- 1.
Hu H. H.; Cao G.; Wu X. Q.; et al. Wnt signaling pathway in aging-related tissue fibrosis and therapies. Ageing Res. Rev., 2020, 60: 101063. doi:10.1016/j.arr.2020.101063.
- 2.
Kong X.; Liu H.; He X.; et al. Unraveling the Mystery of Cold Stress-Induced Myocardial Injury. Front. Physiol., 2020, 11: 580811. doi:10.3389/fphys.2020.580811.
- 3.
Maldonado H.; Hagood J.S. Cooperative signaling between integrins and growth factor receptors in fibrosis. J. Mol. Med., 2021, 99(2): 213-224. doi:10.1007/s00109-020-02026-2.
- 4.
Li L.; Zhao Q.; Kong W. Extracellular matrix remodeling and cardiac fibrosis. Matrix Biol., 2018, 68-69: 490-506. doi:10.1016/j.matbio.2018.01.013.
- 5.
Chaudhuri O.; Cooper-White J.; Janmey P.A.; et al. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature, 2020, 584(7822): 535-546. doi:10.1038/s41586-020-2612-2.
- 6.
Bonnans C.; Chou J.; Werb Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol., 2014, 15(12): 786-801. doi:10.1038/nrm3904.
- 7.
Theocharis A. D.; Skandalis S. S.; Gialeli C.; et al. Extracellular matrix structure. Adv. Drug Deliv. Rev., 2016, 97: 4-27. doi:10.1016/j.addr.2015.11.001.
- 8.
Liu C.; Pei M.; Li Q.; et al. Decellularized extracellular matrix mediates tissue construction and regeneration. Front. Med., 2022, 16(1): 56-82. doi:10.1007/s11684-021-0900-3.
- 9.
Iozzo R. V.; Schaefer L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol., 2015, 42: 11-55. doi:10.1016/j.matbio.2015.02.003
- 10.
Christensen G.; Herum K. M.; LundeI. G. Sweet, yet underappreciated: Proteoglycans and extracellular matrix remodeling in heart disease. Matrix Biol., 2019, 75-76: 286-299. doi:10.1016/j.matbio.2018.01.001
- 11.
Westermann D.; Mersmann J.; Melchior A.; et al. Biglycan is required for adaptive remodeling after myocardial infarction. Circulation, 2008, 117(10): 1269-76. doi:10.1161/CIRCULATIONAHA.107.714147
- 12.
Prydz K.; Dalen K. T. Synthesis and sorting of proteoglycans. J. Cell Sci., 2000, 113 Pt 2: 193-205. doi:10.1242/jcs.113.2.193.
- 13.
Chen S.; Birk D. E. The regulatory roles of small leucine-rich proteoglycans in extracellular matrix assembly. FEBS J., 2013, 280(10): 2120-37. doi:10.1111/febs.12136.
- 14.
Nastase M. V.; Janicova A.; Roedig H.; et al. Small Leucine-Rich Proteoglycans in Renal Inflammation: Two Sides of the Coin. J. Histochem. Cytochem., 2018, 66(4): 261-272. doi:10.1369/0022155417738752.
- 15.
Westergren-Thorsson G.; Hernnäs J.; SärnstrandB.; et al. Altered expression of small proteoglycans, collagen, and transforming growth factor-beta 1 in developing bleomycin-induced pulmonary fibrosis in rats. J. Clin. Invest., 1993, 92(2): 632-7. doi:10.1172/JCI116631.
- 16.
Barallobre-Barreiro J.; Gupta S. K.; ZoccaratoA.; et al. Glycoproteomics Reveals Decorin Peptides With Anti-Myostatin Activity in Human Atrial Fibrillation. Circulation, 2016, 134(11): 817-32. doi:10.1161/CIRCULATIONAHA.115.016423
- 17.
Meyer D. H.; Krull N.; Dreher K. L. Gressner A. M. Biglycan and decorin gene expression in normal and fibrotic rat liver: cellular localization and regulatory factors. Hepatology, 1992, 16(1): 204-16. doi: 10.1002/hep.1840160131. doi:10.1002/hep.1840160131.
- 18.
Schaefer L; Mihalik D.; Babelova A.; et al. Regulation of fibrillin-1 by biglycan and decorin is important for tissue preservation in the kidney during pressure-induced injury. Am. J. Pathol., 2004,165(2): 383-96. doi: 10.1016/S0002-9440(10)63305-6.
- 19.
Stokes M. B.; Holler S.; Cui Y.; et al. Expression of decorin, biglycan, and collagen type I in human renal fibrosing disease. Kidney Int., 2000, 57(2): 487-98. doi: 10.1046/j.1523-1755.2000.00868.x.
- 20.
Shimizu-HirotaR.; SasamuraH.; KurodaM.; et al. Extracellular matrix glycoprotein biglycan enhances vascular smooth muscle cell proliferation and migration. Circ. Res., 2004, 94(8): 1067-74. doi: 10.1161/01.RES.0000126049.79800.CA.
