- 1.
Labbadia, J.; Morimoto, R.I. The biology of proteostasis in aging and disease. Annu. Rev. Biochem. 2015, 84, 435‒464.
- 2.
Hipp, M.S.;P. Kasturi, P.; Hartl, F.U. The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 2019, 20, 421‒435.
- 3.
Liang, R.; Tan, H.B.; Jin, H.J.; et al. The tumour-promoting role of protein homeostasis: Implications for cancer immunotherapy. Cancer Lett. 2023, 573, 216354.
- 4.
Dikic, I. Proteasomal and autophagic degradation systems. Annu. Rev. Biochem. 2017, 86, 193‒224.
- 5.
Chen, J.L.; Wu, X.; Yin, D.; et al. Autophagy inhibitors for cancer therapy: small molecules and nanomedicines. Pharmacol. Ther. 2023, 249, 108485.
- 6.
Kwon, Y.T.; Ciechanover, A. The ubiquitin code in the ubiquitin-proteasome system and autophagy. Trends Biochem. Sci. 2017, 42, 873‒886.
- 7.
Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 2009, 78, 477‒513.
- 8.
Huang, H.; Weng, H.; Dong, B.; et al. Oridonin triggers chaperon-mediated proteasomal degradation of BCR-ABL in leukemia. Sci. Rep. 2017, 27, 415‒425.
- 9.
Narayanan, S.; Cai, C.Y.; Assaraf, Y.G.; et al. Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance. Drug Resistance Updates. 2020, 48, 100663.
- 10.
Fricker, L.D. Proteasome inhibitor drugs. Annu. Rev. Pharmacol. Toxicol., 2020, 60, 457‒476.
- 11.
Dou, Q.P.; Landis-Piwowar, K.R.; Chen, D.; et al. Green tea polyphenols as a natural tumour cell proteasome inhibitor. Inflammopharmacology 2008, 16, 208‒212.
- 12.
Chen, D.; Daniel, K.G.; Chen, M.S.; et al. Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem. Pharmacol. 2005, 69, 1421‒1432.
- 13.
Yang, H.; Chen, D.; Cui, Q.C.; et al. Celastrol, a triterpene extracted from the Chinese “Thunder of god vine,” is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Res. 2006, 66, 4758‒4765.
- 14.
Margarucci, L.; Monti, M.C.; Tosco, A.; et al. Chemical proteomics discloses petrosapongiolide M, an antiinflammatory marine sesterterpene, as a proteasome inhibitor. Angew. Chem., Int. Ed. Engl. 2010, 49, 3960‒3963.
- 15.
Collins, G.A.; Goldberg, A.L. The logic of the 26S proteasome. Cell 2017, 169, 792‒806.
- 16.
Nunes, A.T.; Annunziata, C.M. Proteasome inhibitors: structure and function. Semin. Oncol. 2017, 44, 377‒380.
- 17.
Bard, J.A.M.; Goodall, E.A.; Greene, E.R.; et al. Structure and function of the 26S proteasome. Annu. Rev. Biochem. 2018, 87, 697‒724.
- 18.
Adams, J. The proteasome: structure, function, and role in the cell. Cancer Treat. Rev. 2003, 29, 3‒9.
- 19.
Nussbaum, A.K.; Dick, T.P.; Keilholz, W.; et al. Cleavage motifs of the yeast 20S proteasome beta subunits deduced from digests of enolase 1. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 12504‒12509.
- 20.
Manasanch, E.E.; Orlowski, R.Z. Proteasome inhibitors in cancer therapy. Nat. Rev. Clin. Oncol. 2017, 14, 417‒433.
- 21.
Murata, S.; Takahama, Y.; Kasahara, M.; et al. The immunoproteasome and thymoproteasome: functions, evolution and human disease. Nat. Immunol. 2018, 19, 923‒931.
- 22.
Deshmukh, F.K.; Yaffe, D.; Olshina, M.A.; et al. The contribution of the 20S proteasome to proteostasis. Biomolecules 2019, 9, 190.
- 23.
Adams, J.; Palombella, V.J.; Sausville, E.A.; et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 1999, 59, 2615‒2622.
- 24.
Yamamoto, Y.; Gaynor, R.B. Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J. Clin. Invest. 2001, 107, 135‒142.
- 25.
Adams, J. The development of proteasome inhibitors as anticancer drugs. Cancer Cell 2004, 5, 417‒421.
- 26.
