2504000151
  • Open Access
  • Review
Pathophysiological Mechanisms and Pharmaceutical Interventions of Myocardial Infarction with Depression
  • Mingyang Xu 1,   
  • Yinxiang Wei 2,   
  • Zhenhui Wang 1,   
  • Yaohui Wang 2,   
  • Xiaoming Zhong 3, *,   
  • Qiying Chen 4, *

Received: 23 Mar 2023 | Accepted: 10 May 2023 | Published: 27 Jun 2023

Abstract

The strong association between acute myocardial infarction (AMI) and major depression disorder(MDD)is a universally accepted. Patients with AMI complicated by MDD often have poor prognosis. Most early studies focused on how AMI leads to MDD, but there are few reports on depression-induced AMI. In terms of mechanism, inflammation, the hypothalamic-pituitary-adrenal axis (HPA axis) and brain-gut axis may be involved in the occurrence and development of MDD after AMI. The inflammatory injury, abnormal sympathetic and vagal nerve activity, HPA axis overactivation, overeating and some therapeutic medicine administration in patients with MDD can also be risk factors for AMI. Both behavioral and pharmaceutical interventions are important for the treatment of AMI with MDD. More drugs are being developed and tested. At present, there are still many issues, needing to be addressed, in the diagnosis, pathogenesis, intervention strategies and therapeutic drugs for AMI with MDD. To aid clinical diagnosis and treatment, this review classifies the existing studies on AMI complicated with MDD, and also includes some of our considerations.

References 

  • 1.
    Sun Z.Q.; Yu T.T.; Ma Y.; et al. Depression and myocardial injury in ST-segment elevation myocardial infarction: A cardiac magnetic resonance imaging study. World. J. Clin. Cases, 2020, 8(7): 1232-1240.
  • 2.
    Raič M. Depression and Heart Diseases: Leading Health Problems. Psychiatr. Danub., 2017, 4(Suppl 4): 770-777.
  • 3.
    Carney R.M.; Rich M.W.; Freedland K.E.; et al. Major depressive disorder predicts cardiac events in patients with coronary artery disease. Psychosom. Med., 1988, 50(6): 627-33.
  • 4.
    Cocchio S.; Baldovin T.; Furlan P.; et al. Is depression a real risk factor for acute myocardial infarction mortality? A retrospective cohort study. BMC Psychiatry, 2019, 19(1): 122.
  • 5.
    Kjellström B.; Gustafsson A.; Nordendal E.; et al. Symptoms of depression and their relation to myocardial infarction and periodontitis. Eur. J. Cardiovasc. Nurs., 2017, 16(6): 468-474.
  • 6.
    Bot M.; Pouwer F.; Zuidersma M.; et al. Association of coexisting diabetes and depression with mortality after myocardial infarction. Diabetes Care, 2012, 35(3): 503-9.
  • 7.
    Liu H.; Luiten P.G.; Eisel U.L.; et al. Depression after myocardial infarction: TNF-α-induced alterations of the blood-brain barrier and its putative therapeutic implications. Neurosci. Biobehav. Rev., 2013, 37(4): 561-72.
  • 8.
    Wachowska K.; Bliźniewska-Kowalska K.; Sławek J.; et al. Common pathomechanism of migraine and depression. Psychiatr. Pol., 2022, 17:1-15.
  • 9.
    Beurel E.; Toups M.; Nemeroff C.B. The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron, 2020, 107(2): 234-256.
  • 10.
    Wilkowska A.; Pikuła M.; Rynkiewicz A.; et al. Increased plasma pro-inflammatory cytokine concentrations after myocardial infarction and the presence of depression during next 6-months. Psychiatr. Pol., 2015, 49(3): 455-64.
  • 11.
    Saparov A.; Ogay V.; Nurgozhin T.; et al. Role of the immune system in cardiac tissue damage and repair following myocardial infarction. Inflamm. Res., 2017, 66(9): 739-751.
  • 12.
    de Kleijn D.P.V.; Chong S.Y.; Wang X.; et al. Toll-like receptor 7 deficiency promotes survival and reduces adverse left ventricular remodelling after myocardial infarction. Cardiovasc. Res., 2019, 115(12): 1791-1803.
  • 13.
    Jovanova O.; Luik A.I.; Leening M.J.; et al. The long-term risk of recognized and unrecognized myocardial infarction for depression in older men. Psychol. Med., 2016, 46(9): 1951-60.
  • 14.
    Sapolsky R.M.; Romero L.M.; Munck A.U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev., 2000, 21(1): 55-89.
  • 15.
    Headrick J.P.; Peart J.N.; Budiono B.P.; et al. The heartbreak of depression: 'Psycho-cardiac' coupling in myocardial infarction. J. Mol. Cell. Cardiol., 2017, 106: 14-28.