- 21.
Beetz N.; Rommel C.; Schnick T.; et al. Ablation of biglycan attenuates cardiac hypertrophy and fibrosis after left ventricular pressure overload. J. Mol. Cell. Cardiol., 2016, 101: 145-155. doi: 10.1016/j.yjmcc.2016.10.011. Epub 2016 Oct 24.
- 22.
Yu M.; He X.; Song X.; et al. Biglycan promotes hepatic fibrosis through activating heat shock protein 47. Liver Int., 2023, 43(2): 500-512. doi: 10.1111/liv.15477. Epub 2022 Nov 21.
- 23.
-Maciejewski C. C.; Honardoust D.; Tredget E. E.; et al. Differential expression of class I small leucine-rich proteoglycans in an animal model of partial bladder outlet obstruction. J. Urol., 2012, 188(4 Suppl): 1543-8. doi: 10.1016/j.juro.2012.03.045. Epub 2012 Aug 19.
- 24.
Huang C.; Sharma A.; Thakur R.; et al. Asporin, an extracellular matrix protein, is a beneficial regulator of cardiac remodeling. Matrix Biol., 2022, 110: 40-59. doi: 10.1016/j.matbio.2022.04.005. Epub 2022 Apr 22.
- 25.
HuangS.; LaiX.; YangL.; et al. Asporin Promotes TGF-β-induced Lung Myofibroblast Differentiation by Facilitating Rab11-Dependent Recycling of TβRI. Am. J. Respir. Cell Mol. Biol., 2022, 66(2): 158-170. doi: 10.1165/rcmb.2021-0257OC.
- 26.
Qian W.; Xia S.; Yang X.; et al. Complex Involvement of the Extracellular Matrix, Immune Effect, and Lipid Metabolism in the Development of Idiopathic Pulmonary Fibrosis. Front. Mol. Biosci., 2022, 8: 800747. doi: 10.3389/fmolb.2021.800747.
- 27.
Engebretsen K. V.; Lunde I. G.; Strand M. E.; et al. Lumican is increased in experimental and clinical heart failure, and its production by cardiac fibroblasts is induced by mechanical and proinflammatory stimuli. FEBS J., 2013, 280(10): 2382-98. doi: 10.1111/febs.12235. Epub 2013 Apr 2.
- 28.
Rixon C.; Andreassen K.; Shen X.; et al. Lumican accumulates with fibrillar collagen in fibrosis in hypertrophic cardiomyopathy. ESC Heart Fail., 2023, 10(2): 858-871. doi: 10.1002/ehf2.14234. Epub 2022 Nov 29.
- 29.
Mohammadzadeh N.; Melleby A. O.; PalmeroS.; et al. Moderate Loss of the Extracellular Matrix Proteoglycan Lumican Attenuates Cardiac Fibrosis in Mice Subjected to Pressure Overload. Cardiology, 2020, 145(3): 187-198. doi: 10.1159/000505318. Epub 2020 Jan 22. PMID: 31968347;
- 30.
Pilling D.; Vakil V.; Cox N.; et al. TNF-α-stimulated fibroblasts secrete lumican to promote fibrocyte differentiation. Proc. Natl. Acad. Sci. U S A., 2015, 112(38): 11929-34. doi: 10.1073/pnas.1507387112. Epub 2015 Sep 8.
- 31.
KrishnanA.; LiX.; KaoW. Y.; et al. Lumican, an extracellular matrix proteoglycan, is a novel requisite for hepatic fibrosis. Lab. Invest., 2012, 92(12): 1712-25. doi: 10.1038/labinvest.2012.121. Epub 2012 Sep 24.
- 32.
Hsieh L. T.; Nastase M. V.; Zeng-Brouwers J.; et al. Soluble biglycan as a biomarker of inflammatory renal diseases. Int. J. Biochem. Cell Biol., 2014, 54: 223-35. doi: 10.1016/j.biocel.2014.07.020. Epub 2014 Aug 1.
- 33.
Xiao D.; Liang T.; Zhuang Z.; et al. Lumican promotes joint fibrosis through TGF-β signaling. FEBS Open Bio., 2020, 10(11): 2478-2488. doi: 10.1002/2211-5463.12974. Epub 2020 Oct 25.
- 34.
AndenæsK.; LundeI. G.; MohammadzadehN.; et al. The extracellular matrix proteoglycan fibromodulin is upregulated in clinical and experimental heart failure and affects cardiac remodeling. PLoS One, 2018, 13(7): e0201422. doi: 10.1371/journal.pone.0201422.
- 35.
Soo C.; Hu F. Y.; Zhang X.; et al. Differential expression of fibromodulin, a transforming growth factor-beta modulator, in fetal skin development and scarless repair. Am. J. Pathol., 2000, 157(2): 423-33. doi: 10.1016/s0002-9440(10)64555-5.
- 36.
