- 1.
Trinka E.; Kwan P.; Lee B.; et al. Epilepsy in Asia: disease burden, management barriers, and challenges. Epilepsia, 2019, 60( S1): 7- 21.
- 2.
Banerjee J.; BanerjeeDixit A.; Srivastava A.; et al. Altered glutamatergic tone reveals two distinct resting state networks at the cellular level in hippocampal sclerosis. Sci. Rep., 2017, 7( 1): 319.
- 3.
Jafarian M.; Modarres Mousavi S.M.; Alipour F.; et al. Cell injury and receptor expression in the epileptic human amygdala. Neurobiol. Dis., 2019, 124: 416- 427.
- 4.
Müller L.; Tokay T.; Porath K.; et al. Enhanced NMDA receptor-dependent LTP in the epileptic CA1 area via upregulation of NR2B. Neurobiol. Dis., 2013, 54: 183- 193.
- 5.
Nasarudeen R.; Singh A.; Rana Z.S.; et al. Epileptiform activity induced metaplasticity impairs bidirectional plasticity in the hippocampal CA1 synapses via GluN2B NMDA receptors. Exp. Brain Res., 2022, 240( 12): 3339- 3349.
- 6.
Zhang H.P.; Cilz N.I.; Yang C.X.; et al. Depression of neuronal excitability and epileptic activities by group II metabotropic glutamate receptors in the medial entorhinal cortex. Hippocampus, 2015, 25( 11): 1299- 1313.
- 7.
Hirsch M.; Hintz M.; Specht A.; et al. Tolerability, efficacy and retention rate of Brivaracetam in patients previously treated with Levetiracetam: a monocenter retrospective outcome analysis. Seizure, 2018, 61: 98- 103.
- 8.
Perucca E.; Gram L.; Avanzini G.; et al. Antiepileptic drugs as a cause of worsening seizures. Epilepsia, 1998, 39( 1): 5- 17.
- 9.
Kapur J.; Stringer J.L.; Lothman E. W. Evidence that repetitive seizures in the hippocampus cause a lasting reduction of GABAergic inhibition. J. Neurophysiol., 1989, 61( 2): 417- 426.
- 10.
Wendling F.; Bartolomei F.; Bellanger J.J.; et al. Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. Eur. J. Neurosci., 2002, 15( 9): 1499- 1508.
- 11.
Danbolt N.C.; Furness D.N.; Zhou Y. Neuronal vs glial glutamate uptake: resolving the conundrum. Neurochem. Int., 2016, 98: 29- 45.
- 12.
Wollmuth L. P. Ion permeation in ionotropic glutamate receptors: still dynamic after all these years. Curr. Opin. Physiol., 2018, 2: 36- 41.
- 13.
Conn P.J.; Pin J. P. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol., 1997, 37( 1): 205- 237.
- 14.
Reddy D.S.; Kuruba R. Experimental models of status epilepticus and neuronal injury for evaluation of therapeutic interventions. Int. J. Mol. Sci., 2013, 14( 9): 18284- 18318.
- 15.
Levite M.; Goldberg H. Autoimmune epilepsy - novel multidisciplinary analysis, discoveries and insights. Front. Immunol., 2022, 12: 762743.
- 16.
Bertocchi I.; Eltokhi A.; Rozov A.; et al. Voltage-independent GluN2A-type NMDA receptor Ca 2+ signaling promotes audiogenic seizures, attentional and cognitive deficits in mice . Commun. Biol., 2021, 4( 1): 59.
- 17.
Punnakkal P.; Dominic D. NMDA receptor GluN2 subtypes control epileptiform events in the hippocampus. NeuroMol. Med., 2018, 20( 1): 90- 96.
- 18.
Banerjee J.; Banerjee Dixit A.; Tripathi M.; et al. Enhanced endogenous activation of NMDA receptors in pyramidal neurons of hippocampal tissues from patients with mesial temporal lobe epilepsy: a mechanism of hyper excitation. Epilepsy Res., 2015, 117: 11- 16.
- 19.
Ben-Ari Y. The GABA excitatory/inhibitory developmental sequence: a personal journey. Neuroscience, 2014, 279: 187- 219.
- 20.
Wu C.; Sun D.D. GABA receptors in brain development, function, and injury. Metab. Brain Dis., 2015, 30( 2): 367- 379.