  • 16.
    Wu P.; Vaseghi M. The autonomic nervous system and ventricular arrhythmias in myocardial infarction and heart failure. Pacing. Clin. Electrophysiol., 2020, 43(2): 172-180.
  • 17.
    Simpson C.A.; Diaz-Arteche C.; Eliby D.; et al. The gut microbiota in anxiety and depression - A systematic review. Clin. Psychol. Rev., 2021, 83: 101943.
  • 18.
    Cenit M.C.; Sanz Y.; Codoñer-Franch P. Influence of gut microbiota on neuropsychiatric disorders. World. J. Gastroenterol., 2017, 23(30): 5486-5498.
  • 19.
    Wu Z.X.; Li S.F.; Chen H.; et al. The changes of gut microbiota after acute myocardial infarction in rats. PLoS. One., 2017, 12(7): e0180717.
  • 20.
    Gelle T.; Samey R.A.; Plansont B.; et al. BDNF and pro-BDNF in serum and exosomes in major depression: Evolution after antidepressant treatment. Prog. Neuropsychopharmacol. Biol. Psychiatry., 2021, 109: 110229.
  • 21.
    Du Y.; Gao X.R.; Peng L.; et al. Crosstalk between the microbiota-gut-brain axis and depression. Heliyon, 2020, 6(6): e04097.
  • 22.
    Yang Y.; Li X.; Chen S.; et al. Mechanism and therapeutic strategies of depression after myocardial infarction. Psychopharmacology (Berl)., 2021, 238(6): 1401-1415.
  • 23.
    Malpas S.C. Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiol. Rev., 2010, 90(2): 513-57.
  • 24.
    Barton D.A.; Dawood T.; Lambert E.A.; et al. Sympathetic activity in major depressive disorder: identifying those at increased cardiac risk? J. Hypertens., 2007, 25(10): 2117-24.
  • 25.
    Tachibana H.; Naga Prasad S.V.; Lefkowitz R.J.; et al. Level of beta-adrenergic receptor kinase 1 inhibition determines degree of cardiac dysfunction after chronic pressure overload-induced heart failure. Circulation, 2005, 111(5): 591-7.
  • 26.
    Bair A.; Marksteiner J.; Falch R.; et al. Features of autonomic cardiovascular control during cognition in major depressive disorder. Psychophysiology. 2021, 58(1): e13628.
  • 27.
    Carney R.M.; Saunders R.D.; Freedland K.E.; et al. Association of depression with reduced heart rate variability in coronary artery disease. Am. J. Cardiol., 1995, 76(8): 562-4.
  • 28.
    Rakhshan K.; Imani A.; Faghihi M.; et al. Evaluation of Chronic Physical and Psychological Stress Induction on Cardiac Ischemia / Reperfusion Injuries in Isolated Male Rat Heart: The Role of Sympathetic Nervous System. Acta. Med. Iran., 2015, 53(8): 482-90.
  • 29.
    Rottenberg J. Cardiac vagal control in depression: a critical analysis. Biol. Psychol., 2007, 74(2): 200-11.
  • 30.
    Kawada T.; Akiyama T.; Shimizu S.; et al. Detection of endogenous acetylcholine release during brief ischemia in the rabbit ventricle: a possible trigger for ischemic preconditioning. Life Sci., 2009, 85(15-16): 597-601.
  • 31.
    Post-Myocardial Infarction Depression Clinical Practice Guideline Panel. AAFP guideline for the detection and management of post-myocardial infarction depression. Ann. Fam. Med., 2009, 7(1): 71-9.
  • 32.
    Calvillo L.; Vanoli E.; Andreoli E.; et al. Vagal stimulation, through its nicotinic action, limits infarct size and the inflammatory response to myocardial ischemia and reperfusion. J. Cardiovasc. Pharmacol., 2011, 58(5): 500-7.
  • 33.
    ShinlapawittayatornK.; ChindaK.; PaleeS.; et al. Vagus nerve stimulation initiated late during ischemia, but not reperfusion, exerts cardioprotection via amelioration of cardiac mitochondrial dysfunction. Heart Rhythm, 2014, 11(12): 2278-87.
  • 34.
    Zhao J.; Su Y.; Zhang Y.; et al. Activation of cardiac muscarinic M3 receptors induces delayed cardioprotection by preserving phosphorylated connexin43 and up-regulating cyclooxygenase-2 expression. Br. J. Pharmacol., 2010, 159(6): 1217-25.
  • 35.
    Hu H.; Qi L.; Ren C.; et al. M2 Macrophage-Derived Exosomes Regulate Myocardial Ischemia-Reperfusion And Pyroptosis Via ROS/NLRP3 Pathway. Heart Surg. Forum, 2022, 25(5): E698-E708.