Venkatesan N.; Ebihara T.; RoughleyP. J.; et al. Alterations in large and small proteoglycans in bleomycin-induced pulmonary fibrosis in rats. Am. J. Respir. Crit. Care. Med., 2000, 161(6): 2066-73. doi: 10.1164/ajrccm.161.6.9909098.
- 37.
An W.; Zhu J. W.; Jiang F.; et al. Fibromodulin is upregulated by oxidative stress through the MAPK/AP-1 pathway to promote pancreatic stellate cell activation. Pancreatology., 2020, 20(2): 278-287. doi: 10.1016/j.pan.2019.09.011. Epub 2019 Sep 26.
- 38.
WoessnerM. N.; HiamD.; SmithC.; et al. Osteoglycin Across the Adult Lifespan. J. Clin. Endocrinol. Metab., 2022, 107(4): e1426-e1433. doi: 10.1210/clinem/dgab861.
- 39.
Van Aelst L. N.; Voss S.; Carai P.; et al. Osteoglycin prevents cardiac dilatation and dysfunction after myocardial infarction through infarct collagen strengthening. Circ. Res., 2015, 116(3): 425-36. doi: 10.1161/CIRCRESAHA.116.304599. Epub 2014 Dec 17.
- 40.
Tallquist M. D. Cardiac Fibroblast Diversity. Annu. Rev. Physiol., 2020, 82: 63-78. doi: 10.1146/annurev-physiol-021119-034527.
- 41.
Frangogiannis N. G. Cardiac fibrosis. Cardiovasc. Res., 2021, 117(6): 1450-1488. doi: 10.1093/cvr/cvaa324.
- 42.
Weis S. M.; Zimmerman S. D.; Shah M.; et al. A role for decorin in the remodeling of myocardial infarction. Matrix Biol., 2005, 24(4): 313-24. doi: 10.1016/j.matbio.2005.05.003.
- 43.
Isaka Y.; Brees D. K.; Ikegaya K.; et al. Gene therapy by skeletal muscle expression of decorin prevents fibrotic disease in rat kidney. Nat. Med., 1996, 2(4): 418-23. doi: 10.1038/nm0496-418.
- 44.
Jahanyar J.; Joyce D. L.; Southard R. E.; et al. Decorin-mediated transforming growth factor-beta inhibition ameliorates adverse cardiac remodeling. J. Heart Lung Transplant., 2007, 26(1): 34-40. doi: 10.1016/j.healun.2006.10.005. Epub 2006 Nov 30.
- 45.
Yan W.; Wang P.; Zhao C. X.; et al. Decorin gene delivery inhibits cardiac fibrosis in spontaneously hypertensive rats by modulation of transforming growth factor-beta/Smad and p38 mitogen-activated protein kinase signaling pathways. Hum. Gene Ther., 2009, 20(10): 1190-200.
- 46.
SchaeferL.; DikicI. Autophagy: Instructions from the extracellular matrix. Matrix Biol., 2021, 100-101: 1-8. doi: 10.1016/j.matbio.2021.06.002. Epub 2021 Jul 2.
- 47.
Goyal A.; Neill T.; Owens R. T.; et al. Decorin activates AMPK, an energy sensor kinase, to induce autophagy in endothelial cells. Matrix Biol., 2014, 34: 46-54. doi: 10.1016/j.matbio.2013.12.011. Epub 2014 Jan 26.
- 48.
Torres A.; Gubbiotti M. A.; Iozzo R. V. Decorin-inducible Peg3 Evokes Beclin 1-mediated Autophagy and Thrombospondin 1-mediated Angiostasis. J. Biol. Chem., 2017, 292(12): 5055-5069. doi: 10.1074/jbc.M116.753632. Epub 2017 Feb 7.
- 49.
Chen C. G.; Gubbiotti M. A.; Kapoor A.; et al. Autophagic degradation of HAS2 in endothelial cells: A novel mechanism to regulate angiogenesis. Matrix Biol., 2020, 90: 1-19. doi: 10.1016/j.matbio.2020.02.001. Epub 2020 Feb 19.
- 50.
Heegaard A. M.; Corsi A.; Danielsen C. C.; et al. Biglycan deficiency causes spontaneous aortic dissection and rupture in mice. Circulation, 2007, 115(21): 2731-8. doi: 10.1161/CIRCULATIONAHA.106.653980. Epub 2007 May 14.
- 51.
Scuruchi M.; Mannino F.; Imbesi C.; et al. Biglycan Involvement in Heart Fibrosis: Modulation of Adenosine 2A Receptor Improves Damage in Immortalized Cardiac Fibroblasts. Int. J. Mol. Sci., 2023, 24(2): 1784. doi: 10.3390/ijms24021784.
- 52.
Melchior-Becker A.; Dai G.; Ding Z.; et al. Deficiency of biglycan causes cardiac fibroblasts to differentiate into a myofibroblast phenotype. J. Biol. Chem., 2011, 286(19): 17365-75. doi: 10.1074/jbc.M110.192682. Epub 2011 Mar 18.
- 53.
