- 1.
Min Y.Z.; Caster J.M.; Eblan M.J.; et al. Clinical translation of nanomedicine. Chem. Rev., 2015, 115(19): 11147-11190.
- 2.
Théry C.; Zitvogel L.; Amigorena S. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol., 2002, 2(8): 569-579.
- 3.
Syn N.L.; Wang L.Z.; Chow E.K.H.; et al. Exosomes in cancer nanomedicine and immunotherapy: prospects and challenges. Trends Biotechnol., 2017, 35(7): 665-676.
- 4.
Shao H.L.; Im H.; Castro C.M.; et al. New technologies for analysis of extracellular vesicles. Chem. Rev., 2018, 118(4): 1917-1950.
- 5.
Lindenbergh M.F.S.; Stoorvogel W. Antigen presentation by extracellular vesicles from professional antigen-presenting cells. Annu. Rev. Immunol., 2018, 36: 435-459.
- 6.
Pegtel D.M.; Gould S.J. . Exosomes. Annu. Rev. Biochem.,2019, 88: 487-514.
- 7.
Anderson H.C. Vesicles associated with calcification in the matrix of epiphyseal cartilage. J. Cell Biol., 1969, 41(1): 59-72.
- 8.
Li Y.Z.; Wan S.M.; Liu G.; et al. Netrin-1 promotes inflammation resolution to achieve endothelialization of small-diameter tissue engineering blood vessels by improving endothelial progenitor cells function in situ. Adv. Sci. (Weinheim, Ger.), 2017, 4(12): 1700278.
- 9.
Li M.Y.; Liu L.Z.; Dong M. Progress on pivotal role and application of exosome in lung cancer carcinogenesis, diagnosis, therapy and prognosis. Mol. Cancer, 2021, 20(1): 22.
- 10.
Zhu L.Y.; Kalimuthu S.; Gangadaran P.; et al. Exosomes derived from natural killer cells exert therapeutic effect in melanoma. Theranostics, 2017, 7(10): 2732-2745.
- 11.
Zhou Y.; Li P.F.; Goodwin A.J.; et al. Exosomes from endothelial progenitor cells improve outcomes of the lipopolysaccharide-induced acute lung injury. Crit. Care, 2019, 23(1): 44.
- 12.
Li Y.C.; Wang J.J.; Chen S.Z.; et al. miR-137 boosts the neuroprotective effect of endothelial progenitor cell-derived exosomes in oxyhemoglobin-treated SH-SY5Y cells partially via COX2/PGE2 pathway. Stem Cell Res. Ther., 2020, 11(1): 330.
- 13.
Hu H.; Wang B.S.; Jiang C.Y.; et al. Endothelial progenitor cell-derived exosomes facilitate vascular endothelial cell repair through shuttling miR-21-5p to modulate Thrombospondin-1 expression. Clin. Sci., 2019, 133(14): 1629-1644.
- 14.
Zhang C.; Wang J.J.; Ma X.T.; et al. ACE2-EPC-EXs protect ageing ECs against hypoxia/reoxygenation-induced injury through the miR-18a/Nox2/ROS pathway. J. Cell. Mol. Med., 2018, 22(3): 1873-1882.
- 15.
Cui Y.G.; Fu S.L.; Sun D.; et al. EPC-derived exosomes promote osteoclastogenesis through LncRNA-MALAT1. J. Cell. Mol. Med., 2019, 23(6): 3843-3854.
- 16.
Sun C.K.; Chen C.H.; Chang C.L.; et al. Melatonin treatment enhances therapeutic effects of exosomes against acute liver ischemia-reperfusion injury. Am. J. Transl. Res., 2017, 9(4): 1543-1560.
- 17.
Xing C.H.; Arai K.; Lo E.H.; et al. Pathophysiologic cascades in ischemic stroke. Inter. J. Stro., 2012, 7(5): 378-385.
- 18.
Gutiérrez M.; Merino J.J.; Alonso De Leciñana M.; et al. Cerebral protection, brain repair, plasticity and cell therapy in ischemic stroke. Cerebrovasc. Dis., 2009, 27(Suppl 1): 177-186.
- 19.
Tian Y.H.; Li S.P.; Song J.; et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials, 2014, 35(7): 2383-2390.
- 20.
Lathwal S.; Yerneni S.S.; Boye S.; et al. Engineering exosome polymer hybrids by atom transfer radical polymerization. Proc. Natl. Acad. Sci. U. S. A., 2021, 118(2): e2020241118.
- 21.
Ma L.Y.; Shan Y.; Bai R.; et al. A therapeutically targetable mechanism of BCR-ABL-independent imatinib resistance in chronic myeloid leukemia. Sci. Transl. Med., 2014, 6(252): 252ra121.
- 22.
Bellavia D.; Raimondo S.; Calabrese G.; et al. Interleukin 3-receptor targeted exosomes inhibit in vitro and in vivo Chronic Myelogenous Leukemia cell growth. Theranostics, 2017, 7(5): 1333-1345.
- 23.
Shtam T.A.; Kovalev R.A.; Varfolomeeva E.Y.; et al. Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun. Signaling, 2013, 11: 88.
- 24.
Liu Y.C.; Zhao L.M.; Li D.M.; et al. Microvesicle-delivery miR-150 promotes tumorigenesis by up-regulating VEGF, and the neutralization of miR-150 attenuate tumor development. Protein Cell, 2013, 4(12): 932-941.
- 25.
Alvarez-Erviti L.; Seow Y.; Yin H.F.; et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol., 2011, 29(4): 341-345.
- 26.
Lv L.H.; Wan Y.L.; Lin Y.; et al. Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. J. Biol. Chem., 2012,287(19): 15874-15885.
- 27.
Paradee N.; Utama-Ang N.; Uthaipibull C.; et al. Extracts of Thai perilla frutescens nutlets attenuate tumour necrosis factor-α-activated generation of microparticles, ICAM-1 and IL-6 in human endothelial cells. Biosci. Rep., 2020, 40(5): BSR20192110.
- 28.
Crenshaw B.J.; Kumar S.; Bell C.R.; et al. Alcohol modulates the biogenesis and composition of microglia-derived exosomes. Biology, 2019, 8(2): 25.
- 29.
Ibáñez F.; Montesinos J.; Ureña-Peralta J.R.; et al. TLR4 participates in the transmission of ethanol-induced neuroinflammation via astrocyte-derived extracellular vesicles. J. Neuroinflammation, 2019, 16(1): 136.
- 30.
Datta A.; Kim H.; Lal M.; et al. Manumycin A suppresses exosome biogenesis and secretion via targeted inhibition of Ras/Raf/ERK1/2 signaling and hnRNPH1 in castration-resistant prostate cancer cells. Cancer Lett., 2017, 408: 73-81.