Hartl, F.U.; Hayer-Hartl, M. Converging concepts of protein folding in vitro and in vivo. Nat. Struct. Mol. Biol. 2009, 16, 574‒581.
- 27.
Chen, X.; Cubillos-Ruiz, J.R. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat. Rev. Cancer 2021, 21, 71‒88.
- 28.
Nikesitch, N.; Lee, J.M.; Ling, S.; et al. Endoplasmic reticulum stress in the development of multiple myeloma and drug resistance. Clin. Transl. Immunol. 2018, 7, e1007.
- 29.
Brnjic, S.; Mazurkiewicz, M.; Fryknäs, M.; et al. Induction of tumor cell apoptosis by a proteasome deubiquitinase inhibitor is associated with oxidative stress. Antioxid. Redox Signaling 2014, 21, 2271‒2285.
- 30.
Fribley, A.; Wang, C.Y. Proteasome inhibitor induces apoptosis through induction of endoplasmic reticulum stress. Cancer Biol. Ther. 2006, 5, 745‒748.
- 31.
Lee, K.H.; Lee, J.; Woo, J.; et al. Proteasome inhibitor-induced IkappaB/NF-kappaB activation is mediated by Nrf2-dependent light chain 3B induction in lung cancer cells. Mol. Cells 2018,41, 1008‒1015.
- 32.
Kim, C.; Lee, J.H.; Ko, J.H.; et al. Formononetin regulates multiple oncogenic signaling cascades and enhances sensitivity to bortezomib in a multiple myeloma mouse model. Biomolecules 2019, 9, 262.
- 33.
Zou, T.; Lin, Z. The involvement of ubiquitination machinery in cell cycle regulation and cancer progression. Int. J. Mol. Sci. 2021, 22, 5754.
- 34.
Halasi, M.; Pandit, B.; Gartel, A.L. Proteasome inhibitors suppress the protein expression of mutant p53. Cell Cycle 2014, 13, 3202‒3206.
- 35.
Thibaudeau, T.A.; Smith, D.M. A practical review of proteasome pharmacology. Pharmacol. Rev. 2019, 71, 170‒197.
- 36.
Wu, P.; Oren, O.; Gertz, M.A.; et al. Proteasome inhibitor-related cardiotoxicity: mechanisms, diagnosis, and management. Curr. Oncol. Rep. 2020, 22, 66.
- 37.
Orlowski, R.Z.; Stinchcombe, T.E.; Mitchell, B.S.; et al. Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J. Clin. Oncol. 2002, 20, 4420‒4427.
- 38.
Chauhan, D.; Singh, A.; Brahmandam, M.; et al. Combination of proteasome inhibitors bortezomib and NPI-0052 trigger in vivo synergistic cytotoxicity in multiple myeloma. Blood 2008, 111, 1654‒1664.
- 39.
Pérez-Galán, P.; Roué G.; Villamor, N.; et al. The proteasome inhibitor bortezomib induces apoptosis in mantle-cell lymphoma through generation of ROS and noxa activation independent of p53 status. Blood 2006, 107, 257‒264.
- 40.
Strauss, S.J.; Higginbottom, K.; Jüliger, S.; et al. The proteasome inhibitor bortezomib acts independently of p53 and induces cell death via apoptosis and mitotic catastrophe in B-cell lymphoma cell lines. Cancer Res. 2007, 67, 2783‒2790.
- 41.
Hideshima, T.; Richardson, P.; Chauhan, D.; et al. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res. 2001, 61, 3071‒3076.
- 42.
LeBlanc, R.; Catley, L.P.; Hideshima, T.; et al. Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res. 2002, 62, 4996‒5000.
- 43.
Cowan, A.J.; Green, D.J.; Kwok, M.; et al. Diagnosis and management of multiple myeloma: a review. JAMA 2022, 327, 464‒477.
- 44.
Durie, B.G.M.; Hoering, A.; Abidi, M.H.; et al. Bortezomib with lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in patients with newly diagnosed myeloma without intent for immediate autologous stem-cell transplant (SWOG S0777): a randomised, open-label, phase 3 trial. Lancet. 2017, 389, 519‒527.
- 45.
Chang, J.E.; Li, H.; Smith, M.R.; et al. Phase 2 study of VcR-CVAD with maintenance rituximab for untreated mantle cell lymphoma: an eastern cooperative oncology group study (E1405). Blood 2014, 123, 1665‒1673.
- 46.