Mohammadzadeh N.; Lunde I. G.; Andenæs K.; et al. The extracellular matrix proteoglycan lumican improves survival and counteracts cardiac dilatation and failure in mice subjected to pressure overload. Sci. Rep., 2019, 9(1): 9206. doi: 10.1038/s41598-019-45651-9.
- 54.
Chen S. W.; Tung Y. C.; Jung S. M.; et al. Lumican-null mice are susceptible to aging and isoproterenol-induced myocardial fibrosis. Biochem. Biophys. Res. Commun., 2017, 482(4): 1304-1311. doi: 10.1016/j.bbrc.2016.12.033. Epub 2016 Dec 7.
- 55.
Kalamajski S.; Bihan D.; Bonna A.; et al. Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase. J. Biol. Chem., 2016, 291(15): 7951-60. doi: 10.1074/jbc.M115.693408. Epub 2016 Feb 18.
- 56.
Jazbutyte V.; Fiedler J.; Kneitz S.; et al. MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart. Age (Dordr), 2013, 35(3): 747-62. doi: 10.1007/s11357-012-9407-9. Epub 2012 Apr 27.
- 57.
Deckx S.; Heggermont W.; Carai P.; et al. Osteoglycin prevents the development of age-related diastolic dysfunction during pressure overload by reducing cardiac fibrosis and inflammation. Matrix Biol., 2018, 66: 110-124. doi: 10.1016/j.matbio.2017.09.002. Epub 2017 Sep 25.
- 58.
Zuo C.; Li X.; Huang J.; et al. Osteoglycin attenuates cardiac fibrosis by suppressing cardiac myofibroblast proliferation and migration through antagonizing lysophosphatidic acid 3/matrix metalloproteinase 2/epidermal growth factor receptor signalling. Cardiovasc. Res., 2018, 114(5): 703-712. doi: 10.1093/cvr/cvy035.
- 59.
Fang Y.; Chang Z.; Xu Z.; et al. Osteoglycin silencing exerts inhibitory effects on myocardial fibrosis and epithelial/endothelial-mesenchymal transformation in a mouse model of myocarditis. Biofactors, 2020, 46(6): 1018-1030. doi: 10.1002/biof.1683. Epub 2020 Nov 3.
- 60.
Li X. L.; Yu F.; Li B. Y.; et al. The protective effects of grape seed procyanidin B2 against asporin mediates glycated low-density lipoprotein induced-cardiomyocyte apoptosis and fibrosis. Cell Biol. Int., 2020, 44(1): 268-277. doi: 10.1002/cbin.11229. Epub 2019 Sep 18.
- 61.
Zhang Y.; Fu C.; ZhaoS.; et al. PRELP promotes myocardial fibrosis and ventricular remodelling after acute myocardial infarction by the wnt/β-catenin signalling pathway. Cardiovasc. J. Afr., 2022, 33(5): 228-233. doi: 10.5830/CVJA-2022-001. Epub 2022 Jun 29.
- 62.
Parola M.; Pinzani M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol. Aspects Med., 2019, 65: 37-55. doi: 10.1016/j.mam.2018.09.002. Epub 2018 Sep 13.
- 63.
Bataller R.; Brenner D. A. Liver fibrosis. J. Clin. Invest. 2005 ;115(2):209-18. doi: 10.1172/JCI24282. Erratum in: J. Clin. Invest., 2005, 115(4):1100.
- 64.
Baghy K., Dezso K., Laszlo V., et al. Ablation of the decorin gene enhances experimental hepatic fibrosis and impairs hepatic healing in mice. Lab. Invest. 2010, 439-451.doi:10.1038/labinvest.2010.172
- 65.
Jang Y. O.; Cho M. Y.; Yun C. O.; et al. Effect of Function-Enhanced Mesenchymal Stem Cells Infected With Decorin-Expressing Adenovirus on Hepatic Fibrosis. Stem Cells Transl. Med., 2016, 5(9): 1247-56. doi: 10.5966/sctm.2015-0323. Epub 2016 Jun 30.
- 66.
Baghy K.; Iozzo R. V.; Kovalszky I. Decorin-TGFβ axis in hepatic fibrosis and cirrhosis. J. Histochem. Cytochem., 2012, 60(4): 262-8. doi: 10.1369/0022155412438104. Epub 2012 Jan 19.
- 67.
LiuJ.; ZhuS.; ZengL.; et al. DCN released from ferroptotic cells ignites AGER-dependent immune responses. Autophagy, 2022, 18(9): 2036-2049. doi: 10.1080/15548627.2021.2008692. Epub 2021 Dec 29.
- 68.
Schulz M.; Dieh l. V.; Trebicka J.; et al. Biglycan: A regulator of hepatorenal inflammation and autophagy. Matrix Biol., 2021, 100-101: 150-161. doi: 10.1016/j.matbio.2021.06.001. Epub 2021 Jun 10.
- 69.
Roedig H.; Damiescu R.; Zeng-Brouwers J.; et al. Danger matrix molecules orchestrate CD14/CD44 signaling in cancer development. Semin. Cancer Biol., 2020, 62: 31-47. doi: 10.1016/j.semcancer.2019.07.026. Epub 2019 Aug 11.