- 21.
Cossette P.; Rouleau G. A. Mutated GABA A receptor subunits in idiopathic generalized epilepsy. Epilepsia , 2010, 51( s5): 62.
- 22.
Homayoun M.; Shafieian R.; Seghatoleslam M.; et al. Protective impact of Rosa damascena against neural damage in a rat model of pentylenetetrazole (PTZ)-induced seizure . Avicenna J. Phytomed., 2020, 10( 6): 574- 583.
- 23.
Baraban S.C.; Taylor M.R.; Castro P.A.; et al. Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience, 2005, 131( 3): 759- 768.
- 24.
Jacob T.C.; Moss S.J.; Jurd R. GABA A receptor trafficking and its role in the dynamic modulation of neuronal inhibition . Nat. Rev. Neurosci., 2008, 9( 5): 331- 343.
- 25.
Schlanger S.; Shinitzky M.; Yam D. Diet enriched with omega-3 fatty acids alleviates convulsion symptoms in epilepsy patients. Epilepsia, 2002, 43( 1): 103- 104.
- 26.
Marban E.; Yamagishi T.; Tomaselli G.F. Structure and function of voltage-gated sodium channels. J. Physiol., 1998, 508( 3): 647- 657.
- 27.
Catterall A. A. Sodium channels, inherited epilepsy, and antiepileptic drugs. Ann. Rev. Pharmacool. Toxicol., 2014, 54: 317- 338.
- 28.
Ogata N.; Ohishi Y. Molecular diversity of structure and function of the voltage-gated Na + channels . Jpn. J. Pharmacol., 2002, 88( 4): 365- 377.
- 29.
Rho J.M.; Donevan S.D.; Rogawski M. A. Mechanism of action of the anticonvulsant felbamate: opposing effects on N-methyl-D-aspartate and γ-aminobutyric acidA receptors. Ann. Neurol., 1994, 35( 2): 229- 234.
- 30.
Yu F.H.; Catterall W. A. Overview of the voltage-gated sodium channel family. Genome Biol., 2003, 4( 3): 207.
- 31.
Lopez-Santiago L.F.; Brackenbury W.J.; Chen C.L.; et al. Na + channel Scn1b gene regulates dorsal root ganglion nociceptor excitability in vivo . J. Biol. Chem., 2011, 286( 26): 22913- 22923.
- 32.
Mantegazza M.; Cestèle S.; Catterall W. A. Sodium channelopathies of skeletal muscle and brain. Physiol. Rev., 2021, 101( 4): 1633- 1689.
- 33.
Ertel E.A.; Campbell K.P.; Harpold M.M.; et al. Nomenclature of voltage-gated calcium channels. Neuron, 2000, 25( 3): 533- 535.
- 34.
Stanika R.I.; Villanueva I.; Kazanina G.; et al. Comparative impact of voltage-gated calcium channels and NMDA receptors on mitochondria-mediated neuronal injury. J. Neurosci., 2012, 32( 19): 6642- 6650.
- 35.
Ertel E.A.; Campbell K.P.; Harpold M.M.; et al. Nomenclature of voltage-gated calcium channels. Neuron, 2000, 25( 3): 533- 535.
- 36.
Simms B.A.; Zamponi G. W. Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron, 2014, 82( 1): 24- 45.
- 37.
Dolphin A. C. Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology. J. Physiol., 2016, 594( 19): 5369- 5390.
- 38.
Kuo M. M. C.; Haynes W.J.; Loukin S.H.; et al. Prokaryotic K+ channels: from crystal structures to diversity. FEMS Microbiol. Rev., 2005, 29( 5): 961- 985.
- 39.
Buckingham S.D.; Kidd J.F.; Law R.J.; et al. Structure and function of two-pore-domain K + channels: contributions from genetic model organisms . Trends Pharmacol. Sci., 2005, 26( 7): 361- 367.
- 40.
Cooper E.C.; Harrington E.; Jan Y.N.; et al. M channel KCNQ2 subunits are localized to key sites for control of neuronal network oscillations and synchronization in mouse brain. J. Neurosci., 2001, 21( 24): 9529- 9540.
- 41.
