- 1.
Tsao C.W.; Aday A.W.; Almarzooq Z.I.; et al. Heart disease and stroke statistics-2022 update: a report from the American heart association. Circulation, 2022, 145(8): e153-e639.
- 2.
O'Brien J.; Hayder H.; Zayed Y.; et al. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol., 2018, 9: 402.
- 3.
Ben-Nun D.; Buja L.M.; Fuentes F. Prevention of heart failure with preserved ejection fraction (HFpEF): reexamining microrna-21 inhibition in the era of oligonucleotide-based therapeutics. Cardiovasc. Pathol., 2020, 49: 107243.
- 4.
Cheng Y.H.; Zhang C.X. MicroRNA-21 in cardiovascular disease. J. Cardiovasc. Transl. Res., 2010, 3(3): 251-255.
- 5.
Kumarswamy R.; Volkmann I.; Thum T. Regulation and function of mirna-21 in health and disease. RNA Biology, 2011, 8(5): 706-713.
- 6.
Morrisey E.E. The magic and mystery of miR-21. J. Clin. Invest., 2010, 120(11): 3817-3819.
- 7.
Dai B.B.; Wang F.; Nie X.; et al. The cell type-specific functions of mir-21 in cardiovascular diseases. Front. Genet., 2020, 11: 563166.
- 8.
Sekar D.; Venugopal B.; Sekar P.; et al. Role of microRNA 21 in diabetes and associated/related diseases. Gene, 2016, 582(1): 14-18.
- 9.
Matsumoto T.; Hwang P.M. Resizing the genomic regulation of restenosis. Circ. Res., 2007, 100(11): 1537-1539.
- 10.
Telkoparan-Akillilar P.; Cevik D. Identification of miR-17, miR-21, miR-27a, miR-106b and miR-222 as endoplasmic reticulum stress-related potential biomarkers in circulation of patients with atherosclerosis. Mol. Biol. Rep., 2021, 48(4): 3503-3513.
- 11.
Canfrán-Duque A.; Rotllan N.; Zhang X.B.; et al. Macrophage deficiency of miR-21 promotes apoptosis, plaque necrosis, and vascular inflammation during atherogenesis. EMBO Mol. Med., 2017, 9(9): 1244-1262.
- 12.
Sun P.; Tang L.N.; Li G.Z.; et al. Effects of MiR-21 on the proliferation and migration of vascular smooth muscle cells in rats with atherosclerosis via the Akt/ERK signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(5): 2216-2222.
- 13.
Ji R.R.; Cheng Y.H.; Yue J.M.; et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ. Res., 2007, 100(11): 1579-1588.
- 14.
Neth P.; Nazari-Jahantigh M.; Schober A.; et al. MicroRNAs in flow-dependent vascular remodelling. Cardiovasc. Res., 2013, 99(2): 294-303.
- 15.
Silacci P.; Formentin K.; Bouzourène K.; et al. Unidirectional and oscillatory shear stress differentially modulate NOS Ⅲ gene expression. Nitric. Oxide., 2000, 4(1): 47-56.
- 16.
Kuang D.B.; Zhou J.P.; Yu L.Y.; et al. DDAH1-V3 transcript might act as miR-21 sponge to maintain balance of DDAH1-V1 in cultured HUVECs. Nitric. Oxide., 2016, 60: 59-68.
- 17.
Weber M.; Baker M.B.; Moore J.P.; et al. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochem. Biophys. Res. Commun., 2010, 393(4): 643-648.
- 18.
Zuo K.Q.; Li M.Q.; Zhang X.P.; et al. MiR-21 suppresses endothelial progenitor cell proliferation by activating the TGFβ signaling pathway via downregulation of WWP1. Int. J. Clin. Exp. Pathol., 2015, 8(1):414-422.
- 19.
Sabatel C.; Malvaux L.; Bovy N.; et al. MicroRNA-21 exhibits antiangiogenic function by targeting RhoB expression in endothelial cells. PLoS One, 2011, 6(2): e16979.
- 20.
Liu L.Z.; Li C.Y.; Chen Q.; et al. MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1α expression. PLoS One, 2011, 6(4): e19139.
- 21.
Kanugula A.K.; Adapala R.K.; Jamaiyar A.; et al. Endothelial TRPV4 channels prevent tumor growth and metastasis via modulation of tumor angiogenesis and vascular integrity. Angiogenesis, 2021, 24(3): 647-656.
- 22.
Zhang Y.; Liu Y.J.; Liu T.; et al. Plasma microRNA-21 is a potential diagnostic biomarker of acute myocardial infarction. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(2): 323-329.