- 70.
Zeng-Brouwers J.; Pandey S.; Trebicka J.; et al. Communications via the Small Leucine-rich Proteoglycans: Molecular Specificity in Inflammation and Autoimmune Diseases. J. Histochem. Cytochem., 2020, 68(12): 887-906. doi: 10.1369/0022155420930303. Epub 2020 Jul 6.
- 71.
Li X.; Roife D.; Kang Y.; et al. Extracellular lumican augments cytotoxicity of chemotherapy in pancreatic ductal adenocarcinoma cells via autophagy inhibition. Oncogene, 2016, 35(37): 4881-90. doi: 10.1038/onc.2016.20. Epub 2016 Feb 15.
- 72.
Ptasinski V. A.; Stegmayr J.; Belvisi M. G.; et al. Targeting Alveolar Repair in Idiopathic Pulmonary Fibrosis. Am. J. Respir. Cell Mol. Biol., 2021, 65(4): 347-365. doi: 10.1165/rcmb.2020-0476TR.
- 73.
UpaguptaC.; ShimboriC.; AlsilmiR.; et al. Matrix abnormalities in pulmonary fibrosis. Eur. Respir. Rev., 2018, 27(148): 180033. doi: 10.1183/16000617.0033-2018.
- 74.
InuiN.; SakaiS.; KitagawaM. Molecular Pathogenesis of Pulmonary Fibrosis, with Focus on Pathways Related to TGF-β and the Ubiquitin-Proteasome Pathway. Int. J. Mol. Sci., 2021, 22(11): 6107. doi: 10.3390/ijms22116107.
- 75.
Kolb M.; Margetts P. J.; Galt T.; et al. Transient transgene expression of decorin in the lung reduces the fibrotic response to bleomycin. Am. J. Respir. Crit. Care. Med., 2001, 163(3 Pt 1): 770-7. doi: 10.1164/ajrccm.163.3.2006084.
- 76.
KolbM.; MargettsP. J.; SimeP. J.; et al. Proteoglycans decorin and biglycan differentially modulate TGF-beta-mediated fibrotic responses in the lung. Am. J. Physiol. Lung Cell. Mol. Physiol., 2001, 280(6): L1327-34. doi: 10.1152/ajplung.2001.280.6.L1327.
- 77.
Allawadhi P.; Singh V.; Khurana I.; et al. Decorin as a possible strategy for the amelioration of COVID-19. Med. Hypotheses, 2021, 152: 110612. doi: 10.1016/j.mehy.2021.110612. Epub 2021 May 20.
- 78.
Nastase M. V.; Iozzo R. V.; Schaefer L. Key roles for the small leucine-rich proteoglycans in renal and pulmonary pathophysiology. Biochim. Biophys. Acta, 2014, 1840(8): 2460-70. doi: 10.1016/j.bbagen.2014.01.035. Epub 2014 Feb 5.
- 79.
Asakura S.; Kato H.; Fujino S.; et al. Role of transforming growth factor-beta1 and decorin in development of central fibrosis in pulmonary adenocarcinoma. Hum. Pathol., 1999, 30(2): 195-8. doi: 10.1016/s0046-8177(99)90275-7.
- 80.
Wang K.; Wang Y.; Cao Y.; et al. Lumican is elevated in the lung in human and experimental acute respiratory distress syndrome and promotes early fibrotic responses to lung injury. J. Transl. Med., 2022, 20(1): 392. doi: 10.1186/s12967-022-03597-z.
- 81.
Shi S.; Li H. Overexpressed microRNA-140 inhibits pulmonary fibrosis in interstitial lung disease via the Wnt signaling pathway by downregulating osteoglycin. Am. J. Physiol. Cell Physiol., 2020, 319(5): C895-C905. doi: 10.1152/ajpcell.00479.2019. Epub 2020 Aug 5.
- 82.
Rydell-Törmänen K.; Andréasson K.; Hesselstrand R.; et al. Absence of fibromodulin affects matrix composition, collagen deposition and cell turnover in healthy and fibrotic lung parenchyma. Sci. Rep., 2014, 4: 6383. doi: 10.1038/srep06383.
- 83.
Li L.; Fu H.; Liu Y. The fibrogenic niche in kidney fibrosis: components and mechanisms. Nat. Rev. Nephrol., 2022, 18(9): 545-557. doi: 10.1038/s41581-022-00590-z. Epub 2022 Jul 4.
- 84.
LiH.; DixonE. E.; WuH.; et al. Comprehensive single-cell transcriptional profiling defines shared and unique epithelial injury responses during kidney fibrosis. Cell Metab., 2022, 34(12): 1977-1998.e9. doi: 10.1016/j.cmet.2022.09.026. Epub 2022 Oct 19.
- 85.
Leaf I. A.; Duffield J. S. What can target kidney fibrosis? Nephrol. Dial. Transplant., 2017, 32(suppl_1): i89-i97. doi: 10.1093/ndt/gfw388.