Monaghan M.M.; Trimmer J.S.; Rhodes K. J. Experimental localization of Kv1 family voltage-gated K + channel α and β subunits in rat hippocampal formation. J. Neurosci., 2001, 21( 16): 5973- 5983.
- 42.
Wang H.; Kunkel D.D.; Schwartzkroin P.A.; et al. Localization of Kv1. 1 and Kv1. 2, two K channel proteins, to synaptic terminals, somata, and dendrites in the mouse brain. J. Neurosci., 1994, 14( 8): 4588- 4599.
- 43.
Levite M.; Goldberg H. Autoimmune epilepsy - novel multidisciplinary analysis, discoveries and insights. Front. Immunol., 2022, 12: 762743.
- 44.
Antonio L.L.; Anderson M.L.; Angamo E.A.; et al. In vitro seizure like events and changes in ionic concentration. J. Neurosci. Methods, 2016, 260: 33- 44.
- 45.
Punnakkal P.; Dominic D. NMDA receptor GluN2 subtypes control epileptiform events in the hippocampus. NeuroMol. Med., 2018, 20( 1): 90- 96.
- 46.
Pal D.K.; Pong A.W.; Chung W. K. Genetic evaluation and counseling for epilepsy. Nat. Rev. Neurosci., 2010, 6( 8): 445- 453.
- 47.
Wang J.; Lin Z.J.; Liu L.; et al. Epilepsy-associated genes. Seizure, 2017, 44: 11- 20.
- 48.
Scheffer I.E.; Berkovic S.; Capovilla G.; et al. ILAE classification of the epilepsies: position paper of the ILAE commission for classification and terminology. Epilepsia, 2017, 58( 4): 512- 521.
- 49.
Bien C.G.; Scheffer I. E. Autoantibodies and epilepsy. Epilepsia, 2011, 52( s3): 18- 22.
- 50.
Irani S.R.; Michell A.W.; Lang B.; et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann. Neurol., 2011, 69( 5): 892- 900.
- 51.
Lai M.Z.; Hughes E.G.; Peng X.Y.; et al. AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Ann. Neurol., 2009, 65( 4): 424- 434.
- 52.
Lancaster E.; Lai M.Z.; Peng X.Y.; et al. Antibodies to the GABA B receptor in limbic encephalitis with seizures: case series and characterisation of the antigen . Lancet Neurol., 2010, 9( 1): 67- 76.
- 53.
Ohkawa T.; Satake S.I.; Yokoi N.; et al. Identification and characterization of GABA A receptor autoantibodies in autoimmune encephalitis. J. Neurosci., 2014, 34( 24): 8151- 8163.
- 54.
Petit-Pedrol M.; Armangue T.; Peng X.Y.; et al. Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABA A receptor: a case series, characterisation of the antigen, and analysis of the effects of antibodies . Lancet Neurol., 2014, 13( 3): 276- 286.
- 55.
Spatola M.; Petit-Pedrol M.; Simabukuro M.M.; et al. Investigations in GABA A receptor antibody-associated encephalitis . Neurology, 2017, 88( 11): 1012- 1020.
- 56.
Granata T.; Cross H.; Theodore W.; et al. Immune-mediated epilepsies. Epilepsia, 2011, 52( s3): 5- 11.
- 57.
Lancaster E.; Dalmau J. Neuronal autoantigens—pathogenesis, associated disorders and antibody testing. Nat. Rev. Neurosci., 2012, 8( 7): 380- 390.
- 58.
Scher M. S. Prenatal contributions to epilepsy: lessons from the bedside. Epileptic Disorders, 2003, 5( 2): 77- 91.
- 59.
Bromfield E.B.; Cavazos J.E.; Sirven J. I. Chapter 1 Basic mechanisms underlying seizures and epilepsy. Bromfield E.B.; Cavazos J.E.; Sirven J. I. An introduction to epilepsy [Internet]. West Hartford (CT): American Epilepsy Society, 2006: NBK2510.
- 60.
Stafstrom C. E. Mechanisms of action of antiepileptic drugs: the search for synergy. Curr. Opin. Neurol., 2010, 23( 2): 157- 163.
- 61.
Brodie M. J. Sodium channel blockers in the treatment of epilepsy. CNS Drugs, 2017, 31( 7): 527- 534.
- 62.
