- 1.
Sun Z.Q.; Yu T.T.; Ma Y.; et al. Depression and myocardial injury in ST-segment elevation myocardial infarction: A cardiac magnetic resonance imaging study. World. J. Clin. Cases, 2020, 8(7): 1232-1240.
- 2.
Raič M. Depression and Heart Diseases: Leading Health Problems. Psychiatr. Danub., 2017, 4(Suppl 4): 770-777.
- 3.
Carney R.M.; Rich M.W.; Freedland K.E.; et al. Major depressive disorder predicts cardiac events in patients with coronary artery disease. Psychosom. Med., 1988, 50(6): 627-33.
- 4.
Cocchio S.; Baldovin T.; Furlan P.; et al. Is depression a real risk factor for acute myocardial infarction mortality? A retrospective cohort study. BMC Psychiatry, 2019, 19(1): 122.
- 5.
Kjellström B.; Gustafsson A.; Nordendal E.; et al. Symptoms of depression and their relation to myocardial infarction and periodontitis. Eur. J. Cardiovasc. Nurs., 2017, 16(6): 468-474.
- 6.
Bot M.; Pouwer F.; Zuidersma M.; et al. Association of coexisting diabetes and depression with mortality after myocardial infarction. Diabetes Care, 2012, 35(3): 503-9.
- 7.
Liu H.; Luiten P.G.; Eisel U.L.; et al. Depression after myocardial infarction: TNF-α-induced alterations of the blood-brain barrier and its putative therapeutic implications. Neurosci. Biobehav. Rev., 2013, 37(4): 561-72.
- 8.
Wachowska K.; Bliźniewska-Kowalska K.; Sławek J.; et al. Common pathomechanism of migraine and depression. Psychiatr. Pol., 2022, 17:1-15.
- 9.
Beurel E.; Toups M.; Nemeroff C.B. The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron, 2020, 107(2): 234-256.
- 10.
Wilkowska A.; Pikuła M.; Rynkiewicz A.; et al. Increased plasma pro-inflammatory cytokine concentrations after myocardial infarction and the presence of depression during next 6-months. Psychiatr. Pol., 2015, 49(3): 455-64.
- 11.
Saparov A.; Ogay V.; Nurgozhin T.; et al. Role of the immune system in cardiac tissue damage and repair following myocardial infarction. Inflamm. Res., 2017, 66(9): 739-751.
- 12.
de Kleijn D.P.V.; Chong S.Y.; Wang X.; et al. Toll-like receptor 7 deficiency promotes survival and reduces adverse left ventricular remodelling after myocardial infarction. Cardiovasc. Res., 2019, 115(12): 1791-1803.
- 13.
Jovanova O.; Luik A.I.; Leening M.J.; et al. The long-term risk of recognized and unrecognized myocardial infarction for depression in older men. Psychol. Med., 2016, 46(9): 1951-60.
- 14.
Sapolsky R.M.; Romero L.M.; Munck A.U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev., 2000, 21(1): 55-89.
- 15.
Headrick J.P.; Peart J.N.; Budiono B.P.; et al. The heartbreak of depression: 'Psycho-cardiac' coupling in myocardial infarction. J. Mol. Cell. Cardiol., 2017, 106: 14-28.
- 16.
Wu P.; Vaseghi M. The autonomic nervous system and ventricular arrhythmias in myocardial infarction and heart failure. Pacing. Clin. Electrophysiol., 2020, 43(2): 172-180.
- 17.
Simpson C.A.; Diaz-Arteche C.; Eliby D.; et al. The gut microbiota in anxiety and depression - A systematic review. Clin. Psychol. Rev., 2021, 83: 101943.
- 18.
Cenit M.C.; Sanz Y.; Codoñer-Franch P. Influence of gut microbiota on neuropsychiatric disorders. World. J. Gastroenterol., 2017, 23(30): 5486-5498.
- 19.
Wu Z.X.; Li S.F.; Chen H.; et al. The changes of gut microbiota after acute myocardial infarction in rats. PLoS. One., 2017, 12(7): e0180717.
- 20.