Chang, J.E.; Carmichael, L.L.; Kim, K.; et al. VcR-CVAD induction chemotherapy followed by maintenance rituximab in mantle cell lymphoma: a wisconsin oncology network study. Br. J. Haematol. 2011, 155, 190‒197.
- 47.
Richardson, P.G.; Sonneveld, P.; Schuster, M.; et al. Extended follow-up of a phase 3 trial in relapsed multiple myeloma: final time-to-event results of the APEX trial. Blood 2007, 110, 3557‒3560.
- 48.
Robak, T.; Jin, J.; Pylypenko, H.; et al. Frontline bortezomib, rituximab, cyclophosphamide, doxorubicin, and prednisone (VR-CAP) versus rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) in transplantation-ineligible patients with newly diagnosed mantle cell lymphoma: final overall survival results of a randomised, open-label, phase 3 study. Lancet Oncol. 2018, 19, 1449‒1458.
- 49.
Dimopoulos, M.A.; Goldschmidt, H.; Niesvizky, R.; et al. Carfilzomib or bortezomib in relapsed or refractory multiple myeloma (ENDEAVOR): an interim overall survival analysis of an open-label, randomised, phase 3 trial. Lancet Oncol. 2017, 18, 1327‒1337.
- 50.
Kuhn, D.J.; Chen, Q.; Voorhees, P.M.; et al. Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood 2007, 110, 3281‒3290.
- 51.
Wang, H.; Guan, F.; Chen, D.; et al. An analysis of the safety profile of proteasome inhibitors for treating various cancers. Expert Opin. Drug Saf. 2014, 13, 1043‒1054.
- 52.
Siegel, D.S.; Martin, T.; Wang, M.; et al. A phase 2 study of single-agent carfilzomib (PX-171-003-A1) in patients with relapsed and refractory multiple myeloma. Blood 2012, 120, 2817‒2825.
- 53.
Vij, R.; Wang, M.; Kaufman, J.L.; et al. An open-label, single-arm, phase 2 (PX-171-004) study of single-agent carfilzomib in bortezomib-naive patients with relapsed and/or refractory multiple myeloma. Blood 2012, 119, 5661‒5670.
- 54.
Stewart, A.K.; Rajkumar, S.V.; Dimopoulos, M.A.; et al. Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N. Engl. J. Med. 2015, 372, 142‒152.
- 55.
Vesole, D.H.; Bilotti, E.; Richter, J.R.; et al. Phase I study of carfilzomib, lenalidomide, vorinostat, and dexamethasone in patients with relapsed and/or refractory multiple myeloma. Br. J. Haematol. 2015, 171, 52‒59.
- 56.
Lendvai, N.; Hilden, P.; Devlin, S.; et al. A phase 2 single-center study of carfilzomib 56 mg/m2 with or without low-dose dexamethasone in relapsed multiple myeloma. Blood 2014, 124, 899‒906.
- 57.
Papadopoulos, K.P.; Siegel, D.S.; Vesole, D.H.; et al. Phase I study of 30-minute infusion of carfilzomib as single agent or in combination with low-dose dexamethasone in patients with relapsed and/or refractory multiple myeloma. J. Clin. Oncol. 2015, 33, 732‒739.
- 58.
Korde, N.; Roschewski, M.; Zingone, A.; et al. Treatment with carfilzomib-lenalidomide-dexamethasone with lenalidomide extension in patients with smoldering or newly diagnosed multiple myeloma. JAMA Oncol. 2015, 1, 746‒754.
- 59.
Gandolfi, S.; Laubach, J.P.; Hideshima, T.; et al. The proteasome and proteasome inhibitors in multiple myeloma. Cancer Metastasis Rev. 2017, 36, 561‒584.
- 60.
Kupperman, E.; Lee, E.C.; Cao, Y.; et al. Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Res. 2010, 70, 1970‒1980.
- 61.
Liu, R.; Fu, C.; Sun, J.; et al. A new perspective for osteosarcoma therapy: proteasome inhibition by MLN9708/2238 successfully induces apoptosis and cell cycle arrest and attenuates the invasion ability of osteosarcoma cells in vitro. Cell. Physiol. Biochem. 2017, 41, 451‒465.
- 62.
Chauhan, D.; Tian, Z.; Zhou, B.; et al. In vitro and in vivo selective antitumor activity of a novel orally bioavailable proteasome inhibitor MLN9708 against multiple myeloma cells. Clin. Cancer Res. 2011, 17, 5311‒5321.
