- 1.
Zhang Z.G.; Zhang X.L.; Wang X.Y.; et al. Inhibition of acid sensing ion channel by ligustrazine on angina model in rat. Am. J. Transl. Res., 2015, 7(10): 1798-1811.
- 2.
Lin J.G.; Wang Q.Q.; Zhou S.M.; et al. Tetramethylpyrazine: a review on its mechanisms and functions. Biomed. Pharmacother., 2022, 150: 113005.
- 3.
Jiang R.D.; Xu J.Q.; Zhang Y.Z.; et al. Ligustrazine alleviates psoriasis-like inflammation through inhibiting TRAF6/c-JUN/NFκB signaling pathway in keratinocyte. Biomed. Pharmacother., 2022, 150: 113010.
- 4.
Zhao T.F.; Fu Y.X.; Sun H.; et al. Ligustrazine suppresses neuron apoptosis via the Bax/Bcl-2 and caspase-3 pathway in PC12 cells and in rats with vascular dementia. IUBMB life, 2018, 70(1): 60-70.
- 5.
Guo M.; Liu Y.; Shi D.Z. Cardiovascular actions and therapeutic potential of tetramethylpyrazine (active component isolated from Rhizoma Chuanxiong): roles and mechanisms. BioMed Res. Int., 2016, 2016: 2430329.
- 6.
Meng D.M.; Lu H.Y.; Huang S. S.; et al. Comparative pharmacokinetics of tetramethylpyrazine phosphate in rat plasma and extracellular fluid of brain after intranasal, intragastric and intravenous administration. Acta Pharm. Sin. B, 2014, 4(1): 74-78.
- 7.
Kücükköylü S.; Rump L.C. [Cardiovascular morbidity and mortality in renal diseases]. Dtsch. Med. Wochenschr., 2013, 138(14): 721-724.
- 8.
Cai T.; Abel L.; Langford O.; et al. Associations between statins and adverse events in primary prevention of cardiovascular disease: systematic review with pairwise, network, and dose-response meta-analyses. BMJ, 2021, 374: n1537.
- 9.
Sridharan K.; Sequeira R.P. Drugs for treating severe hypertension in pregnancy: a network meta-analysis and trial sequential analysis of randomized clinical trials. Br. J. Clin. Pharmacol., 2018, 84(9): 1906-1916.
- 10.
Murphy E.; Curneen J.M.G.; McEvoy J.W. Aspirin in the modern era of cardiovascular disease prevention. Methodist DeBakey Cardiovascular Journal, 2021, 17(4): 36-47.
- 11.
Huang W. D.; Yang Y. F.; Zeng Z.; et al. Effect of Salvia miltiorrhiza and ligustrazine injection on myocardial ischemia/reperfusion and hypoxia/reoxygenation injury. Mol. Med. Rep., 2016, 14(5): 4537-4544.
- 12.
Zhang Y.; Ma X.J.; Guo C.Y.; et al. Pretreatment with a combination of ligustrazine and berberine improves cardiac function in rats with coronary microembolization. Acta Pharmacol. Sin., 2016, 37(4): 463-472.
- 13.
Yuan R.; Shi W.L.; Xin Q.Q.; et al. Tetramethylpyrazine and paeoniflorin inhibit oxidized LDL-induced angiogenesis 6 of 7 in human umbilical vein endothelial cells via VEGF and notch pathways. Evidence-Based Complementary Altern. Med., 2018, 2018: 3082507.
- 14.
Guo Q.X.; Zhang J.; Li Y.Q.; et al. Study on anti-atherosclerotic effect of Suxiao Jiuxin Pill and its mechanism. Afr. J. Tradit., Complementary Altern. Med., 2013, 11(1): 97-102.
- 15.
Li Y. P.; Ruan X. F.; Chen T. J.; et al. Anti-apoptotic effect of Suxiao Jiuxin Pills against hypoxia-induced injury through PI3K/Akt/GSK3β pathway in HL-1 cardiomyocytes. J. Chin. Med. Assoc., 2018, 81(9): 816-824.
- 16.
Liu Y.; Zhang J.Q.; Wu D.; et al. Pharmacokinetic interaction study between ligustrazine and valsartan in rats and its potential mechanism. Pharm. Biol., 2020, 58(1): 1290-1293.
- 17.
Yang B.; Li H.W.; Qiao Y.; et al. Tetramethylpyrazine attenuates the endotheliotoxicity and the mitochondrial dysfunction by doxorubicin via 14-3-3γ/Bcl-2. Oxid. Med. Cell. Longevity, 2019, 2019: 5820415.