Gelle T.; Samey R.A.; Plansont B.; et al. BDNF and pro-BDNF in serum and exosomes in major depression: Evolution after antidepressant treatment. Prog. Neuropsychopharmacol. Biol. Psychiatry., 2021, 109: 110229.
- 21.
Du Y.; Gao X.R.; Peng L.; et al. Crosstalk between the microbiota-gut-brain axis and depression. Heliyon, 2020, 6(6): e04097.
- 22.
Yang Y.; Li X.; Chen S.; et al. Mechanism and therapeutic strategies of depression after myocardial infarction. Psychopharmacology (Berl)., 2021, 238(6): 1401-1415.
- 23.
Malpas S.C. Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiol. Rev., 2010, 90(2): 513-57.
- 24.
Barton D.A.; Dawood T.; Lambert E.A.; et al. Sympathetic activity in major depressive disorder: identifying those at increased cardiac risk? J. Hypertens., 2007, 25(10): 2117-24.
- 25.
Tachibana H.; Naga Prasad S.V.; Lefkowitz R.J.; et al. Level of beta-adrenergic receptor kinase 1 inhibition determines degree of cardiac dysfunction after chronic pressure overload-induced heart failure. Circulation, 2005, 111(5): 591-7.
- 26.
Bair A.; Marksteiner J.; Falch R.; et al. Features of autonomic cardiovascular control during cognition in major depressive disorder. Psychophysiology. 2021, 58(1): e13628.
- 27.
Carney R.M.; Saunders R.D.; Freedland K.E.; et al. Association of depression with reduced heart rate variability in coronary artery disease. Am. J. Cardiol., 1995, 76(8): 562-4.
- 28.
Rakhshan K.; Imani A.; Faghihi M.; et al. Evaluation of Chronic Physical and Psychological Stress Induction on Cardiac Ischemia / Reperfusion Injuries in Isolated Male Rat Heart: The Role of Sympathetic Nervous System. Acta. Med. Iran., 2015, 53(8): 482-90.
- 29.
Rottenberg J. Cardiac vagal control in depression: a critical analysis. Biol. Psychol., 2007, 74(2): 200-11.
- 30.
Kawada T.; Akiyama T.; Shimizu S.; et al. Detection of endogenous acetylcholine release during brief ischemia in the rabbit ventricle: a possible trigger for ischemic preconditioning. Life Sci., 2009, 85(15-16): 597-601.
- 31.
Post-Myocardial Infarction Depression Clinical Practice Guideline Panel. AAFP guideline for the detection and management of post-myocardial infarction depression. Ann. Fam. Med., 2009, 7(1): 71-9.
- 32.
Calvillo L.; Vanoli E.; Andreoli E.; et al. Vagal stimulation, through its nicotinic action, limits infarct size and the inflammatory response to myocardial ischemia and reperfusion. J. Cardiovasc. Pharmacol., 2011, 58(5): 500-7.
- 33.
ShinlapawittayatornK.; ChindaK.; PaleeS.; et al. Vagus nerve stimulation initiated late during ischemia, but not reperfusion, exerts cardioprotection via amelioration of cardiac mitochondrial dysfunction. Heart Rhythm, 2014, 11(12): 2278-87.
- 34.
Zhao J.; Su Y.; Zhang Y.; et al. Activation of cardiac muscarinic M3 receptors induces delayed cardioprotection by preserving phosphorylated connexin43 and up-regulating cyclooxygenase-2 expression. Br. J. Pharmacol., 2010, 159(6): 1217-25.
- 35.
Hu H.; Qi L.; Ren C.; et al. M2 Macrophage-Derived Exosomes Regulate Myocardial Ischemia-Reperfusion And Pyroptosis Via ROS/NLRP3 Pathway. Heart Surg. Forum, 2022, 25(5): E698-E708.
- 36.
Yi C.; Zhang C.; HuX.; et al. Vagus nerve stimulation attenuates myocardial ischemia/reperfusion injury by inhibiting the expression of interleukin-17A. Exp. Ther. Med., 2016, 11(1): 171-176.
- 37.
Murray A.R.; Atkinson L.; MahadiM.K., et al. The strange case of the ear and the heart: The auricular vagus nerve and its influence on cardiac control. Auton. Neurosci., 2016, 199: 48-53.
