- 1.
Swain S.M.; Whaley F.S.; Ewer M.S. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer, 2003, 97(11): 2869-2879.
- 2.
Singal P.K.; Iliskovic N. Doxorubicin-induced cardiomyopathy. N. Engl. J. Med., 1998, 339(13): 900-905.
- 3.
Minotti G.; Menna P.; Salvatorelli E.; et al. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev., 2004, 56(2): 185-229.
- 4.
Yen H.C.; Oberley T.D.; Vichitbandha S.; et al. The protective role of manganese superoxide dismutase against adriamycin-induced acute cardiac toxicity in transgenic mice. J. Clin. Invest., 1996, 98(5): 1253-1260.
- 5.
Siveski-Iliskovic N.; Hill M.; Chow D.A.; et al. Probucol protects against adriamycin cardiomyopathy without interfering with its antitumor effect. Circulation, 1995, 91(1): 10-15.
- 6.
Sun X.; Zhou Z.; Kang Y.J. Attenuation of doxorubicin chronic toxicity in metallothionein-overexpressing transgenic mouse heart. Cancer Res., 2001, 61(8): 3382-3387.
- 7.
Gianni L.; Herman E.H.; Lipshultz S.E.; et al. Anthracycline cardiotoxicity: from bench to bedside. J. Clin. Oncol., 2008, 26(22): 3777-3784.
- 8.
Ladas E.J.; Jacobson J.S.; Kennedy D.D.; et al. Antioxidants and cancer therapy: a systematic review. J. Clin. Oncol., 2004, 22(3): 517-528.
- 9.
Bansal N.; Adams M.J.; Ganatra S.; et al. Strategies to prevent anthracycline-induced cardiotoxicity in cancer survivors. Cardio-Oncology, 2019, 5: 18.
- 10.
Injac R.; Strukelj B. Recent advances in protection against doxorubicin-induced toxicity. Technol. Cancer Res. Treat., 2008, 7(6): 497-516.
- 11.
Hasinoff B.B.; Herman E.H. Dexrazoxane: how it works in cardiac and tumor cells. Is it a prodrug or is it a drug? Cardiovasc. Toxicol., 2007, 7(2): 140-144.
- 12.
Swain S.M.; Whaley F.S.; Gerber M.C.; et al. Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J. Clin. Oncol., 1997, 15(4): 1318-1332.
- 13.
Tebbi C.K.; London W.B.; Friedman D.; et al. Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin's disease. J. Clin. Oncol., 2007, 25(5): 493-500.
- 14.
Seif A.E.; Walker D.M.; Li Y.M.; et al. Dexrazoxane exposure and risk of secondary acute myeloid leukemia in pediatric oncology patients. Pediatr. Blood Cancer, 2015, 62(4): 704-709.
- 15.
Zilinyi R.; Czompa A.; Czegledi A.; et al. The cardioprotective effect of metformin in doxorubicin-induced cardiotoxicity: the role of autophagy. Molecules, 2018, 23(5): 1184.
- 16.
Kobashigawa L.C.; Xu Y.C.; Padbury J.F.; et al. Metformin protects cardiomyocyte from doxorubicin induced cytotoxicity through an AMP-activated protein kinase dependent signaling pathway: an in vitro study. PLoS One, 2014, 9(8): e104888.
- 17.
Asensio-López M.C.; Lax A.; Pascual-Figal D.A.; et al. Metformin protects against doxorubicin-induced cardiotoxicity: involvement of the adiponectin cardiac system. Free Radic. Biol. Med., 2011, 51(10): 1861-1871.
- 18.
Ajzashokouhi A.H.; Bostan H.B.; Jomezadeh V.; et al. A review on the cardioprotective mechanisms of metformin against doxorubicin. Hum. Exp. Toxicol., 2020, 39(3): 237-248.
- 19.
Singh M.; Nicol A.T.; DelPozzo J.; et al. Demystifying the relationship between metformin, AMPK, and doxorubicin cardiotoxicity. Front. Cardiovasc. Med., 2022, 9: 839644.
- 20.
