- 1.
Ungaro R.; Mehandru S.; Allen P.B.; et al. Ulcerative colitis. The Lancet, 2017, 389(10080): 1756-1770.
- 2.
Ng S.C.; Tang W.; Ching J.Y.; et al. Incidence and phenotype of inflammatory bowel disease based on results from the Asia-pacific Crohn's and colitis epidemiology study. Gastroenterology, 2013, 145(1): 158-165 e152.
- 3.
Park J.A.-O.;Cheon J.A.-O. Incidence and Prevalence of Inflammatory Bowel Disease across Asia. Yonsei Med. J. 2021, 62(2): 99-108.
- 4.
Hendrickson B.A.; Gokhale R.;Cho J.H. Clinical aspects and pathophysiology of inflammatory bowel disease. Clin Microbiol Rev., 2002, 15(1): 79-94.
- 5.
Ordás I.; Eckmann L.; Talamini M.; et al. Ulcerative colitis. The Lancet, 2012, 380(9853): 1606-1619.
- 6.
Zhou J.; Lai W.; Yang W.; et al. BLT1 in dendritic cells promotes Th1/Th17 differentiation and its deficiency ameliorates TNBS-induced colitis. Cell. Mol. Immunol., 2018, 15(12): 1047-1056.
- 7.
Miao Z.; Chen L.; Feng H.; et al. Baitouweng Decoction Ameliorates Ulcerative Colitis in Mice Partially Attributed to Regulating Th17/Treg Balance and Restoring Intestinal Epithelial Barrier. Front. Pharmacol., 2020, 11: 531117.
- 8.
Chen X.-Q.; LV X.-Y. ; Liu S.-J. Baitouweng decoction alleviates dextran sulfate sodium-induced ulcerative colitis by regulating intestinal microbiota and the IL-6/STAT3 signaling pathway. J. Ethnopharmacol., 2021, 265: 113357.
- 9.
Wang X.; Xu L.; Wang T.; et al. Pulsatilla decoction alleviates colitis by enhancing autophagy and regulating PI3KAktmTORC1 signaling pathway. Mol. Med. Rep., 2022, 25(3).
- 10.
Li Y.H.; Zou M.; Han Q.; et al. Therapeutic potential of triterpenoid saponin anemoside B4 from Pulsatilla chinensis. Pharmacol. Res., 2020, 160: 105079.
- 11.
Ye B.;Ji Z.N. 23-hydroxybetulinic acid-induced HL-60 cell autophagic apoptosis and its molecular mechanism. Nat. Prod. Res., 2012, 26(11): 1063-1068.
- 12.
Ji Z.N.; Ye W.C.; Liu G.G.; et al. 23-Hydroxybetulinic acid-mediated apoptosis is accompanied by decreases in bcl-2 expression and telomerase activity in HL-60 Cells. Life Sci., 2002, 72(1): 1-9.
- 13.
Zhou F.; Hao G.; Zhang J.; et al. Protective effect of 23-hydroxybetulinic acid on doxorubicin-induced cardiotoxicity: a correlation with the inhibition of carbonyl reductase-mediated metabolism. Br. J. Pharmacol., 2015, 172(23): 5690-5703.
- 14.
Ma H.; Zhou M.; Duan W.; et al. Anemoside B4 prevents acute ulcerative colitis through inhibiting of TLR4/NF-κB/MAPK signaling pathway. Int. Immunopharmacol., 2020, 87: 106794.
- 15.
Wirtz S.; Popp V.; Kindermann M.; et al. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat. Protoc., 2017, 12(7): 1295-1309.
- 16.
Zhou Y.; Zhong B.; Min X.; et al. Therapeutic potential of isobavachalcone, a natural flavonoid, in murine experimental colitis by inhibiting NF-κB p65. Phytother. Res., 2021, 35(10): 5861-5870.
- 17.