- 86.
Stokes M. B.; Hudkins K. L.; Zaharia V.; et al. Up-regulation of extracellular matrix proteoglycans and collagen type I in human crescentic glomerulonephritis. Kidney Int., 2001, 59(2): 532-42. doi: 10.1046/j.1523-1755.2001.059002532.x.
- 87.
Nastase M. V.; Zeng-Brouwers J.; Beckmann J.; et al. Biglycan, a novel trigger of Th1 and Th17 cell recruitment into the kidney. Matrix Biol., 2018, 68-69: 293-317. doi: 10.1016/j.matbio.2017.12.002. Epub 2017 Dec 15.
- 88.
Nakamura T.; Bonnard B.; Palacios-Ramirez R.; et al. Biglycan Is a Novel Mineralocorticoid Receptor Target Involved in Aldosterone/Salt-Induced Glomerular Injury. Int. J. Mol. Sci., 2022, 23(12): 6680. doi: 10.3390/ijms23126680.
- 89.
Merline R.; Moreth K.; Beckmann J.; et al. Signaling by the matrix proteoglycan decorin controls inflammation and cancer through PDCD4 and MicroRNA-21. Sci. Signal., 2011, 4(199): ra75. doi: 10.1126/scisignal.2001868.
- 90.
Schaefer L.; Tsalastra W.; Babelova A.; et al. Decorin-mediated regulation of fibrillin-1 in the kidney involves the insulin-like growth factor-I receptor and Mammalian target of rapamycin. Am. J. Pathol., 2007, 170(1): 301-15. doi: 10.2353/ajpath.2007.060497.
- 91.
Schaefer L.; Macakova K.; Raslik I.; et al. Absence of decorin adversely influences tubulointerstitial fibrosis of the obstructed kidney by enhanced apoptosis and increased inflammatory reaction. Am. J. Pathol., 2002, 160(3): 1181-91. doi: 10.1016/S0002-9440(10)64937-1.
- 92.
Vial C.; Gutiérrez J.; Santander C.; et al. Decorin interacts with connective tissue growth factor (CTGF)/CCN2 by LRR12 inhibiting its biological activity. J. Biol. Chem., 2011, 286(27):24242-52. doi: 10.1074/jbc.M110.189365. Epub 2011 Mar 23.
- 93.
Zhu J.; Li Y.; Shen W.; et al. Relationships between transforming growth factor-beta1, myostatin, and decorin: implications for skeletal muscle fibrosis. J. Biol. Chem., 2007, 282(35):25852-63. doi: 10.1074/jbc.M704146200. Epub 2007 Jun 27.
- 94.
Mohan R. R.; Gupta R.; Mehan M. K.; et al. Decorin transfection suppresses profibrogenic genes and myofibroblast formation in human corneal fibroblasts. Exp. Eye. Res., 2010, 91(2): 238-45. doi: 10.1016/j.exer.2010.05.013. Epub 2010 May 28.
- 95.
Liu L.; Yu H.; Long Y.; et al. Asporin inhibits collagen matrix-mediated intercellular mechanocommunications between fibroblasts during keloid progression. FASEB J., 2021, 35(7): e21705. doi: 10.1096/fj.202100111R.
- 96.
Honardoust D.; Varkey M.; Hori K.; et al. Small leucine-rich proteoglycans, decorin and fibromodulin, are reduced in postburn hypertrophic scar. Wound Repair Regen., 2011, 19(3): 368-78. doi: 10.1111/j.1524-475X.2011.00677.x. Epub 2011 Apr 21.
- 97.
Jiang W.; Ting K.; Lee S.; et al. Fibromodulin reduces scar size and increases scar tensile strength in normal and excessive-mechanical-loading porcine cutaneous wounds. J. Cell. Mol. Med., 2018, 22(4): 2510-2513. doi: 10.1111/jcmm.13516. Epub 2018 Feb 1.
- 98.
Honardoust D.; Varkey M.; Marcoux Y.; et al. Reduced decorin, fibromodulin, and transforming growth factor-β3 in deep dermis leads to hypertrophic scarring. J. Burn. Care. Res., 2012, 33(2): 218-27. doi: 10.1097/BCR.0b013e3182335980.
- 99.
Andréasson K.; Gustafsson R.; Rydell-Törmänen K.; et al. Limited impact of fibromodulin deficiency on the development of experimental skin fibrosis. Exp. Dermatol., 2016, 25(7): 558-61. doi: 10.1111/exd.13012.
- 100.
Zheng Z.; Nguyen C.; Zhang X.; et al. Delayed wound closure in fibromodulin-deficient mice is associated with increased TGF-β3 signaling. J. Invest. Dermatol., 2011, 131(3): 769-78. doi: 10.1038/jid.2010.381. Epub 2010 Dec 30.
- 101.
