- 1.
Canal P.; Gamelin E.; Vassal G.; et al. Benefits of pharmacological knowledge in the design and monitoring of cancer chemotherapy. Pathol. Oncol. Res., 1998, 4(3): 171-178.
- 2.
Caliceti P.; Veronese F.M. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)–protein conjugates. Adv. Drug Delivery Rev., 2003, 55(10): 1261-1277.
- 3.
Moghimi S.M.; Davis S.S. Innovations in avoiding particle clearance from blood by Kupffer cells: cause for reflection. Crit. Rev. Ther. Drug Carrier Syst., 1994, 11(1): 31-59.
- 4.
Accardo A.; Aloj L.; Aurilio M.; et al. Receptor binding peptides for target-selective delivery of nanoparticles encapsulated drugs. Int. J. Nanomed., 2014, 9: 1537-1557.
- 5.
Mendes R.; Fernandes A.R.; Baptista P.V. Gold nanoparticle approach to the selective delivery of gene silencing in cancer—the case for combined delivery? Genes, 2017, 8(3): 94.
- 6.
Permana A.D.; Anjani Q.K.; Sartini.; et al. Selective delivery of silver nanoparticles for improved treatment of biofilm skin infection using bacteria-responsive microparticles loaded into dissolving microneedles. Mater. Sci. Eng.: C , 2021, 120: 111786.
- 7.
Shi H.D.; Liu S.Z.; Cheng J.J.; et al. Charge-selective delivery of proteins using mesoporous silica nanoparticles fused with lipid bilayers. ACS Appl. Mater. Interfaces, 2019, 11(4): 3645-3653.
- 8.
Oake A.; Bhatt P.; Pathak V.V. Understanding surface characteristics of nanoparticles. Pathak Y.V. Surface modification of nanoparticles for targeted drug delivery. Cham: Springer, 2019: 1-17.
- 9.
Duan X.P.; Li Y.P. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small, 2013, 9(9/10): 1521-1532.
- 10.
Jones M.; Leroux J. Polymeric micelles - a new generation of colloidal drug carriers. Eur. J. Pharm. Biopharm., 1999, 48(2): 101-111.
- 11.
Nishiyama N.; Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol. Ther., 2006, 112(3): 630-648.
- 12.
Aghebati-Maleki A.; Dolati S.; Ahmadi M.; et al. Nanoparticles and cancer therapy: perspectives for application of nanoparticles in the treatment of cancers. J. Cell. Physiol., 2020, 235(3): 1962-1972.
- 13.
Gavas S.; Quazi S.; Karpiński T.M. Nanoparticles for cancer therapy: current progress and challenges. Nanoscale Res. Lett., 2021, 16(1): 173.
- 14.
Alshawwa S.Z.; Kassem A.A.; Farid R.M.; et al. Nanocarrier drug delivery systems: characterization, limitations, future perspectives and implementation of artificial intelligence. Pharmaceutics, 2022, 14(4): 883.
- 15.
Bhatia S. Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. Bhatia S. Natural polymer drug delivery systems. Cham: Springer, 2016: 33-93.
- 16.
Patra J.K.; Das G.; Fraceto L.F.; et al. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol., 2018, 16(1): 71.
- 17.
Aithal A.; Aithal P.S. The concept of ideal drug & its realization opportunity using nano pharmaceutical research scenario. International Journal of Health Sciences and Pharmacy, 2018, 2(2): 11-26.
- 18.
LaVan D.A.; McGuire T.; Langer R. Small-scale systems for in vivo drug delivery. Nat. Biotechnol., 2003, 21(10): 1184-1191.
- 19.
Ruiz M.E.; Scioli Montoto S. Routes of drug administration. Talevi A.; Quiroga P.A.M. ADME processes in pharmaceutical sciences: dosage, design, and pharmacotherapy success. Cham: Springer, 2018: 97-133.
- 20.
Allen T.M.; Cullis P.R. Drug delivery systems: entering the mainstream. Science, 2004, 303(5665): 1818-1822.
- 21.
Zunhammer M.; Ploner M.; Engelbrecht C.; et al. The effects of treatment failure generalize across different routes of drug administration. Sci. Transl. Med., 2017, 9(393): eaal2999.
- 22.
Centers for Disease Control and Prevention. National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011. Atlanta, GA: U.S. department of health and human services, Centers for Disease Control and Prevention, 2011.
- 23.
Kadian R.; Nanda A. A comprehensive insight on recent advancements in self-emulsifying drug delivery systems. Curr. Drug Delivery. 2022, in press.
- 24.
Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer, 2005, 5(3): 161-171.
- 25.
Amiji M.M. Nanotechnology for cancer therapy. Boca Raton: CRC Press, 2006.