- 23.
Wang F.; Long G.W.; Zhao C.X.; et al. Atherosclerosis-related circulating mirnas as novel and sensitive predictors for acute myocardial infarction. PLoS One, 2014, 9(9): e105734.
- 24.
Roy S.; Khanna S.; Hussain S.R.A.; et al. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc. Res., 2009, 82(1): 21-29.
- 25.
Dong S.M.; Cheng Y.H.; Yang J.; et al. MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J. Biol. Chem., 2009, 284(43): 29514-29525.
- 26.
Yang F.; Liu W.W.; Yan X.J.; et al. Effects of mir-21 on cardiac microvascular endothelial cells after acute myocardial infarction in rats: role of phosphatase and tensin homolog (PTEN)/vascular endothelial growth factor (VEGF) signal pathway. Med. Sci. Monit., 2016, 22: 3562-3575.
- 27.
Jayawardena E.; Medzikovic L.; Ruffenach G.; et al. Role of mirna-1 and mirna-21 in acute myocardial ischemia-reperfusion injury and their potential as therapeutic strategy. Int. J. Mol. Sci., 2022, 23(3): 1512.
- 28.
Piché M.E.; Tchernof A.; Després J.P. Obesity phenotypes, diabetes, and cardiovascular diseases. Circ. Res., 2020, 126(11): 1477-1500.
- 29.
Rai A.K.; Lee B.; Gomez R.; et al. Current status and potential therapeutic strategies for using non-coding RNA to treat diabetic cardiomyopathy. Front. Physiol., 2021, 11: 612722.
- 30.
Guglielmi V.; D'adamo M.; Menghini R.; et al. Microrna 21 is up-regulated in adipose tissue of obese diabetic subjects. Nutr. Healthy Aging, 2017, 4(2): 141-145.
- 31.
Kantharidis P.; Wang B.; Carew R.M.; et al. Diabetes complications: the microRNA perspective. Diabetes, 2011, 60(7): 1832-1837.
- 32.
Scisciola L.; Benedetti R.; Chianese U.; et al. The pivotal role of mirna-21 in myocardial metabolic flexibility in response to short- and long-term high glucose treatment: evidence in human cardiomyocyte cell line. Diabetes Res. Clin. Pract., 2022, 191: 110066.
- 33.
Juguilon C.; Wang Z.Y.; Wang Y.; et al. Mechanism of the switch from no to H2O2 in endothelium-dependent vasodilation in diabetes. Basic Res. Cardiol., 2022, 117(1): 2.
- 34.
Li X.C.; Meng C.; Han F.; et al. Vildagliptin attenuates myocardial dysfunction and restores autophagy via mir-21/spry1/erk in diabetic mice heart. Front. Pharmacol., 2021, 12: 634365.
- 35.
Dai B.B.; Li H.P.; Fan J.H.; et al. Mir-21 protected against diabetic cardiomyopathy induced diastolic dysfunction by targeting gelsolin. Cardiovasc. Diabetol., 2018, 17(1): 123.
- 36.
Tochhawng L.; Deng S.; Pugalenthi G.; et al. Gelsolin-Cu/ZnSOD interaction alters intracellular reactive oxygen species levels to promote cancer cell invasion. Oncotarget, 2016, 7(33): 52832-52848.
- 37.
Seeger T.; Fischer A.; Muhly-Reinholz M.; et al. Long-term inhibition of miR-21 leads to reduction of obesity in db/db mice. Obesity, 2014, 22(11): 2352-2360.
- 38.
Li H.P.; Zhang X.R.; Wang F.; et al. MicroRNA-21 lowers blood pressure in spontaneous hypertensive rats by upregulating mitochondrial translation. Circulation, 2016, 134(10): 734-751.
- 39.
Zhang C.X. MicroRNAs: role in cardiovascular biology and disease. Clin. Sci., 2008, 114(12): 699-706.
- 40.
Hinkel R.; Ramanujam D.; Kaczmarek V.; et al. AntimiR-21 prevents myocardial dysfunction in a pig model of ischemia/reperfusion injury. J. Am. Coll. Cardiol., 2020, 75(15): 1788-1800.
- 41.
Thum T.; Gross C.; Fiedler J.; et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 2008, 456(7224): 980-984.
- 42.
Yan M.W.; Chen C.; Gong W.; et al. miR-21-3p regulates cardiac hypertrophic response by targeting histone deacetylase-8. Cardiovasc. Res., 2015, 105(3): 340-352.
- 43.