Jung H.Y. ; Mickus T. ; Spruston N . Prolonged sodium channel inactivation contributes to dendritic action potential attenuation in hippocampal pyramidal neurons. J. Neurosci., 1997, 17( 17): 6639- 6646.
- 63.
Meldrum B.S.; Rogawski M. A. Molecular targets for antiepileptic drug development. Neurotherapeutics, 2007, 4( 1): 18- 61.
- 64.
Kuo C. C. A common anticonvulsant binding site for phenytoin, carbamazepine, and lamotrigine in neuronal Na+ channels. Mol. Pharmacol., 1998, 54( 4): 712- 721.
- 65.
Rogawski M.A.; Löscher W. The neurobiology of antiepileptic drugs. Nat. Rev. Neurosci., 2004, 5( 7): 553- 564.
- 66.
White H.S.; Smith M.D.; Wilcox K. S. Mechanisms of action of antiepileptic drugs. Int. Rev. Neurobiol., 2007, 81: 85- 110.
- 67.
Errington A.C.; Stöhr T.; Heers C.; et al. The investigational anticonvulsant lacosamide selectively enhances slow inactivation of voltage-gated sodium channels. Mol. Pharmacol., 2008, 73( 1): 157- 169.
- 68.
Hebeisen S.; Pires N. ; Loureiro A.I.; et al. Eslicarbazepine and the enhancement of slow inactivation of voltage-gated sodium channels: a comparison with carbamazepine, oxcarbazepine and lacosamide. Neuropharmacology, 2015, 89: 122- 135.
- 69.
Lingamaneni R.; Hemmings H.C., Jr. Effects of anticonvulsants on veratridine- and KCl-evoked glutamate release from rat cortical synaptosomes. Neurosci. Lett., 1999, 276( 2): 127- 130.
- 70.
Prakriya M.; Mennerick S. Selective depression of low-release probability excitatory synapses by sodium channel blockers. Neuron, 2000, 26( 3): 671- 682.
- 71.
Fink K.; Dooley D.J.; Meder W.P.; et al. Inhibition of neuronal Ca 2+ influx by gabapentin and pregabalin in the human neocortex. Neuropharmacology, 2002, 42( 2): 229- 236.
- 72.
Sayer R.J.; Brown A.M.; Schwindt P.C.; et al. Calcium currents in acutely isolated human neocortical neurons. J. Neurophysiol., 1993, 69( 5): 1596- 1606.
- 73.
Mula M.; Pini S.; Cassano G. B. The role of anticonvulsant drugs in anxiety disorders: a critical review of the evidence. J. Clin. Psychopharmacol., 2007, 27( 3): 263- 272.
- 74.
Stefani A.; Spadoni F.; Siniscalchi A.; et al. Lamotrigine inhibits Ca 2+ currents in cortical neurons: functional implications . Eur. J. Pharmacol., 1996, 307( 1): 113- 116.
- 75.
Cooper E.C.; Harrington E.; Jan Y.N.; et al. M channel KCNQ2 subunits are localized to key sites for control of neuronal network oscillations and synchronization in mouse brain. J. Neurosci., 2001, 21( 24): 9529- 9540.
- 76.
Rogawski M. A. Single voltage-dependent potassium channels in cultured rat hippocampal neurons. J. Neurophysiol., 1986, 56( 2): 481- 493.
- 77.
Wickenden A. D. Potassium channels as anti-epileptic drug targets. Neuropharmacology, 2002, 43( 7): 1055- 1060.
- 78.
Treiman D. M. GABAergic mechanisms in epilepsy. Epilepsia, 2001, 42( s3): 8- 12.
- 79.
Pennell P.B.; Ogaily M.S.; Macdonald R. L. Aplastic anemia in a patient receiving felbamate for complex partial seizures. Neurology, 1995, 45( 3): 456- 460.
- 80.
O’Neil M.G.; Perdun C.S.; Wilson M.B.; et al. Felbamate‐associated fatal acute hepatic necrosis. Neurology, 1996, 46( 5): 1457.
- 81.
Greenfield L.J., Jr. Molecular mechanisms of antiseizure drug activity at GABA A receptors . Seizure, 2013, 22( 8): 589- 600.
- 82.
Han S.; Tai C.; Westenbroek R.E.; et al. Autistic-like behaviour in Scn1a +/ - mice and rescue by enhanced GABA-mediated neurotransmission . Nature, 2012, 489( 7416): 385- 390.