- 38.
Jacobson L. Hypothalamic-pituitary-adrenocortical axis: neuropsychiatric aspects. Compr. Physiol., 2014, 4(2): 715-38.
- 39.
Eskandari F.; Sternberg E.M. Neural-immune interactions in health and disease. Ann. N. Y. Acad. Sci., 2002, 966: 20-7.
- 40.
Goodwin J.E. Glucocorticoids and the Cardiovascular System. Adv. Exp. Med. Biol., 2015, 872: 299-314.
- 41.
MacLeod C.; Hadoke P.W.F.; Nixon M. Glucocorticoids: Fuelling the Fire of Atherosclerosis or Therapeutic Extinguishers? Int. J. Mol. Sci., 2021, 22(14): 7622.
- 42.
Tsigos C.; Chrousos G.P. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res., 2002, 53(4): 865-71.
- 43.
Angeli F.; Reboldi G.; Poltronieri C.; et al. Hyperglycemia in acute coronary syndromes: from mechanisms to prognostic implications. Ther. Adv. Cardiovasc. Dis., 2015, 9(6): 412-24.
- 44.
Wang R.P.; Yao Q.; Xiao Y.B.; et al. Toll-like receptor 4/nuclear factor-kappa B pathway is involved in myocardial injury in a rat chronic stress model. Stress, 2011, 14(5): 567-75.
- 45.
Matsuura N.; Nagasawa K.; Minagawa Y.; et al. Restraint stress exacerbates cardiac and adipose tissue pathology via β-adrenergic signaling in rats with metabolic syndrome. Am. J. Physiol. Heart. Circ. Physiol., 2015, 308(10): H1275-86.
- 46.
Roth L.; Rombouts M.; Schrijvers D.M.; et al. Chronic intermittent mental stress promotes atherosclerotic plaque vulnerability, myocardial infarction and sudden death in mice. Atherosclerosis, 2015, 242(1): 288-94.
- 47.
Guo L.; Hu S. PI-PLC signal pathway: a possible pathogenesis link post-myocardial infarction to depression. Med. Hypotheses, 2009, 73(2): 156-7.
- 48.
Liu M.Y.; Ren Y.P.; Wei W.L.; et al. Changes of Serotonin (5-HT), 5-HT2A Receptor, and 5-HT Transporter in the Sprague-Dawley Rats of Depression, Myocardial Infarction and Myocardial Infarction Co-exist with Depression. Chin. Med. J., 2015, 128(14): 1905-9.
- 49.
Parkin L.; Balkwill A.; Green J.; et al. Depression, anxiety, psychotropic drugs, and acute myocardial infarction: large prospective study of United Kingdom women. Psychol. Med., 2023, 53(4): 1576-1582.
- 50.
Zhang L.J.; Liu M.Y.; Rastogi R.; et al. Psychocardiological disorder and brain serotonin after comorbid myocardial infarction and depression: an experimental study. Neurol. Res., 2018, 40(6): 516-523.
- 51.
Jiang W.; Davidson J.R. Antidepressant therapy in patients with ischemic heart disease. Am, Heart. J., 2005, 150(5): 871-81.
- 52.
Najjar F.; Ahmad M.; Lagace D.; et al. Role of Myocardial Infarction-Induced Neuroinflammation for Depression-Like Behavior and Heart Failure in Ovariectomized Female Rats. Neuroscience, 2019, 415: 201-214.
- 53.
Wang H.W.; Ahmad M.; Jadayel R.; et al. Inhibition of inflammation by minocycline improves heart failure and depression-like behaviour in rats after myocardial infarction. PLoS One, 2019, 14(6): e0217437.
- 54.
Zhang Y.; Chen Y.; Ma L. Depression and cardiovascular disease in elderly: Current understanding. J. Clin. Neurosci., 2018, 47: 1-5.
- 55.
Liu M.Y.; Zhang L.J.; Zhou Y.X.; et al. 5-Hydroxytryptamine Changes under Different Pretreatments on Rat Models of Myocardial Infarction and/or Depression. Chin. Med. J., 2017, 130(18): 2219-2225.