- 26.
Riehemann K.; Schneider S.W.; Luger T.A.; et al. Nanomedicine--challenge and perspectives. Angew. Chem., Int. Ed. Engl., 2009, 48(5): 872-897.
- 27.
Hashizume H.; Baluk P.; Morikawa S.; et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol., 2000, 156(4): 1363-1380.
- 28.
Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul., 2001, 41: 189-207.
- 29.
Torchilin V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discovery, 2005, 4(2): 145-160.
- 30.
Hari S.K.; Gauba A.; Shrivastava N.; et al. Polymeric micelles and cancer therapy: an ingenious multimodal tumor-targeted drug delivery system. Drug Delivery Transl. Res., 2023, 13(1): 135-163.
- 31.
Brannon-Peppas L.; Blanchette J.O. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Delivery Rev., 2004, 56(11): 1649-1659.
- 32.
Kale A.A.; Torchilin V.P. “Smart” drug carriers: PEGylated TATp-modified pH-sensitive liposomes. J. Liposome Res., 2007, 17(3/4): 197-203.
- 33.
Farokhzad O.C.; Langer R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1): 16-20.
- 34.
Souza G.R.; Staquicini F.I.; Christianson D.R.; et al. Combinatorial targeting and nanotechnology applications. Biomed. Microdevices, 2010, 12(4): 597-606.
- 35.
Juweid M.; Neumann R.; Paik C.; et al. Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier. Cancer Res., 1992, 52(19): 5144-5153.
- 36.
Serda R.E.; Godin B.; Blanco E.; et al. Multi-stage delivery nano-particle systems for therapeutic applications. Biochim. Biophys. Acta, 2011, 1810(3): 317-329.
- 37.
Godin B.; Serda R.E.; Liu X.W.; et al. Injectable multistage nanovectors for enhancing imaging contrast and directed therapy. Svenson, S.; Prud’homme, R.K. Multifunctional nanoparticles for drug delivery applications: nanostructure science and technology. Boston, MA: Springer, 2012: 201-223.
- 38.
Souza G.R.; Christianson D.R.; Staquicini F.I.; et al. Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents. Proc. Natl. Acad. Sci., 2006, 103(5): 1215-1220.
- 39.
Sengupta S.; Eavarone D.; Capila I.; et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature, 2005, 436(7050): 568-572.
- 40.
Chen A.M.; Zhang M.; Wei D.G.; et al. Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small, 2009, 5(23): 2673-2677.
- 41.
Tasciotti E.; Liu X.W.; Bhavane R.; et al. Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat. Nanotechnol., 2008, 3(3): 151-157.
- 42.
Khemtong C.; Kessinger C.W.; Ren J.M.; et al. In vivo off-resonance saturation magnetic resonance imaging of αvβ3-targeted superparamagnetic nanoparticles. Cancer Res., 2009, 69(4): 1651-1658.
- 43.
Yoo H.S.; Park T.G. Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate. J. Controlled Release, 2004, 100(2): 247-256.
- 44.
Jeong Y.I.; Seo S.J.; Park I.K.; et al. Cellular recognition of paclitaxel-loaded polymeric nanoparticles composed of poly(γ-benzyl l-glutamate) and poly(ethylene glycol) diblock copolymer endcapped with galactose moiety. Int. J. Pharm., 2005, 296(1/2): 151-161.
- 45.
Carpin L.B.; Bickford L.R.; Agollah G.; et al. Immunoconjugated gold nanoshell-mediated photothermal ablation of trastuzumab-resistant breast cancer cells. Breast Cancer Res. Treat., 2011, 125(1): 27-34.
- 46.
Stoltenburg R.; Reinemann C.; Strehlitz B. SELEX—A (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol. Eng., 2007, 24(4): 381-403.
- 47.
Thiviyanathan V.; Somasunderam A.D.; Gorenstein D.G. Combinatorial selection and delivery of thioaptamers. Biochem. Soc. Trans., 2007, 35(1): 50-52.
- 48.
Röthlisberger P.; Hollenstein M. Aptamer chemistry. Adv. Drug Delivery Rev., 2018, 134: 3-21.
- 49.
Esawi E.; Nsairat H.; Mahmoud I.S.; et al. 20 - Clinical use and future perspective of aptamers. Kesharwani P. Aptamers engineered nanocarriers for cancer therapy. Cambridge: Woodhead Publishing, 2023: 481-520.
- 50.
Bai X.; Smith Z.L.; Wang Y.H.; et al. Sustained drug release from smart nanoparticles in cancer therapy: a comprehensive review. Micromachines, 2022, 13(10): 1623.
- 51.