- 83.
Minabe Y.; Emori K.; Shibata R.; et al. Antiepileptic effects of MK-801, a noncompetitive NMDA-receptor antagonist, in the low-frequency kindling model of epilepsy. Jpn. J. Psychiatry Neurol., 1992, 46( 3): 755- 761.
- 84.
Hasegawa N.; Tohyama J. Positive and negative effects of perampanel treatment on psychiatric and behavioral symptoms in adult patients with epilepsy. Epilepsy & Behavior, 2021, 117: 107515.
- 85.
Szoeke C. E.I.; Newton M.; Wood J.M.;et al. Update on pharmacogenetics in epilepsy: a brief review. Lancet Neurol., 2006, 5( 2): 189- 196.
- 86.
Löscher W.; Klitgaard H.; Twyman R.E.; et al. New avenues for anti-epileptic drug discovery and development. Nat. Rev. Drug Discov., 2013, 12( 10): 757- 776.
- 87.
Dhiman V. Molecular genetics of epilepsy: a clinician’s perspective. Ann. Indian Acad.Neurol., 2017, 20( 2): 96- 102.
- 88.
Chuan Z.; Ruikun C.; Qian L.; et al. Genetic and phenotype analysis of a Chinese cohort of infants and children with epilepsy. Front. Genet., 2022, 13: 869210.
- 89.
Solazzi R.; Moscatelli M.; Sebastiano D.R.; et al. Severe epilepsy and movement disorder may be early symptoms of TMEM106B-related hypomyelinating leukodystrophy. Neurol. Genet., 2022, 8( 5): e200022.
- 90.
Liu J. Y.W.; Reeves C.; Diehl B.; et al. Early lipofuscin accumulation in frontal lobe epilepsy. Ann. Neurol., 2016, 80( 6): 882- 895.
- 91.
Wolff M.; Johannesen K.M.; Hedrich U. B.S.; et al. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain, 2017, 140( 5): 1316- 1336.
- 92.
Sawaishi Y.; Yano T.; Enoki M.; et al. Lidocaine-dependent early infantile status epilepticus with highly suppressed EEG. Epilepsia, 2002, 43( 2): 201- 204.
- 93.
Johannessen Landmark C.; Johannessen S.I.; Tomson T. Host factors affecting antiepileptic drug delivery-pharmacokinetic variability. Adv. Drug Delivery Rev., 2012, 64( 10): 896- 910.
- 94.
Johannessen Landmark C.; Johannessen S.I.; Patsalos P. N. Therapeutic drug monitoring of antiepileptic drugs: current status and future prospects. Expert Opin. Drug Metab. Toxicol., 2020, 16( 3): 227- 238.
- 95.
Tomson T.; Landmark C.J.; Battino D. Antiepileptic drug treatment in pregnancy: changes in drug disposition and their clinical implications. Epilepsia, 2013, 54( 3): 405- 414.
- 96.
Johannessen Landmark C.; Patsalos P. N. Drug interactions involving the new second- and third-generation antiepileptic drugs. Expert Rev. Neurother., 2010, 10( 1): 119- 140.
- 97.
Lopez-Garcia M.A.; Feria-Romero I.A.; Fernando-Serrano H.; et al. Genetic polymorphisms associated with antiepileptic metabolism. Front. Biosci. (Elite Ed), 2014, 6( 2): 377- 386.
- 98.
Caudle K.E.; Rettie A.E.; Whirl-Carrillo M.; et al. Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and HLA-B genotypes and phenytoin dosing . Clin. Pharmacol. Ther., 2014, 96( 5): 542- 548.
- 99.
Franco V.; Perucca E. CYP2C9 polymorphisms and phenytoin metabolism: implications for adverse effects. Expert Opin. Drug Metab. Toxicol., 2015, 11( 8): 1269- 1279.
- 100.
Chu X.M.; Zhang L.F.; Wang G.J.; et al. Influence of UDP-glucuronosyltransferase polymorphisms on valproic acid pharmacokinetics in Chinese epilepsy patients. Eur. J. Clin. Pharmacol., 2012, 68( 10): 1395- 1401.
- 101.
Potschka H.; Brodie M. J. Handb Clin neurol. Handb. Clin. Neurol., 2012, 108: 741- 757.