- 18.
Ren J.; Fu L.; Nile S.H.; et al. Salvia miltiorrhiza in treating cardiovascular diseases: a review on its pharmacological and clinical applications. Front. Pharmacol., 2019, 10: 753.
- 19.
Wang L.L.; Ma R.F.; Liu C.Y.; et al. Salvia miltiorrhiza: a potential red light to the development of cardiovascular diseases. Curr. Pharm. Des., 2017, 23(7): 1077-1097.
- 20.
Hung Y. C.; Tseng Y. J.; Hu W. L.; et al. Demographic and prescribing patterns of Chinese herbal products for individualized therapy for ischemic heart disease in Taiwan: population-based study. PLoS One, 2015, 10(8): e0137058.
- 21.
Hung I.L.; Hung Y.C.; Wang L.Y.; et al. Chinese herbal products for ischemic stroke. Am. J. Chin. Med., 2015, 43(7): 1365-1379.
- 22.
Zhu T.; Wang L.; Feng Y. C.; et al. Classical active ingredients and extracts of Chinese herbal medicines: pharmacokinetics, pharmacodynamics, and molecular mechanisms for ischemic stroke. Oxid. Med. Cell. Longevity, 2021, 2021: 8868941.
- 23.
Kim J. S.; Lee J. H.; Hong S.M.; et al. Salvia miltiorrhiza prevents methylglyoxal-induced glucotoxicity via the regulation of apoptosis-related pathways and the glyoxalase system in human umbilical vein endothelial cells. Biol. Pharm. Bull., 2022, 45(1): 51-62.
- 24.
Rascio F.; Spadaccino F.; Rocchetti M.T.; et al. The pathogenic role of PI3K/AKT pathway in cancer onset and drug resistance: an updated review. Cancers, 2021, 13(16): 3949.
- 25.
Feng X. J.; Sureda A.; Jafari S.; et al. Berberine in cardiovascular and metabolic diseases: from mechanisms to therapeutics. Theranostics, 2019, 9(7): 1923-1951.
- 26.
Pang B.; Yu X.T.; Zhou Q.; et al. Effect of Rhizoma coptidis (Huang Lian) on treating diabetes mellitus. Evidence-Based Complementary Altern. Med., 2015, 2015: 921416.
- 27.
Rui R.; Yang H.L.; Liu Y.K.; et al. Effects of berberine on atherosclerosis. Front. Pharmacol., 2021, 12: 764175.
- 28.
Abdulredha A.; Abosaooda M.; Al-Amran F.; et al. Berberine protests the heart from ischemic reperfusion injury via interference with oxidative and inflammatory pathways. Med Arch., 2021, 75(3): 174-179.
- 29.
Zhang J.; Huang L. L.; Shi X.; et al. Metformin protects against myocardial ischemia-reperfusion injury and cell pyroptosis via AMPK/NLRP3 inflammasome pathway. Aging, 2020, 12(23): 24270-24287.
- 30.
Yang Q.; Huang D. D.; Li D. G.; et al. Tetramethylpyrazine exerts a protective effect against injury from acute myocardial ischemia by regulating the PI3K/Akt/GSK-3β signaling pathway. Cell. Mol. Biol. Lett., 2019, 24: 17.
- 31.
Jiao F.; Varghese K.; Wang S. X.; et al. Recent insights into the protective mechanisms of paeoniflorin in neurological, cardiovascular, and renal diseases. J. Cardiovasc. Pharmacol., 2021, 77(6): 728-734.
- 32.
Ngo T.; Kim K.; Bian Y.Y.; et al. Antithrombotic effects of paeoniflorin from Paeonia suffruticosa by selective inhibition on shear stress-induced platelet aggregation. Int. J. Mol. Sci., 2019, 20(20): 5040.
- 33.
Chen H.W.; Dong Y.; He X.H.; et al. Paeoniflorin improves cardiac function and decreases adverse postinfarction left ventricular remodeling in a rat model of acute myocardial infarction. Drug Des., Dev. Ther., 2018, 12: 823-836.
- 34.
Fan X.W.; Wu J.T.; Yang H.T.; et al. Paeoniflorin blocks the proliferation of vascular smooth muscle cells induced by platelet‑derived growth factor‑BB through ROS mediated ERK1/2 and p38 signaling pathways. Mol. Med. Rep., 2018, 17(1): 1676-1682.
- 35.
Jiang J.T.; Dong C.J.; Zhai L.; et al. Paeoniflorin suppresses TBHP-induced oxidative stress and apoptosis in human umbilical vein endothelial cells via the Nrf2/HO-1 signaling pathway and improves skin flap survival. Front. Pharmacol., 2021, 12: 735530.