Stoff A.; Rivera A. A.; Mathis J. M.; et al. Effect of adenoviral mediated overexpression of fibromodulin on human dermal fibroblasts and scar formation in full-thickness incisional wounds. J. Mol. Med., 2007, 85(5): 481-96. doi: 10.1007/s00109-006-0148-z. Epub 2007 Jan 12.
- 102.
Liu X. J.; Kong F. Z.; Wang Y. H.; et al. Lumican Accelerates Wound Healing by Enhancing α2β1 Integrin-Mediated Fibroblast Contractility. PLoS One, 2013, 8(6): e67124. doi: 10.1371/journal.pone.0067124.
- 103.
Chacón-Solano E.; León C.; Carretero M.; et al. Mechanistic interrogation of mutation-independent disease modulators of RDEB identifies the small leucine-rich proteoglycan PRELP as a TGF-β antagonist and inhibitor of fibrosis. Matrix Biol., 2022, 111: 189-206. doi: 10.1016/j.matbio.2022.06.007. Epub 2022 Jun 30.
- 104.
Moreth K.; Brodbeck R.; Babelova A.; et al. The proteoglycan biglycan regulates expression of the B cell chemoattractant CXCL13 and aggravates murine lupus nephritis. J. Clin. Invest., 2010, 120(12): 4251-72. doi: 10.1172/JCI42213. Epub 2010 Nov 15.
- 105.
Nikaido T.; Tanino Y.; Wang X.; et al. Serum decorin is a potential prognostic biomarker in patients with acute exacerbation of idiopathic pulmonary fibrosis. J. Thorac. Dis., 2018, 10(9): 5346-5358. doi: 10.21037/jtd.2018.08.60.
- 106.
Kehlet S. N.; Bager C. L.; Willumsen N.; et al. Cathepsin-S degraded decorin are elevated in fibrotic lung disorders - development and biological validation of a new serum biomarker. BMC Pulm. Med., 2017, 17(1): 110. doi: 10.1186/s12890-017-0455-x.
- 107.
Ueland T.; Aukrust P.; Nymo S. H.; et al. Novel extracellular matrix biomarkers as predictors of adverse outcome in chronic heart failure: association between biglycan and response to statin therapy in the CORONA trial. J. Card. Fail., 2015, 21(2): 153-9. doi: 10.1016/j.cardfail.2014.10.016. Epub 2014 Nov 7.
- 108.
Cengiz M.; Yilmaz G.; Ozenirler S. Serum Biglycan as a Diagnostic Marker for Non-Alcoholic Steatohepatitis and Liver Fibrosis. Clin. Lab., 2021, 67(3). doi: 10.7754/Clin.Lab.2020.200709.
- 109.
Ciftciler R.; Ozenirler S.; Yucel A. A.; et al. The importance of serum biglycan levels as a fibrosis marker in patients with chronic hepatitis Br. J. Clin. Lab. Anal., 2017, 31(5): e22109. doi: 10.1002/jcla.22109. Epub 2016 Dec 7.
- 110.
Romero R.; Mazaki-Tovi S.; Vaisbuch E.; et al. Metabolomics in premature labor: a novel approach to identify patients at risk for preterm delivery. J. Matern. Fetal Neonatal Med., 2010, 23(12): 1344-59. doi: 10.3109/14767058.2010.482618. Epub 2010 May 26.
- 111.
Cheng J. M.; Akkerhuis K. M.; Meilhac O.; et al. Circulating osteoglycin and NGAL/MMP9 complex concentrations predict 1-year major adverse cardiovascular events after coronary angiography. Arterioscler, Thromb, Vasc, Biol., 2014, 34(5): 1078-84. doi: 10.1161/ATVBAHA.114.303486. Epub 2014 Mar 20.
- 112.
Motiwala S. R.; Szymonifka J.; Belcher A.; et al. Measurement of novel biomarkers to predict chronic heart failure outcomes and left ventricular remodeling. J. Cardiovasc. Transl. Res., 2017, 250-61. doi: 10.1007/s12265-013-9522-8. Epub 2013 Dec 6.
- 113.
Deckx S.; Heymans S.; Papageorgiou A. P. The diverse functions of osteoglycin: a deceitful dwarf, or a master regulator of disease? FASEB J., 2016, 30(8):2651-61. doi: 10.1096/fj.201500096R. Epub 2016 Apr 14.
- 114.
Baek S. H.; Cha R. H.; Kang S. W.; et al. Higher Serum Levels of Osteoglycin Are Associated with All-Cause Mortality and Cardiovascular and Cerebrovascular Events in Patients with Advanced Chronic Kidney Disease. Tohoku. J. Exp. Med., 2017, 242(4): 281-290. doi: 10.1620/tjem.242.281.
- 115.
Hsu M. E.; Cheng Y. T.; Chang C. H.; et al. Level of serum soluble lumican and risks of perioperative complications in patients receiving aortic surgery. PLoS One, 2021, 16(3): e0247340. doi: 10.1371/journal.pone.0247340.
- 116.
