisation of neutrophil responses by systemic interleukin 8 in cystic fibrosis. Thorax., 1994, 49(9): 867-871, doi:10.1136/thx.49.9.867 .
- 99.
Brysse A.; Mestdagt M.; Polette M.; et al. Regulation of CXCL8/IL-8 expression by zonula occludens-1 in human breast cancer cells. Mol. Cancer Res., 2012, 10(1): 121-132, doi:10.1158/1541-7786.MCR-11-0180.
- 100.
Zeremski M.; Petrovic L.M.; Chiriboga L.; et al. Intrahepatic levels of CXCR3-associated chemokines correlate with liver inflammation and fibrosis in chronic hepatitis C. Hepatology, 2008, 48(5): 1440-1450, doi:10.1002/hep.22500.
- 101.
Hintermann E.; Bayer M.; Pfeilschifter J.M.; et al. CXCL10 promotes liver fibrosis by prevention of NK cell mediated hepatic stellate cell inactivation. J. Autoimmun., 2010, 35(4): 424-435, doi:10.1016/j.jaut.2010.09.003.
- 102.
von Hundelshausen P.; Koenen R.R.; Sack M.; et al. Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium. Blood, 2005, 105(3): 924-930, doi:10.1182/blood-2004-06-2475.
- 103.
Strieter R.M.; Gomperts B.N.; Keane M.P. The role of CXC chemokines in pulmonary fibrosis. J. Clin. Invest., 2007, 117 (3): 549-556, doi:10.1172/JCI30562.
- 104.
Burdick M.D.; Murray L. A.; Keane M. P.; et al. CXCL11 attenuates bleomycin-induced pulmonary fibrosis via inhibition of vascular remodeling. Am. J. Respir. Crit. Care Med., 2005, 171(3): 261-268, doi:10.1164/rccm.200409-1164OC.
- 105.
Tager A.M.; Kradin R.L.; LaCamera P.; et al. Inhibition of pulmonary fibrosis by the chemokine IP-10/CXCL10. Am. J. Respir. Cell Mol. Biol., 2004, 31(4): 395-404, doi:10.1165/rcmb.2004-0175OC.
- 106.
Holt A.P.; Haughton E.L.; Lalor P.F.; et al. Liver myofibroblasts regulate infiltration and positioning of lymphocytes in human liver. Gastroenterology, 2009, 136(2): 705-714, doi:10.1053/j.gastro.2008.10.020.
- 107.
Bonacchi A.; Petrai I.; Defranco R.M.; et al. The chemokine CCL21 modulates lymphocyte recruitment and fibrosis in chronic hepatitis C. Gastroenterology, 2003, 125(4): 1060-1076, doi:10.1016/s0016-5085(03)01194-6.
- 108.
Nellen A.; Heinrichs D.; Berres M.L.; et al. Interference with oligomerization and glycosaminoglycan binding of the chemokine CCL5 improves experimental liver injury. PLoS One, 2012, 7(5): e36614, doi:10.1371/journal.pone.0036614.
- 109.
Capelli A.; Di Stefano A.; Gnemmi I.; et al. CCR5 expression and CC chemokine levels in idiopathic pulmonary fibrosis. Eur. Respir. J., 2005, 25(4): 701-707, doi:10.1183/09031936.05.00082604.
- 110.
Moore B.B.; Kolodsick J.E.; Thannickal V.J.; et al. CCR2-mediated recruitment of fibrocytes to the alveolar space after fibrotic injury. Am. J. Pathol., 2005, 166(3): 675-684, doi:10.1016/S0002-9440(10)62289-4.
- 111.
Osterholzer J.J.; Olszewski M.A.; Murdock B.J.; et al. Implicating exudate macrophages and Ly-6C(high) monocytes in CCR2-dependent lung fibrosis following gene-targeted alveolar injury. J. Immunol., 2013, 190(7): 3447-3457, doi:10.4049/jimmunol.1200604.
- 112.
Osterholzer J.J.; Christensen P.J.; Lama V.; et al. PAI-1 promotes the accumulation of exudate macrophages and worsens pulmonary fibrosis following type II alveolar epithelial cell injury. J. Pathol., 2012, 228(2): 170-180, doi:10.1002/path.3992.
- 113.
Raghu G.; Martinez F.J.; Brown K.K.; et al. CC-chemokine ligand 2 inhibition in idiopathic pulmonary fibrosis: a phase 2 trial of carlumab. Eur. Respir. J. 2015, 46(6): 1740-1750, doi:10.1183/13993003.01558-2014.
- 114.
Pierce E.M.; Carpenter K.; Jakubzick C.; et al. Idiopathic pulmonary fibrosis fibroblasts migrate and proliferate to CC chemokine ligand 21. Eur. Respir. J., 2007, 29(6): 1082-1093, doi:10.1183/09031936.00122806.
- 115.
Pierce E.M.; Carpenter K.; Jakubzick C.; et al. Therapeutic targeting of CC ligand 21 or CC chemokine receptor 7 abrogates pulmonary fibrosis induced by the adoptive transfer of human pulmonary fibroblasts to immunodeficient mice. Am. J. Pathol., 2007, 170(4): 1152-1164, doi:10.2353/ajpath.2007.060649.
- 116.
Pei G.; Yao Y.; Yang Q.; et al. Lymphangiogenesis in kidney and lymph node mediates renal inflammation and fibrosis. Sci. Adv., 2019, 5(6): eaaw5075, doi:10.1126/sciadv.aaw5075 .
- 117.
Nakayama Y.; Bromberg J.S. Lymphotoxin-beta receptor blockade induces inflammation and fibrosis in tolerized cardiac allografts. Am. J. Transplant, 2012, 12(9): 2322-2334, doi:10.1111/j.1600-6143.2012.04090.x.
- 118.
Wada T.; Sakai N.; Matsushima K.; et al. Fibrocytes: a new insight into kidney fibrosis. Kidney Int., 2007, 72(3): 269-273, doi:10.1038/sj.ki.5002325.
- 119.
Baggiolini M. Chemokines in pathology and medicine. J. Intern. Med., 2001, 250(2): 91-104, doi:10.1046/j.1365-2796.2001.00867.x.
- 120.
Abe R.; Donnelly S.C.; Peng T.; et al. Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J. Immunol., 2001, 166(12): 7556-7562, doi:10.4049/jimmunol.166.12.7556.
- 121.
Wynn T.A.; Vannella K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity, 2016, 44(3): 450-462, doi:10.1016/j.immuni.2016.02.015.
- 122.
Xie T.; Wang Y.; Deng N.; et al. Single-Cell Deconvolution of Fibroblast Heterogeneity in Mouse Pulmonary Fibrosis. Cell Rep., 2018, 22(13): 3625-3640, doi:10.1016/j.celrep.2018.03.010.
- 123.
Peyser R.; MacDonnell S.; Gao Y.; et al. Defining the Activated Fibroblast Population in Lung Fibrosis Using Single-Cell Sequencing. Am. J. Respir. Cell Mol. Biol., 2019, 61(1): 74-85, doi:10.1165/rcmb.2018-0313OC.