Li Y.; Luo J.; Lin M.T.; et al. Co-delivery of metformin enhances the antimultidrug resistant tumor effect of doxorubicin by improving hypoxic tumor microenvironment. Mol. Pharmaceutics, 2019, 16(7): 2966-2979.
- 21.
El-Ashmawy N.E.; Khedr N.F.; El-Bahrawy H.A.; et al. Metformin augments doxorubicin cytotoxicity in mammary carcinoma through activation of adenosine monophosphate protein kinase pathway. Tumour Biol., 2017, 39(5): 1010428317692235.
- 22.
Rena G.; Hardie D.G.; Pearson E.R. The mechanisms of action of metformin. Diabetologia, 2017, 60(9): 1577-1585.
- 23.
Fujita Y.; Inagaki N. Metformin: clinical topics and new mechanisms of action. Diabetol. Int., 2017, 8(1): 4-6.
- 24.
Eurich D.T.; McAlister F.A.; Blackburn D.F.; et al. Benefits and harms of antidiabetic agents in patients with diabetes and heart failure: systematic review. BMJ, 2007, 335(7618): 497.
- 25.
Johnson J.A.; Majumdar S.R.; Simpson S.H.; et al. Decreased mortality associated with the use of metformin compared with sulfonylurea monotherapy in type 2 diabetes. Diabetes Care, 2002, 25(12): 2244-2248.
- 26.
Nesti L.; Natali A. Metformin effects on the heart and the cardiovascular system: a review of experimental and clinical data. Nutr., Metab. Cardiovasc. Dis., 2017, 27(8): 657-669.
- 27.
Xu X.; Lu Z.B.; Fassett J.; et al. Metformin protects against systolic overload-induced heart failure independent of AMP-activated protein kinase α2. Hypertension, 2014, 63(4): 723-728.
- 28.
Tzanavari T.; Varela A.; Theocharis S.; et al. Metformin protects against infection-induced myocardial dysfunction. Metabolism, 2016, 65(10): 1447-1458.
- 29.
Soraya H.; Clanachan A.S.; Rameshrad M.; et al. Chronic treatment with metformin suppresses toll-like receptor 4 signaling and attenuates left ventricular dysfunction following myocardial infarction. Eur. J. Pharmacol., 2014, 737: 77-84.
- 30.
Loi H.; Boal F.; Tronchere H.; et al. Metformin protects the heart against hypertrophic and apoptotic remodeling after myocardial infarction. Front. Pharmacol., 2019, 10: 154.
- 31.
Driver C.; Bamitale K.D.S.; Kazi A.; et al. Cardioprotective effects of metformin. J. Cardiovasc. Pharmacol., 2018, 72(2): 121-127.
- 32.
Apaijai N.; Pintana H.; Chattipakorn S.C.; et al. Cardioprotective effects of metformin and vildagliptin in adult rats with insulin resistance induced by a high-fat diet. Endocrinology, 2012, 153(8): 3878-3885.
- 33.
Yu J.M.; Hsieh M.C.; Qin L.; et al. Metformin reduces radiation-induced cardiac toxicity risk in patients having breast cancer. Am. J. Cancer Res., 2019, 9(5): 1017-1026.
- 34.
Kheirandish M.; Mahboobi H.; Yazdanparast M.; et al. Anti-cancer effects of metformin: recent evidences for its role in prevention and treatment of cancer. Curr. Drug Metab., 2018, 19(9): 793-797.
- 35.
Zi F.M.; Zi H.P.; Li Y.; et al. Metformin and cancer: an existing drug for cancer prevention and therapy. Oncol. Lett., 2018, 15(1): 683-690.
- 36.
Berthiaume J.M.; Wallace K.B. Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biol. Toxicol., 2007, 23(1): 15-25.
- 37.
Bianchi C.; Bagnato A.; Paggi M.G.; et al. Effect of adriamycin on electron transport in rat heart, liver, and tumor mitochondria. Exp. Mol. Pathol., 1987, 46(1): 123-135.
- 38.
Davies K.J.; Doroshow J.H. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J. Biol. Chem., 1986, 261(7): 3060-3067.
- 39.
Doroshow J.H.; Davies K.J. Redox cycling of anthracyclines by cardiac mitochondria. Ⅱ. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. J. Biol. Chem., 1986, 261(7): 3068-3074.