Gu G.; Wan F.; Xue Y.; et al. Lumican as a novel potential clinical indicator for acute aortic dissection: A comparative study, based on multi-slice computed tomography angiography. Exp. Ther. Med., 2016, 11(3): 923-928. doi: 10.3892/etm.2016.3020. Epub 2016 Jan 22.
- 117.
Decaris M. L.; Li K. W.; Emson C. L.; et al. Identifying nonalcoholic fatty liver disease patients with active fibrosis by measuring extracellular matrix remodeling rates in tissue and blood. Hepatology, 2017, 65(1): 78-88. doi: 10.1002/hep.28860. Epub 2016 Nov 15.
- 118.
Liu D.; Kong F.; Yuan Y.; et al. Decorin-Modified Umbilical Cord Mesenchymal Stem Cells (MSCs) Attenuate Radiation-Induced Lung Injuries via Regulating Inflammation, Fibrotic Factors, and Immune Responses. Int. J. Radiat. Oncol. Biol. Phys., 2018, 101(4) 945-956. doi: 10.1016/j.ijrobp.2018.04.007. Epub 2018 Apr 16.
- 119.
Shimizukawa M.; Ebina M.; Narumi K.; et al. Intratracheal gene transfer of decorin reduces subpleural fibroproliferation induced by bleomycin. Am. J. Physiol. Lung Cell. Mol. Physiol., 2003, 284(3): L526-32. doi: 10.1152/ajplung.00131.2002.
- 120.
Vijayan A. N.; Solaimuthu A.; Murali P.; et al. Decorin mediated biomimetic PCL-gelatin nano-framework to impede scarring. Int. J. Biol. Macromol., 2022, 219: 907-918. doi: 10.1016/j.ijbiomac.2022.08.029. Epub 2022 Aug 8.
- 121.
Järvinen T. A. H.; Ruoslahti E. Generation of a multi-functional, target organ-specific, anti-fibrotic molecule by molecular engineering of the extracellular matrix protein, decorin. Br. J. Pharmacol., 2019, 176(1): 16-25. doi: 10.1111/bph.14374. Epub 2018 Jun 25.
- 122.
He R.; Lu Y.; Ren J.; et al. Decreased fibrous encapsulation and enhanced osseointegration in vitro by decorin-modified titanium surface. Colloids Surf. B Biointerfaces, 2017, 155: 17-24. doi: 10.1016/j.colsurfb.2017.03.055. Epub 2017 Mar 31.
- 123.
Chen G.; Zhu Y.; Liang X.; et al. The Effect of Lecithins Coupled Decorin Nanoliposomes on Treatment of Carbon Tetrachloride-Induced Liver Fibrosis. Biomed Res. Int., 2020, 8815904. doi: 10.1155/2020/8815904.
- 124.
Ding Q.; Wei Q.; Sheng G.; et al. The Preventive Effect of Decorin on Epidural Fibrosis and Epidural Adhesions After Laminectomy. Front. Pharmacol., 2021, 12: 774316. doi: 10.3389/fphar.2021.774316.
- 125.
Pietraszek K.; Brézillon S.; Perreau C.; et al. Lumican - derived peptides inhibit melanoma cell growth and migration. PLoS One, 2013, 8(10):e76232. doi: 10.1371/journal.pone.0076232.
- 126.
Rockey D. C.; Bell P. D.; Hill J. A. Fibrosis--a common pathway to organ injury and failure. N. Engl. J. Med., 2015, 372(12): 1138-49. doi: 10.1056/NEJMra1300575.
- 127.
Mao L.; Yang J.; Yue J.; et al. Decorin deficiency promotes epithelial-mesenchymal transition and colon cancer metastasis. Matrix Biol., 2021, 95: 1-14. doi: 10.1016/j.matbio.2020.10.001. Epub 2020 Oct 13.
- 128.
Karamanou K.; Franchi M.; Vynios D; et al. Epithelial-to-mesenchymal transition and invadopodia markers in breast cancer: Lumican a key regulator. Semin. Cancer Biol., 2020, 62: 125-133. doi: 10.1016/j.semcancer.2019.08.003. Epub 2019 Aug 8.
- 129.
Sengupta S.; Mondal M.; Prasasvi K. R.; et al. Differentiated glioma cell-derived fibromodulin activates integrin-dependent Notch signaling in endothelial cells to promote tumor angiogenesis and growth. Elife, 2022, 11: e78972. doi: 10.7554/eLife.78972.
- 130.
Oria V. O.; Zhang H.; Zito C. R.; et al. Coupled fibromodulin and SOX2 signaling as a critical regulator of metastatic outgrowth in melanoma. Cell. Mol. Life Sci., 2022, 79(7): 377. doi: 10.1007/s00018-022-04364-5.
- 131.
Wu H.; Xiang Z.; Huang G.; et al. BGN/FAP/STAT3 positive feedback loop mediated mutual interaction between tumor cells and mesothelial cells contributes to peritoneal metastasis of gastric cancer. Int. J. Biol. Sci., 2023, 19(2): 465-483. doi: 10.7150/ijbs.72218.