  • 36.
    Yi C.; Zhang C.; HuX.; et al. Vagus nerve stimulation attenuates myocardial ischemia/reperfusion injury by inhibiting the expression of interleukin-17A. Exp. Ther. Med., 2016, 11(1): 171-176.
  • 37.
    Murray A.R.; Atkinson L.; MahadiM.K., et al. The strange case of the ear and the heart: The auricular vagus nerve and its influence on cardiac control. Auton. Neurosci., 2016, 199: 48-53.
  • 38.
    Jacobson L. Hypothalamic-pituitary-adrenocortical axis: neuropsychiatric aspects. Compr. Physiol., 2014, 4(2): 715-38.
  • 39.
    Eskandari F.; Sternberg E.M. Neural-immune interactions in health and disease. Ann. N. Y. Acad. Sci., 2002, 966: 20-7.
  • 40.
    Goodwin J.E. Glucocorticoids and the Cardiovascular System. Adv. Exp. Med. Biol., 2015, 872: 299-314.
  • 41.
    MacLeod C.; Hadoke P.W.F.; Nixon M. Glucocorticoids: Fuelling the Fire of Atherosclerosis or Therapeutic Extinguishers? Int. J. Mol. Sci., 2021, 22(14): 7622.
  • 42.
    Tsigos C.; Chrousos G.P. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res., 2002, 53(4): 865-71.
  • 43.
    Angeli F.; Reboldi G.; Poltronieri C.; et al. Hyperglycemia in acute coronary syndromes: from mechanisms to prognostic implications. Ther. Adv. Cardiovasc. Dis., 2015, 9(6): 412-24.
  • 44.
    Wang R.P.; Yao Q.; Xiao Y.B.; et al. Toll-like receptor 4/nuclear factor-kappa B pathway is involved in myocardial injury in a rat chronic stress model. Stress, 2011, 14(5): 567-75.
  • 45.
    Matsuura N.; Nagasawa K.; Minagawa Y.; et al. Restraint stress exacerbates cardiac and adipose tissue pathology via β-adrenergic signaling in rats with metabolic syndrome. Am. J. Physiol. Heart. Circ. Physiol., 2015, 308(10): H1275-86.
  • 46.
    Roth L.; Rombouts M.; Schrijvers D.M.; et al. Chronic intermittent mental stress promotes atherosclerotic plaque vulnerability, myocardial infarction and sudden death in mice. Atherosclerosis, 2015, 242(1): 288-94.
  • 47.
    Guo L.; Hu S. PI-PLC signal pathway: a possible pathogenesis link post-myocardial infarction to depression. Med. Hypotheses, 2009, 73(2): 156-7.
  • 48.
    Liu M.Y.; Ren Y.P.; Wei W.L.; et al. Changes of Serotonin (5-HT), 5-HT2A Receptor, and 5-HT Transporter in the Sprague-Dawley Rats of Depression, Myocardial Infarction and Myocardial Infarction Co-exist with Depression. Chin. Med. J., 2015, 128(14): 1905-9.
  • 49.
    Parkin L.; Balkwill A.; Green J.; et al. Depression, anxiety, psychotropic drugs, and acute myocardial infarction: large prospective study of United Kingdom women. Psychol. Med., 2023, 53(4): 1576-1582.
  • 50.
    Zhang L.J.; Liu M.Y.; Rastogi R.; et al. Psychocardiological disorder and brain serotonin after comorbid myocardial infarction and depression: an experimental study. Neurol. Res., 2018, 40(6): 516-523.
  • 51.
    Jiang W.; Davidson J.R. Antidepressant therapy in patients with ischemic heart disease. Am, Heart. J., 2005, 150(5): 871-81.
  • 52.
    Najjar F.; Ahmad M.; Lagace D.; et al. Role of Myocardial Infarction-Induced Neuroinflammation for Depression-Like Behavior and Heart Failure in Ovariectomized Female Rats. Neuroscience, 2019, 415: 201-214.
  • 53.
    Wang H.W.; Ahmad M.; Jadayel R.; et al. Inhibition of inflammation by minocycline improves heart failure and depression-like behaviour in rats after myocardial infarction. PLoS One, 2019, 14(6): e0217437.
  • 54.
    Zhang Y.; Chen Y.; Ma L. Depression and cardiovascular disease in elderly: Current understanding. J. Clin. Neurosci., 2018, 47: 1-5.
  • 55.
    Liu M.Y.; Zhang L.J.; Zhou Y.X.; et al. 5-Hydroxytryptamine Changes under Different Pretreatments on Rat Models of Myocardial Infarction and/or Depression. Chin. Med. J., 2017, 130(18): 2219-2225.
  • 56.