- 40.
Pereira G.C.; Silva A.M.; Diogo C.V.; et al. Drug-induced cardiac mitochondrial toxicity and protection: from doxorubicin to carvedilol. Curr. Pharm. Des., 2011, 17(20): 2113-2129.
- 41.
Wallace K.B. Doxorubicin-induced cardiac mitochondrionopathy. Pharmacol. Toxicol., 2003, 93(3): 105-115.
- 42.
Wallace K.B. Adriamycin-induced interference with cardiac mitochondrial calcium homeostasis. Cardiovasc. Toxicol., 2007, 7(2): 101-107.
- 43.
Zhou S.; Starkov A.; Froberg M.K.; et al. Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Res., 2001, 61(2): 771-777.
- 44.
Nah J.; Miyamoto S.; Sadoshima J. Mitophagy as a protective mechanism against myocardial stress. Comprehensive Physiology, 2017, 7(4): 1407-1424.
- 45.
Sentelle R.D.; Senkal C.E.; Jiang W.H.; et al. Erratum: ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat. Chem. Biol., 2012, 8(12): 1008.
- 46.
Mizumura K.; Cloonan S.M.; Nakahira K.; et al. Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J. Clin. Invest., 2014, 124(9): 3987-4003.
- 47.
Catanzaro M.P.; Weiner A.; Kaminaris A.; et al. Doxorubicin-induced cardiomyocyte death is mediated by unchecked mitochondrial fission and mitophagy. FASEB J., 2019, 33(10): 11096-11108.
- 48.
Teng A.C.T.; Miyake T.; Yokoe S.;et al. Metformin increases degradation of phospholamban via autophagy in cardiomyocytes. Proc. Natl. Acad. Sci. U. S. A., 2015, 112(23): 7165-7170.
- 49.
Xie Z.L.; Lau K.; Eby B.; et al. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes, 2011, 60(6): 1770-1778.
- 50.
Wang G.Y.; Bi Y.G.; Liu X.D.; et al. Autophagy was involved in the protective effect of metformin on hyperglycemia-induced cardiomyocyte apoptosis and Connexin43 downregulation in H9c2 cells. Int. J. Med. Sci., 2017, 14(7): 698-704.
- 51.
Kanamori H.; Naruse G.; Yoshida A.; et al. Metformin enhances autophagy and provides cardioprotection in δ-sarcoglycan deficiency-induced dilated cardiomyopathy. Circ. Heart Fail., 2019, 12(4): e005418.
- 52.
Arinno A.; Maneechote C.; Khuanjing T.; et al. Cardioprotective effects of melatonin and metformin against doxorubicin-induced cardiotoxicity in rats are through preserving mitochondrial function and dynamics. Biochem. Pharmacol., 2021, 192: 114743.
- 53.
Xu X.M.; Kobayashi S.; Chen K.; et al. Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes. J. Biol. Chem., 2013, 288(25): 18077-18092.
- 54.
Xu X.M.; Chen K.; Kobayashi S.; et al. Resveratrol attenuates doxorubicin-induced cardiomyocyte death via inhibition of p70 S6 kinase 1-mediated autophagy. J. Pharmacol. Exp. Ther., 2012, 341(1): 183-195.
- 55.
Kobayashi S.; Xu X.M.; Chen K.; et al. Suppression of autophagy is protective in high glucose-induced cardiomyocyte injury. Autophagy, 2012, 8(4): 577-592.
- 56.
Kobayashi S.; Patel J.; Zhao F.Y.; et al. Novel dual-fluorescent mitophagy reporter reveals a reduced mitophagy flux in type 1 diabetic mouse heart. J. Am. Osteopath. Assoc., 2020, 120(7): 446-455.
- 57.
Kobayashi S.; Lackey T.; Huang Y.; et al. Transcription factor gata4 regulates cardiac BCL2 gene expression in vitro and in vivo. FASEB J., 2006, 20(6): 800-802.
- 58.
Kobayashi S.; Volden P.; Timm D.; et al. Transcription factor GATA4 inhibits doxorubicin-induced autophagy and cardiomyocyte death. J. Biol. Chem., 2010, 285(1): 793-804.