- 56.
Sarkar S.; Chadda R.K.; Kumar N.; et al. Anxiety and depression in patients with myocardial infarction: findings from a centre in India. Gen. Hosp. Psychiatry, 2012, 34(2): 160-6.
- 57.
Serebruany V.L.; Glassman A.H.; Malinin A.I.; et al. Sertraline AntiDepressant Heart Attack Randomized Trial Study Group. Platelet/endothelial biomarkers in depressed patients treated with the selective serotonin reuptake inhibitor sertraline after acute coronary events: the Sertraline AntiDepressant Heart Attack Randomized Trial (SADHART) Platelet Substudy. Circulation, 2003, 108(8): 939-44.
- 58.
Ge Y.; Xu W.; Zhang L.; et al. Ginkgolide B attenuates myocardial infarction-induced depression-like behaviors via repressing IL-1β in central nervous system. Int. Immunopharmacol., 2020, 85: 106652.
- 59.
Strik J.J.; Honig A.; Lousberg R.; et al. Efficacy and safety of fluoxetine in the treatment of patients with major depression after first myocardial infarction: findings from a double-blind, placebo-controlled trial. Psychosom. Med., 2000, 62(6): 783-9.
- 60.
Yaman O.M.; ErmanH.; GunerI.; et al. Remote myocardial injury: the protective role of fluoxetine. Can. J. Physiol. Pharmacol. 2018, 96(4): 319-327.
- 61.
Schumacher S.M.; Gao E.; Zhu W.; et al. Paroxetine-mediated GRK2 inhibition reverses cardiac dysfunction and remodeling after myocardial infarction. Sci. Transl. Med., 2015, 7(277): 277ra31.
- 62.
Remondino A.; Kwon S.H.; CommunalC.; et al. Beta-adrenergic receptor-stimulated apoptosis in cardiac myocytes is mediated by reactive oxygen species/c-Jun NH2-terminal kinase-dependent activation of the mitochondrial pathway. Circ. Res., 2003, 92(2): 136-8.
- 63.
Yu Q.J.; Si R.; Zhou N.; et al. Insulin inhibits beta-adrenergic action in ischemic/reperfused heart: a novel mechanism of insulin in cardioprotection. Apoptosis, 2008, 13(2): 305-17.
- 64.
Shin S.Y.; Kim T.; Lee H.S.; et al. The switching role of β-adrenergic receptor signalling in cell survival or death decision of cardiomyocytes. Nat. Commun., 2014, 5: 5777.
- 65.
Hu Y.; Dong X.; Zhang T.; et al. Kai Xin San suppresses matrix metalloproteinases and myocardial apoptosis in rats with myocardial infarction and depression. Mol. Med. Rep., 2020, 21(1): 508-516.
- 66.
Liu M.Y.; Ren Y.P.; Zhang L.J.; et al. Pretreatment with Ginseng Fruit Saponins Affects Serotonin Expression in an Experimental Comorbidity Model of Myocardial Infarction and Depression. Aging. Dis., 2016, 7(6): 680-686.
- 67.
Arseneault-Bréard J.; Rondeau I.; Gilbert K.; et al. Combination of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 reduces post-myocardial infarction depression symptoms and restores intestinal permeability in a rat model. Br. J. Nutr., 2012, 107(12): 1793-9.
- 68.
Zhang Y.; Wang X.; Li Y.; et al. Human umbilical cord mesenchymal stem cells ameliorate depression by regulating Jmjd3 and microglia polarization in myocardial infarction mice. Psychopharmacology, 2021, 238(10): 2973-2984.
- 69.
Bernard P.; Ninot G.; Moullec G.; et al. Smoking cessation, depression, and exercise: empirical evidence, clinical needs, and mechanisms. Nicotine. Tob. Res., 2013, 15(10): 1635-50.
- 70.
Behnammoghadam M.; Alamdari A.K.; Behnammoghadam A.; et al. Effect of Eye Movement Desensitization and Reprocessing (EMDR) on Depression in Patients With Myocardial Infarction (MI). Glob. J. Health Sci., 2015; 7(6): 258-62.