- 102.
Tate S.K.; Depondt C.; Sisodiya S.M.; al et. Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. Proc. Natl. Acad. Sci. USA., 2005, 102( 15): 5507- 5512.
- 103.
Haerian B.S.; Baum L.; Kwan P.; et al. SCN1A, SCN2A and SCN3A gene polymorphisms and responsiveness to antiepileptic drugs: a multicenter cohort study and meta-analysis . Pharmacogenomics, 2013, 14( 10): 1153- 1166.
- 104.
Božina N.; Sporiš I.Š.; Božina T.; et al. Pharmacogenetics and the treatment of epilepsy: what do we know? Pharmacogenomics, 2019, 20( 15): 1093- 1101.
- 105.
Mirza N.; Vasieva O.; Appleton R.; et al. An integrative in silico system for predicting dysregulated genes in the human epileptic focus: application to SLC transporters . Epilepsia, 2016, 57( 9): 1467- 1474.
- 106.
Edwards I.R.; Aronson J. K. Adverse drug reactions: definitions, diagnosis, and management. Lancet, 2000, 356( 9237): 1255- 1259.
- 107.
Cramer J.A.; Mintzer S.; Wheless J.; et al. Adverse effects of antiepileptic drugs: a brief overview of important issues. Expert Rev. Neurother., 2010, 10( 6): 885- 891.
- 108.
Meador K. J. Cognitive effects of epilepsy and of antiepileptic medications. The treatment of epilepsy: principles and practice. 1996: 1121- 1130.
- 109.
Livanainen M.; Savolainen H. Side effects of phenobarbital and phenytoin during long-term treatment of epilepsy. Acta Neurol. Scand., 1983, 68( s97): 49- 67.
- 110.
Meador K.J.; Loring D.W.; Hulihan J.F.; et al. Differential cognitive and behavioral effects of topiramate and valproate. Neurology, 2003, 60( 9): 1483- 1488.
- 111.
Pellock J. M. Carbamazepine side effects in children and adults. Epilepsia, 1987, 28( s3): S64- S70.
- 112.
Keränen T. Sivenius J. Side effects of carbamazepine, valproate and clonazepam during long-term treatment of epilepsy. Acta Neurol. Scand., 1983, 68( s97): 69- 80.
- 113.
Dogan E.A.; Usta B.E.; Bilgen R.; et al. Efficacy, tolerability, and side effects of oxcarbazepine monotherapy: a prospective study in adult and elderly patients with newly diagnosed partial epilepsy. Epilepsy & Behavior, 2008, 13( 1): 156- 161.
- 114.
Gören M.Z.; Onat F. Ethosuximide: from bench to bedside. CNS Drug Rev., 2007, 13( 2): 224- 239.
- 115.
Zaccara G.; Specchio L. M. Long-term safety and effectiveness of zonisamide in the treatment of epilepsy: a review of the literature. Neuropsychiatr. Dis. Treat., 2009, 5: 249- 259.
- 116.
Li J.Y.; Sun M.Z.; Wang X. F. The adverse-effect profile of lacosamide. Expert Opin. Drug Saf., 2020, 19( 2): 131- 138.
- 117.
Bourgeois B. F.D. Felbamate. Semin. Pediatr. Neurol., 1997, 4( 1): 3- 8.
- 118.
Lyons J.B.; Liversedge L. A. Primidone in the treatment of epilepsy. Br. Med. J., 1954, 2( 4888): 625- 627.
- 119.
Binnie C.D.; van Emde Boas W. ; Kasteleijn-Nolste-Trenite D.G. ; et al . Acute effects of lamotrigine (BW430C) in persons with epilepsy. Epilepsia, 1986, 27( 3): 248- 254.
- 120.
Leach J.P.; Brodie M. J. Tiagabine. Lancet, 1998, 351( 9097): 203- 207.
- 121.
Hakimian S.; Cheng-Hakimian A.; Anderson G.D.; et al . Rufinamide: a new anti-epileptic medication. Expert Opin. Pharmacother., 2007, 8( 12): 1931- 1940.
- 122.
Livingston J.H.; Beaumont D.; Arzimanoglou A.; et al . Vigabatrin in the treatment of epilepsy in children. Br. J. Clin. Pharmacol., 1989, 27( S1): 109S- 112S.