Patrick D.M.; Montgomery R.L.; Qi X.X.; et al. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J. Clin. Invest., 2010, 120(11): 3912-3916.
- 44.
Kamps J.A.; Krenning G. Micromanaging cardiac regeneration: targeted delivery of microRNAs for cardiac repair and regeneration. World J. Cardiol., 2016, 8(2): 163-179.
- 45.
Van Rooij E.; Purcell A.L.; Levin A.A. Developing microRNA therapeutics. Circ. Res., 2012, 110(3): 496-507.
- 46.
Huang C.K.; Bär C.; Thum T. miR-21, mediator, and potential therapeutic target in the cardiorenal syndrome. Front. Pharmacol., 2020, 11: 726.
- 47.
Guo J.F.; Song W.P.; Boulanger J.; et al. Dysregulated expression of microRNA-21 and disease-related genes in human patients and in a mouse model of alport syndrome. Hum. Gene Ther., 2019, 30(7): 865-881.
- 48.
Ramanujam D.; Schön A.P.; Beck C.; et al. MicroRNA-21-dependent macrophage-to-fibroblast signaling determines the cardiac response to pressure overload. Circulation, 2021, 143(15): 1513-1525.
- 49.
Moghaddam A.S.; Afshari J.T.; Esmaeili S.A.; et al. Cardioprotective microRNAs: lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease. Atherosclerosis, 2019, 285: 1-9.
- 50.
Song Y.; Zhang C.; Zhang J.X.; et al. Localized injection of miRNA-21-enriched extracellular vesicles effectively restores cardiac function after myocardial infarction. Theranostics, 2019, 9(8): 2346-2360.
- 51.
Khatri N.; Rathi M.; Baradia D.; et al. In vivo delivery aspects of miRNA, shRNA and siRNA. Crit. Rev. Ther. Drug Carrier Syst., 2012, 29(6): 487-527.
- 52.
De Jong O.G.; Van Balkom B.W.; Schiffelers R.M.; et al. Extracellular vesicles: potential roles in regenerative medicine. Front. Immunol., 2014, 5: 608..
- 53.
Johnson T.K.; Zhao L.N.; Zhu D.H.; et al. Exosomes derived from induced vascular progenitor cells promote angiogenesis in vitro and in an in vivo rat hindlimb ischemia model. Am. J. Physiol.: Heart Circ. Physiol., 2019, 317(4): H765-H776.
- 54.
Yin L.Y.; Ohanyan V.; Chilian W.M.; et al. The role of MSC derived exosomes on cardiac microvascular dysfunction. Int. J. Cardiol., 2021, 344: 36-37.
- 55.
Wang H.Y.; Xie Y.L.; Salvador A.M.; et al. Exosomes: multifaceted messengers in atherosclerosis. Curr. Atheroscler. Rep., 2020, 22(10): 57.
- 56.
Qiao L.; Hu S.Q.; Liu S.Y.; et al. microRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential. J. Clin. Invest., 2019, 129(6): 2237-2250.
- 57.
Luo Q.C.; Guo D.F.; Liu G.R.; et al. Exosomes from MiR-126-overexpressing ADSCs are therapeutic in relieving acute myocardial ischaemic injury. Cell. Physiol. Biochem., 2017, 44(6): 2105-2116.
- 58.
Muthu S.; Bapat A.; Jain R.; et al. Exosomal therapy-a new frontier in regenerative medicine. Stem Cell Invest., 2021, 8: 7.
- 59.
Gray W.D.; French K.M.; Ghosh-Choudhary S.; et al. Identification of therapeutic covariant microRNA clusters in hypoxia-treated cardiac progenitor cell exosomes using systems biology. Circ. Res., 2015, 116(2): 255-263.
- 60.
Sahoo S.; Losordo D.W. Exosomes and cardiac repair after myocardial infarction. Circ. Res., 2014, 114(2): 333-344.
- 61.
Wang K.; Jiang Z.; Webster K.A.; et al. Enhanced cardioprotection by human endometrium mesenchymal stem cells driven by exosomal MicroRNA-21. Stem Cells Transl. Med., 2017, 6(1): 209-222.
- 62.
Bang C.; Batkai S.; Dangwal S.; et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J. Clin. Invest., 2014, 124(5): 2136-2146.
- 63.
Small E.M.; Olson E.N. Pervasive roles of microRNAs in cardiovascular biology. Nature, 2011, 469(7330): 336-342.
- 64.
Laggerbauer B.; Engelhardt S. MicroRNAs as therapeutic targets in cardiovascular disease. J. Clin. Invest., 2022, 132(11): e159179.