- 59.
Chen K.; Xu X.M.; Kobayashi S.; et al. Caloric restriction mimetic 2-deoxyglucose antagonizes doxorubicin-induced cardiomyocyte death by multiple mechanisms. J. Biol. Chem., 2011, 286(25): 21993-22006.
- 60.
Reni M.; Dugnani E.; Cereda S.; et al. (Ir)relevance of metformin treatment in patients with metastatic pancreatic cancer: an open-label, randomized phase Ⅱ trial. Clin. Cancer Res., 2016, 22(5): 1076-1085.
- 61.
Zheng Y.; Zhu J.; Zhang H.Y.; et al. Metformin plus first-line chemotherapy versus chemotherapy alone in the treatment of epithelial ovarian cancer: a prospective open-label pilot trial. Cancer Chemother. Pharmacol., 2019, 84(6): 1349-1357.
- 62.
Nanni O.; Amadori D.; De Censi A.; et al. Metformin plus chemotherapy versus chemotherapy alone in the first-line treatment of HER2-negative metastatic breast cancer. The MYME randomized, phase 2 clinical trial. Breast Cancer Res. Treat., 2019, 174(2): 433-442.
- 63.
Trucco M.; Barredo J.C.; Goldberg J.; et al. A phase I window, dose escalating and safety trial of metformin in combination with induction chemotherapy in relapsed refractory acute lymphoblastic leukemia: metformin with induction chemotherapy of vincristine, dexamethasone, PEG-asparaginase, and doxorubicin. Pediatr. Blood Cancer, 2018, 65(9): e27224.
- 64.
Montalvo R.N.; Doerr V.; Kwon O.S.; et al. Protection against doxorubicin-induced cardiac dysfunction is not maintained following prolonged autophagy inhibition. Int. J. Mol. Sci., 2020, 21(21): 8105.
- 65.
Ding Y.H.; Sun X.J.; Xu X.L. TOR-autophagy signaling in adult zebrafish models of cardiomyopathy. Autophagy, 2012, 8(1): 142-143.
- 66.
Zhu W.Q.; Soonpaa M.H.; Chen H.Y.; et al. Acute doxorubicin cardiotoxicity is associated with p53-induced inhibition of the mammalian target of rapamycin pathway. Circulation, 2009, 119(1): 99-106.
- 67.
Sishi B.J.N.; Loos B.; Van Rooyen J.; et al. Autophagy upregulation promotes survival and attenuates doxorubicin-induced cardiotoxicity. Biochem. Pharmacol., 2013, 85(1): 124-134.
- 68.
Kawaguchi T.; Takemura G.; Kanamori H.; et al. Prior starvation mitigates acute doxorubicin cardiotoxicity through restoration of autophagy in affected cardiomyocytes. Cardiovasc. Res., 2012, 96(3): 456-465.
- 69.
Li D.L.; Wang Z.V.; Ding G.Q.; et al. Doxorubicin blocks cardiomyocyte autophagic flux by inhibiting lysosome acidification. Circulation, 2016, 133(17): 1668-1687.
- 70.
Koleini N.; Kardami E. Autophagy and mitophagy in the context of doxorubicin-induced cardiotoxicity. Oncotarget, 2017, 8(28): 46663-46680.
- 71.
Hoshino A.; Mita Y.; Okawa Y.; et al. Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nat. Commun., 2013, 4: 2308.
- 72.
Yin J.; Guo J.B.; Zhang Q.; et al. Doxorubicin-induced mitophagy and mitochondrial damage is associated with dysregulation of the PINK1/parkin pathway. Toxicol. In Vitro, 2018, 51: 1-10.
- 73.
Katayama H.; Kogure T.; Mizushima N.; et al. A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem. Biol., 2011, 18(8): 1042-1052.
- 74.
McWilliams T.G.; Prescott A.R.; Allen G.F.G.; et al. mito-QC illuminates mitophagy and mitochondrial architecture in vivo. J. Cell Biol., 2016, 214(3): 333-345.
- 75.
Klionsky D.J.; Abdel-Aziz A.K.; Abdelfata S.; et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy, 2021, 17(1): 1-382