    Sarkar S.; Chadda R.K.; Kumar N.; et al. Anxiety and depression in patients with myocardial infarction: findings from a centre in India. Gen. Hosp. Psychiatry, 2012, 34(2): 160-6.
  • 57.
    Serebruany V.L.; Glassman A.H.; Malinin A.I.; et al. Sertraline AntiDepressant Heart Attack Randomized Trial Study Group. Platelet/endothelial biomarkers in depressed patients treated with the selective serotonin reuptake inhibitor sertraline after acute coronary events: the Sertraline AntiDepressant Heart Attack Randomized Trial (SADHART) Platelet Substudy. Circulation, 2003, 108(8): 939-44.
  • 58.
    Ge Y.; Xu W.; Zhang L.; et al. Ginkgolide B attenuates myocardial infarction-induced depression-like behaviors via repressing IL-1β in central nervous system. Int. Immunopharmacol., 2020, 85: 106652.
  • 59.
    Strik J.J.; Honig A.; Lousberg R.; et al. Efficacy and safety of fluoxetine in the treatment of patients with major depression after first myocardial infarction: findings from a double-blind, placebo-controlled trial. Psychosom. Med., 2000, 62(6): 783-9.
  • 60.
    Yaman O.M.; ErmanH.; GunerI.; et al. Remote myocardial injury: the protective role of fluoxetine. Can. J. Physiol. Pharmacol. 2018, 96(4): 319-327.
  • 61.
    Schumacher S.M.; Gao E.; Zhu W.; et al. Paroxetine-mediated GRK2 inhibition reverses cardiac dysfunction and remodeling after myocardial infarction. Sci. Transl. Med., 2015, 7(277): 277ra31.
  • 62.
    Remondino A.; Kwon S.H.; CommunalC.; et al. Beta-adrenergic receptor-stimulated apoptosis in cardiac myocytes is mediated by reactive oxygen species/c-Jun NH2-terminal kinase-dependent activation of the mitochondrial pathway. Circ. Res., 2003, 92(2): 136-8.
  • 63.
    Yu Q.J.; Si R.; Zhou N.; et al. Insulin inhibits beta-adrenergic action in ischemic/reperfused heart: a novel mechanism of insulin in cardioprotection. Apoptosis, 2008, 13(2): 305-17.
  • 64.
    Shin S.Y.; Kim T.; Lee H.S.; et al. The switching role of β-adrenergic receptor signalling in cell survival or death decision of cardiomyocytes. Nat. Commun., 2014, 5: 5777.
  • 65.
    Hu Y.; Dong X.; Zhang T.; et al. Kai Xin San suppresses matrix metalloproteinases and myocardial apoptosis in rats with myocardial infarction and depression. Mol. Med. Rep., 2020, 21(1): 508-516.
  • 66.
    Liu M.Y.; Ren Y.P.; Zhang L.J.; et al. Pretreatment with Ginseng Fruit Saponins Affects Serotonin Expression in an Experimental Comorbidity Model of Myocardial Infarction and Depression. Aging. Dis., 2016, 7(6): 680-686.
  • 67.
    Arseneault-Bréard J.; Rondeau I.; Gilbert K.; et al. Combination of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 reduces post-myocardial infarction depression symptoms and restores intestinal permeability in a rat model. Br. J. Nutr., 2012, 107(12): 1793-9.
  • 68.
    Zhang Y.; Wang X.; Li Y.; et al. Human umbilical cord mesenchymal stem cells ameliorate depression by regulating Jmjd3 and microglia polarization in myocardial infarction mice. Psychopharmacology, 2021, 238(10): 2973-2984.
  • 69.
    Bernard P.; Ninot G.; Moullec G.; et al. Smoking cessation, depression, and exercise: empirical evidence, clinical needs, and mechanisms. Nicotine. Tob. Res., 2013, 15(10): 1635-50.
  • 70.
    Behnammoghadam M.; Alamdari A.K.; Behnammoghadam A.; et al. Effect of Eye Movement Desensitization and Reprocessing (EMDR) on Depression in Patients With Myocardial Infarction (MI). Glob. J. Health Sci., 2015; 7(6): 258-62.
Share this article:
How to Cite
Xu, M.; Wei, Y.; Wang, Z.; Wang, Y.; Zhong, X.; Chen, Q. Pathophysiological Mechanisms and Pharmaceutical Interventions of Myocardial Infarction with Depression. International Journal of Drug Discovery and Pharmacology 2023, 2 (2), 30–38. https://doi.org/10.53941/ijddp.2023.100004.
RIS
BibTex
Copyright & License
article copyright Image
Mingyang Xu, Yinxiang Wei, Zhenhui Wang, Yaohui Wang, Xiaoming Zhong , Qiying Chen