Wu X.; Guo Y.; Min X.; et al. Neferine, a Bisbenzylisoquinoline Alkaloid, Ameliorates Dextran Sulfate Sodium-Induced Ulcerative Colitis. Am. J. Chin. Med., 2018, 46(6): 1263-1279.
- 18.
Guo Y.; Wu X.; Wu Q.; et al. Dihydrotanshinone I, a natural product, ameliorates DSS-induced experimental ulcerative colitis in mice. Toxicol. Appl. Pharmacol., 2018, 344: 35-45.
- 19.
Eichele D.D.;Kharbanda K.K. Dextran sodium sulfate colitis murine model: An indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World J. Gastroenterol., 2017, 23(33): 6016-6029.
- 20.
Perše M.;Cerar A. Dextran sodium sulphate colitis mouse model: traps and tricks. J. Biomed. Biotechnol., 2012, 2012: 718617.
- 21.
Chen L.; Teng H.; Fang T.; et al. Agrimonolide from Agrimonia pilosa suppresses inflammatory responses through down-regulation of COX-2/iNOS and inactivation of NF-kappaB in lipopolysaccharide-stimulated macrophages. Phytomedicine, 2016, 23(8): 846-855.
- 22.
Lee J.S.; Kim H.S.; Hahm K.B.; et al. Effects of Genetic and Pharmacologic Inhibition of COX-2 on Colitis-associated Carcinogenesis in Mice. J. Cancer Prev., 2020, 25(1): 27-37.
- 23.
Kotha Subbaramaiah N.T., John T. Ramonetti, Ruriko Araki, Bethany De Vito, Babette B. Weksler, and Andrew J. Dannenberg. Transcription of Cyclooxygenase-2 Is Enhanced in Transformed Mammary Epithelial Cells. Cancer Res., 1996, 56(19): 4424-4429.
- 24.
Middleton S.J.; Shorthouse M.;Hunter J.O. Increased nitric oxide synthesis in ulcerative colitis. The Lancet, 1993, 341(8843): 465-466.
- 25.
Yuan R.; He J.; Huang L.; et al. Anemoside B4 Protects against Acute Lung Injury by Attenuating Inflammation through Blocking NLRP3 Inflammasome Activation and TLR4 Dimerization. J. Immunol. Res., 2020, 2020: 7502301.
- 26.
Kaur A.;Goggolidou P. Ulcerative colitis: understanding its cellular pathology could provide insights into novel therapies. J. Inflamm. (Lond), 2020, 17: 15.
- 27.
Nakase H.; Sato N.; Mizuno N.; et al. The influence of cytokines on the complex pathology of ulcerative colitis. Autoimmun. Rev., 2022, 21(3): 103017.
- 28.
Pereira C.; Grácio D.; Teixeira J.P.; et al. Oxidative Stress and DNA Damage: Implications in Inflammatory Bowel Disease. Inflamm. Bowel. Dis., 2015, 21(10): 2403-2417.
- 29.
Atreya I.; Atreya R.;Neurath M.F. NF-kappaB in inflammatory bowel disease. J Intern Med., 2008, 263(6): 591-596.
- 30.
DiDonato J.A.; Mercurio F.;Karin M. NF-κB and the link between inflammation and cancer. Immunol. Rev., 2012, 246(1): 379-400.
- 31.
Surh Y.J.; Chun K.S.; Cha H.H.; et al. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat. Res., 2001, 480-481: 243-268.
- 32.
Giridharan S.;Srinivasan M. Mechanisms of NF-κB p65 and strategies for therapeutic manipulation. J. Inflamm. Res., 2018, 11: 407-419.
- 33.
Zhou Y.; Xiang S.; Zheng H.; et al. Neferine Suppresses Experimental Colitis-Associated Colorectal Cancer by Inhibition of NF-[Formula: see text]B p65 and STAT3. Am. J. Chin. Med., 2022, 50(5): 1387-1400.
- 34.
Nam N.H. Naturally occurring NF-kappaB inhibitors. Mini. Rev. Med. Chem., 2006, 6(8): 945-951.