- 123.
Almeida L.; Soares-da-Silva P. Eslicarbazepine acetate (BIA 2-093). Neurotherapeutics, 2007, 4( 1): 88- 96.
- 124.
Elger C.E.; Helmstaedter C.; Kurthen M . Chronic epilepsy and cognition. Lancet Neurol., 2004, 3( 11): 663- 672.
- 125.
Novak A.; Vizjak K.; Rakusa M. Cognitive impairment in people with epilepsy. J. Clin. Med., 2022, 11( 1): 267.
- 126.
Hirsch E.; Schmitz B.; Carreño M. Epilepsy, antiepileptic drugs (AEDs) and cognition. Acta Neurol. Scand., 2003, 180( s180): 23- 32.
- 127.
Chen B.; Detyniecki K.; Choi H.; et al. Psychiatric and behavioral side effects of anti-epileptic drugs in adolescents and children with epilepsy. Eur. J. Paediatr. Neurol., 2017, 21( 3): 441- 449.
- 128.
Mattson R.H.; Cramer J.A.; Collins J.F.; et al. Comparison of carbamazepine, phenobarbital, phenytoin, and primidone in partial and secondarily generalized tonic-clonic seizures. N. Engl. J. Med., 1985, 313( 3): 145- 151.
- 129.
Smith D.B.; Mattson R.H.; CramerJ.A.; et al. Results of a nationwide Veterans Administration Cooperative Study comparing the efficacy and toxicity of carbamazepine, phenobarbital, phenytoin, and primidone. Epilepsia, 1987, 28( s3): S50- S58.
- 130.
Dodrill C.B.; Troupin A. S. Psychotropic effects of carbamazepine in epilepsy: a double-blind comparison with phenytoin. Neurology, 1977, 27( 11): 1023- 1028.
- 131.
Trimble M.R.; Thompson P. J. Anticonvulsant drugs, cognitive function, and behavior. Epilepsia, 1983, 24( s1): S55- S63.
- 132.
Pulliainen V.; Jokelainen M. Effects of phenytoin and carbamazepine on cognitive functions in newly diagnosed epileptic patients. Acta Neurol. Scand., 1994, 89( 2): 81- 86.
- 133.
Salinsky M.C.; Spencer D.C.; Oken B.S.; et al. Effects of oxcarbazepine and phenytoin on the EEG and cognition in healthy volunteers. Epilepsy & Behavior, 2004, 5( 6): 894- 902.
- 134.
Shehata G. A. Bateh A. E.A.M.; Hamed S.A.; et al. Neuropsychological effects of antiepileptic drugs (carbamazepine versus valproate) in adult males with epilepsy. Neuropsychiatr. Dis. Treat., 2009, 5: 527- 533.
- 135.
Möhler H.; Rudolph U. Disinhibition, an emerging pharmacology of learning and memory. F1000Research, 2017, 6(F1000 Faculty Rev): 101.
- 136.
Drane D.L.; Meador K. J. Cognitive and behavioral effects of antiepileptic drugs. Epilepsy & Behavior, 2002, 3( 5S): 49- 53.
- 137.
Jokeit H.; Krämer G.; Ebner A. Do antiepileptic drugs accelerate forgetting? Epilepsy & Behavior, 2005, 6( 3): 430- 432.
- 138.
Bonansco C.; Fuenzalida M. Plasticity of hippocampal excitatory-inhibitory balance: missing the synaptic control in the epileptic brain. Neural Plast., 2016, 2016: 8607038.
- 139.
Cain D . P. Long-term potentiation and kindling: how similar are the mechanisms? Trends Neurosci., 1989, 12( 1): 6- 10.
- 140.
Meador K. J. The basic science of memory as it applies to epilepsy. Epilepsia, 2007, 48( s9): 23- 25.
- 141.
Zhang M.M.; Xiao C.; Yu K.; et al. Effects of sodium valproate on synaptic plasticity in the CA1 region of rat hippocampus. Food Chem. Toxicol., 2003, 41( 11): 1617- 1623.
- 142.
West P.J.; Saunders G.W.; Remigio G.J.; et al. Antiseizure drugs differentially modulate θ-burst induced long-term potentiation in C57BL/6 mice. Epilepsia, 2014, 55( 2): 214- 223.