Bagherifam S.; Skjeldal F.M.; Griffiths G.; et al. pH-responsive nano carriers for doxorubicin delivery. Pharm. Res., 2015, 32(4): 1249-1263.
- 52.
Yu C.; Wang L.; Xu Z.Z.; et al. Smart micelles self-assembled from four-arm star polymers as potential drug carriers for pH-triggered DOX release. J. Polym. Res., 2020, 27(5): 111.
- 53.
Bagheri M.; Shateri S.; Niknejad H.; et al. Thermosensitive biotinylated hydroxypropyl cellulose-based polymer micelles as a nano-carrier for cancer-targeted drug delivery. J. Polym. Res., 2014, 21(10): 567.
- 54.
Wang J.J. Combination treatment of cervical cancer using folate-decorated, pH-sensitive, carboplatin and paclitaxel co-loaded lipid-polymer hybrid nanoparticles. Drug Des., Dev. Ther., 2020, 14: 823-832.
- 55.
Guo S.J.; Vieweger M.; Zhang K.M.; et al. Ultra-thermostable RNA nanoparticles for solubilizing and high-yield loading of paclitaxel for breast cancer therapy. Nat. Commun., 2020, 11(1): 972.
- 56.
Patil R.; Portilla-Arias J.; Ding H.; et al. Temozolomide delivery to tumor cells by a multifunctional nano vehicle based on poly(β-L-malic acid). Pharm. Res., 2010, 27(11): 2317-2329.
- 57.
Wang R.B.; Billone P.S.; Mullett W.M. Nanomedicine in action: an overview of cancer nanomedicine on the market and in clinical trials. J. Nanomater., 2013, 2013: 629681.
- 58.
Saif M.W. U.S. food and drug administration approves paclitaxel protein-bound particles (abraxane®) in combination with gemcitabine as first-line treatment of patients with metastatic pancreatic cancer. JOP. Journal of the Pancreas, 2013, 14(6): 686-688.
- 59.
Martis E.; Badve R.; Degwekar M. Nanotechnology based devices and applications in medicine: an overview. Chron. Young Sci., 2012, 3(1): 68.
- 60.
Anselmo A.C.; Mitragotri S. Nanoparticles in the clinic: an update. Bioeng. Transl. Med., 2019, 4(3): e10143.
- 61.
Pillai G. Nanomedicines for cancer therapy: an update of FDA approved and those under various stages of development. SOJ Pharmacy & Pharmaceutical Sciences, 2014, 1(2): 13.
- 62.
Sharma G.; Sharma A.R.; Lee S.S.; et al. Advances in nanocarriers enabled brain targeted drug delivery across blood brain barrier. Int. J. Pharm., 2019, 559: 360-372.
- 63.
Deo M.R.; Sant V.P.; Parekh S.R.; et al. Proliposome-based transdermal delivery of levonorgestrel. J. Biomater. Appl., 1997, 12(1): 77-88.
- 64.
Li J.; Zhang Z.X.; Zhang B.L.; et al. Transferrin receptor 1 targeted nanomedicine for brain tumor therapy. Biomater. Sci., 2023, in press.
- 65.
Peters D.; Kastantin M.; Kotamraju V.R.; et al. Targeting atherosclerosis by using modular, multifunctional micelles. Proc. Natl. Acad. Sci., 2009, 106(24): 9815-9819.
- 66.
Eniola-Adefeso O.; Heslinga M.J.; Porter T.M. Design of nano vectors for therapy and imaging of cardiovascular diseases. Methodist DeBakey Heart & Vascular Center, 2012, 8(1): 13-17.
- 67.
Aikawa M.; Libby P. The vulnerable atherosclerotic plaque: pathogenesis and therapeutic approach. Cardiovasc. Pathol., 2004, 13(3): 125-138.
- 68.
Tölli M.A.; Ferreira M.P.A.; Kinnunen S.M.; et al. In vivo biocompatibility of porous silicon biomaterials for drug delivery to the heart. Biomaterials, 2014, 35(29): 8394-8405.
- 69.
Pinchuk L.; Wilson G.J.; Barry J.J.; et al. Medical applications of poly(styrene-block-isobutylene-block-styrene) (“SIBS”). Biomaterials, 2008, 29(4): 448-460.
- 70.
Tzafriri A.R.; Edelman E.R. Endovascular drug delivery and drug elution systems: first principles. Interventional Cardiol. Clin., 2016, 5(3): 307-320.
- 71.
Karanasiou G.S.; Papafaklis M.I.; Conway C.; et al. Stents: biomechanics, biomaterials, and insights from computational modeling. Ann. Biomed. Eng., 2017, 45(4): 853-872.
- 72.
Kleemann E.; Schmehl T.; Gessler T.; et al. Iloprost-containing liposomes for aerosol application in pulmonary arterial hypertension: formulation aspects and stability. Pharm. Res., 2007, 24(2): 277-287.