- 36.
Chen Q.; Zhang D.N.; Bi Y.H.; et al. The protective effects of liguzinediol on congestive heart failure induced by myocardial infarction and its relative mechanism. Chin. Med., 2020, 15: 63.
- 37.
Bai X.Y.; Zhang P.; Yang Q.; et al. Suxiao jiuxin pill induces potent relaxation and inhibition on contraction in human artery and the mechanism. Evidence-Based Complementary Altern. Med., 2014, 2014: 956924.
- 38.
Ruan X.F.; Ju C.W.; Shen Y.; et al. Suxiao Jiuxin pill promotes exosome secretion from mouse cardiac mesenchymal stem cells in vitro. Acta Pharmacol. Sin., 2018, 39(4): 569-578.
- 39.
Ruan X.F.; Chen T.J.; Wang X.L.; et al. Suxiao Jiuxin Pill protects cardiomyocytes against mitochondrial injury and alters gene expression during ischemic injury. Exp. Ther. Med., 2017, 14(4): 3523-3532.
- 40.
Ren L.; Wang J.; Feng L.; et al. Efficacy of suxiao jiuxin pill on coronary heart disease: a Meta-Analysis of randomized controlled trials. Evidence-Based Complementary Altern. Med., 2018, 2018: 9745804.
- 41.
Shen Z.J.; Chen T.J.; Deng B.; et al. Effects on Suxiao Jiuxin Pills in the treatment of patients with acute coronary syndrome undergoing early percutaneous coronary intervention: a multicenter randomized double-blind placebocontrolled trial. J. Altern. Complementary Med., 2020, 26(11): 1055-1063.
- 42.
Lee S.; Oh J.; Kim H.; et al. Sacubitril/valsartan in patients with heart failure with reduced ejection fraction with endstage of renal disease. ESC heart failure, 2020, 7(3): 1125-1129.
- 43.
Hermida R.C.; Calvo C.; Ayala D.E.; et al. Administration time-dependent effects of valsartan on ambulatory blood pressure in hypertensive subjects. Hypertension, 2003, 42(3): 283-290.
- 44.
Ho C.Y.; Day S.M.; Axelsson A.; et al. Valsartan in early-stage hypertrophic cardiomyopathy: a randomized phase 2 trial. Nat. Med., 2021, 27(10): 1818-1824.
- 45.
Mann D.L.; Greene S. J.; Givertz M.M.; et al. Sacubitril/valsartan in advanced heart failure with reduced ejection fraction: rationale and design of the LIFE trial. JACC: Heart Failure, 2020, 8(10): 789-799.
- 46.
Qin L.L.; Deng S.; Zhang Z.; et al. [Protective effect of valsartan or/and ligustrazine on hippocampal neuronal loss in rats with vascular dementia]. Sichuan Da Xue Xue Bao Yi Xue Ban, 2011, 42(1): 56-60, 100.
- 47.
Hiensch A. E.; Bolam K. A.; Mijwel S.; et al. Doxorubicin-induced skeletal muscle atrophy: elucidating the underlying molecular pathways. Acta Physiol., 2020, 229(2): e13400.
- 48.
Catanzaro M.P.; Weiner A.; Kaminaris A.; et al. Doxorubicin-induced cardiomyocyte death is mediated by unchecked mitochondrial fission and mitophagy. FASEB J., 2019, 33(10): 11096-11108.
- 49.
Kalyanaraman B. Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: have we been barking up the wrong tree? Redox Biol., 2020, 29: 101394.
- 50.
De Souza C.A.; Simões R.; Borges K.B.G.; et al. Arterial stiffness use for early monitoring of cardiovascular adverse events due to anthracycline chemotherapy in breast cancer patients. A pilot study. Arq. Bras. Cardiol., 2018, 111(5): 721-728.
- 51.
Christidi E.; Brunham L.R. Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death Dis., 2021, 12(4):339.
- 52.
Chen X.Y.; Peng X. P.; Luo Y.; et al. Quercetin protects cardiomyocytes against doxorubicin-induced toxicity by suppressing oxidative stress and improving mitochondrial function via 14-3-3γ. Toxicol. Mech. Methods, 2019, 29 (5): 344-354.
- 53.
He H.; Luo Y.; Qiao Y.; et al. Curcumin attenuates doxorubicin-induced cardiotoxicity via suppressing oxidative stress and preventing mitochondrial dysfunction mediated by 14-3-3γ. Food Funct., 2018, 9(8): 4404-4418.