- 143.
Salaka R.J.; Nair K.P.; Sasibhushana R.B.; et al. Differential effects of levetiracetam on hippocampal CA1 synaptic plasticity and molecular changes in the dentate gyrus in epileptic rats. Neurochem. Int., 2022, 158: 105378.
- 144.
Booker S.A.; Pires N.; Cobb S.; et al. Carbamazepine and oxcarbazepine, but not eslicarbazepine, enhance excitatory synaptic transmission onto hippocampal CA1 pyramidal cells through an antagonist action at adenosine A1 receptors. Neuropharmacology, 2015, 93: 103- 115.
- 145.
Ge Y.X. ; Lin Y.Y. ; Bi Q.Q. ; et al. Brivaracetam prevents the over-expression of synaptic vesicle protein 2A and rescues the deficits of hippocampal long-term potentiation in vivo in chronic temporal lobe epilepsy rats. Curr. Neurovasc. Res., 2020, 17( 4): 354- 360.
- 146.
Heidegger T.; Krakow K.; Ziemann U. Effects of antiepileptic drugs on associative LTP-like plasticity in human motor cortex. Eur. J. Neurosci., 2010, 32( 7): 1215- 1222.
- 147.
Ryther R. C.C.; Wong M. Mammalian target of rapamycin (mTOR) inhibition: potential for antiseizure, antiepileptogenic, and epileptostatic therapy. Curr. Neurol. Neurosci. Rep., 2012, 12( 4): 410- 418.
- 148.
Vezzani A. Before epilepsy unfolds: finding the epileptogenesis switch. Nat. Med., 2012, 18( 11): 1626- 1627.
- 149.
DzhalaV.I.; Talos D.M.; Sdrulla D.A.; et al. NKCC1 transporter facilitates seizures in the developing brain. Nat. Med., 2005, 11( 11): 1205- 1213.
- 150.
Soul J.S.; Bergin A.M.; Stopp C.; et al. A pilot randomized, controlled, double-blind trial of bumetanide to treat neonatal seizures. Ann. Neurol., 2021, 89( 2): 327- 340.
- 151.
Vezzani A.; Balosso S.; Ravizza T. The role of cytokines in the pathophysiology of epilepsy. Brain, Behav., Immun., 2008, 22( 6): 797- 803.
- 152.
Vezzani A.; French J.; Bartfai T.; et al. The role of inflammation in epilepsy. Nat. Rev. Neurol., 2011, 7( 1): 31- 40.
- 153.
Librizzi L.; Noè F.; Vezzani A.; et al. Seizure-induced brain-borne inflammation sustains seizure recurrence and blood-brain barrier damage. Ann. Neurol., 2012, 72( 1): 82- 90.
- 154.
Vezzani A.; Moneta D.; Conti M.; et al. Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice. Proc. Natl. Acad. Sci. USA., 2000, 97( 21): 11534- 11539.
- 155.
Zhang L.; Wang Y. P. Gene therapy in epilepsy . Biomed. Pharmacother., 2021, 143: 112075.
- 156.
Gonçalves M. A. Adeno-associated virus: from defective virus to effective vector. Virol. J., 2005, 2( 1): 43.
- 157.
Mátrai J.; Chuah M.K.; VandenDriessche T. Recent advances in lentiviral vector development and applications. Mol. Ther., 2010, 18( 3): 477- 490.
- 158.
Simonato M.; Manservigi R.; Marconi P.; et al . Gene transfer into neurones for the molecular analysis of behaviour: focus on herpes simplex vectors. Trends Neurosci., 2000, 23( 5): 183- 190.
- 159.
Niibori Y.; Lee S.J.; Minassian B.A.; et al. Sexually divergent mortality and partial phenotypic rescue after gene therapy in a mouse model of dravet syndrome. Hum. Gene Ther., 2020, 31( 5/6): 339- 351.
- 160.
Qiu Y.C.; O'Neill N.; Maffei B.; et al . On-demand cell-autonomous gene therapy for brain circuit disorders. Science, 2022, 378( 6619): 523- 532.
- 161.
Berkovic S.F.; Mulley J.C.; Scheffer I.E.; et al. Human epilepsies: interaction of genetic and acquired factors. Trends Neurosci., 2006, 29( 7): 391- 397.