- 73.
Kan P.; Chen K.J.; Hsu C.F.; et al. Inhaled liposomal iloprost shows high drug encapsulation, extended release profile and potentials of improving patient compliance. Eur. Respir. J., 2018, 52: PA3038.
- 74.
Rn K.; Gokhale P.C.; Kshirsagar N.A.; et al. Optimizing dosage regimens of liposomal amphotericin B using Aspergillus murine model. Indian J. Pharmacol., 1996, 28: 88.
- 75.
Kshirsagar N.A.; Pandya S.K.; Kirodian G.B.; et al. Liposomal drug delivery system from laboratory to clinic. J. Postgrad. Med., 2005, 51(5): 5-15.
- 76.
Tiwari G.; Tiwari R.; Sriwastawa B.; et al. Drug delivery systems: an updated review. Int. J. Pharm. Invest., 2012, 2(1): 2-11.
- 77.
Sperry P.J.; Cua D.J.; Wetzel S.A.; et al. Antimicrobial activity of AmBisome and non-liposomal amphotericin B following uptake of Candida glabrata by murine epidermal Langerhans cells. Med. Mycol., 1998, 36(3): 135-141.
- 78.
Zhu Y.X.; Che L.; He H.M.; et al. Highly efficient nanomedicines assembled via polymer-drug multiple interactions: tissue-selective delivery carriers. J. Controlled Release, 2011, 152(2): 317-324.
- 79.
Bummer P.M. Physical chemical considerations of lipid-based oral drug delivery—solid lipid nanoparticles. Critical Reviews™ in Therapeutic Drug Carrier Systems, 2004, 21(1): 1-20.
- 80.
Puoci F.; Iemma F.; Muzzalupo R.; et al. Spherical molecularly imprinted polymers (SMIPs) via a novel precipitation polymerization in the controlled delivery of sulfasalazine. Macromol. Biosci., 2004, 4(1): 22-26.
- 81.
Priyam A.; Shivhare K.; Yadav S.; et al. Enhanced solubility and self-assembly of amphiphilic sulfasalazine-PEG-OMe (S-PEG) conjugate into core-shell nanostructures useful for colonic drug delivery. Colloids Surf., A, 2018, 547: 157-167.
- 82.
Dhaneshwar S.S.; Gairola N.; Kandpal M.; et al. Synthesis, kinetic studies and pharmacological evaluation of mutual azo prodrugs of 5-aminosalicylic acid for colon-specific drug delivery in inflammatory bowel disease. Eur. J. Med. Chem., 2009, 44(10): 3922-3929.
- 83.
Li J.H.; Zhang Z.Z.; Li J.; et al. Copper-olsalazine metal-organic frameworks as a nanocatalyst and epigenetic modulator for efficient inhibition of colorectal cancer growth and metastasis. Acta Biomater., 2022, 152: 495-506.
- 84.
Levine D.J. Runčevski T.; Kapelewski M.T.;et al. Olsalazine-based metal-organic frameworks as biocompatible platforms for H2 adsorption and drug delivery. J. Am. Chem. Soc., 2016, 138(32): 10143-10150.
- 85.
Hakkou K.; Molina-Pinilla I.; Rangel-Núñez C.; et al. Synthesis of novel (bio) degradable linear azo polymers conjugated with olsalazine. Polym. Degrad. Stab., 2019, 167: 302-312.
- 86.
Cortez-Maya S.; Pedro-Hernández L.D.; Martínez-Klimova E.; et al. Anticancer activity of water-soluble olsalazine-PAMAM-dendrimer-salicylic acid-conjugates. Biomolecules, 2019, 9(8): 360.
- 87.
Mukhtar M.; Fényes E.; Bartos C.; et al. Chitosan biopolymer, its derivatives and potential applications in nano-therapeutics: a comprehensive review. Eur. Polym. J., 2021, 160: 110767.
- 88.
Chaudhury A.; Das S. Recent advancement of chitosan-based nanoparticles for oral controlled delivery of insulin and other therapeutic agents. AAPS PharmSciTech, 2011, 12(1): 10-20.
- 89.
Sonia T.A.; Sharma C.P. An overview of natural polymers for oral insulin delivery. Drug Discovery Today, 2012, 17(13/14): 784-792.
- 90.
Sarmento B.; Ribeiro A.; Veiga F.; et al. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm. Res., 2007, 24(12): 2198-2206.
- 91.
Chiang W.L.; Ke C.J.; Liao Z.X.; et al. Pulsatile drug release from PLGA hollow microspheres by controlling the permeability of their walls with a magnetic field. Small, 2012, 8(23): 3584-3588.