- 63.
Richardson, P.G.; Kumar, S.K.; Masszi, T.; et al. Final overall survival analysis of the TOURMALINE-MM1 phase III trial of ixazomib, lenalidomide, and dexamethasone in patients with relapsed or refractory multiple myeloma. J. Clin. Oncol. 2021, 39, 2430‒2442.
- 64.
Kale, A.J.; Moore, B.S. Molecular mechanisms of acquired proteasome inhibitor resistance. J. Med. Chem. 2012, 55, 10317‒10327.
- 65.
Chauhan, D.; Singh, A.V.; Ciccarelli, B.; et al. Combination of novel proteasome inhibitor NPI-0052 and lenalidomide trigger in vitro and in vivo synergistic cytotoxicity in multiple myeloma. Blood 2010, 115, 834‒845.
- 66.
Singh, A.V.; Palladino, M.A.; Lloyd, G.K.; et al. Pharmacodynamic and efficacy studies of the novel proteasome inhibitor NPI-0052 (marizomib) in a human plasmacytoma xenograft murine model. Br. J. Haematol. 2010, 149, 550‒559.
- 67.
Spencer, A.; Harrison, S.; Zonder, J.; et al. A phase 1 clinical trial evaluating marizomib, pomalidomide and low-dose dexamethasone in relapsed and refractory multiple myeloma (NPI-0052-107): final study results. Br. J. Haematol. 2018, 180, 41‒51.
- 68.
Hari, P.; Matous, J.V.; Voorhees, P.M.; et al. Oprozomib in patients with newly diagnosed multiple myeloma. Blood Cancer, J. 2019, 9, 66.
- 69.
Shah, J.; Usmani, S.; Stadtmauer, E.A.; et al. Oprozomib, pomalidomide, and dexamethasone in patients with relapsed and/or refractory multiple myeloma. Clin. Lymphoma Myeloma Leuk. 2019, 19, 570‒578.
- 70.
Sanderson, M.P.; Friese-Hamim, M.; Walter-Bausch, G.; et al. M3258 Is a selective inhibitor of the immunoproteasome subunit LMP7 (beta5i) delivering efficacy in multiple myeloma models. Mol. Cancer Ther. 2021, 20, 1378‒1387.
- 71.
Manton, C.A.; Johnson, B.; Singh, M.; et al. Induction of cell death by the novel proteasome inhibitor marizomib in glioblastoma in vitro and in vivo. Sci. Rep. 2016, 6, 18953.
- 72.
Rentsch, A.; Landsberg, D.; Brodmann, T.; et al. Synthesis and pharmacology of proteasome inhibitors. Angew. Chem., Int. Ed. Engl. 2013, 52, 5450‒5488.
- 73.
Manach, C.; Scalbert, A.; Morand, C.; et al. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727‒747.
- 74.
Smith, D.M.; Wang, Z.; Kazi, A.; et al. Synthetic analogs of green tea polyphenols as proteasome inhibitors. Mol Med. 2002, 8, 382‒392.
- 75.
Smith, D.M.; Daniel, K.G.; Wang, Z.; et al. Docking studies and model development of tea polyphenol proteasome inhibitors: applications to rational drug design. Proteins 2003, 54, 58‒70.
- 76.
Nam, S.; Smith, D.M.; Dou, Q.P. Ester bond-containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo. J. Biol. Chem. 2001, 276, 13322‒13330.
- 77.
Chen, D.; Landis-Piwowar, K.R.; Chen, M.S.; et al. Inhibition of proteasome activity by the dietary flavonoid apigenin is associated with growth inhibition in cultured breast cancer cells and xenografts. Breast Cancer Res. 2007, 9, R80.
- 78.
Singh, V.; Sharma, V.; Verma, V.; et al. Apigenin manipulates the ubiquitin-proteasome system to rescue estrogen receptor-β from degradation and induce apoptosis in prostate cancer cells. Eur. J. Nutr. 2014, 54, 1255‒1267.
- 79.
Liu, F.T.; Agrawal, S.G.; Movasaghi, Z.; et al. Dietary flavonoids inhibit the anticancer effects of the proteasome inhibitor bortezomib. Blood 2008, 112, 3835‒3846.
- 80.
Tsalikis, J.; Abdel-Nour, M.; Farahvash, A.; et al. Isoginkgetin, a natural biflavonoid proteasome inhibitor, sensitizes cancer cells to apoptosis via disruption of lysosomal homeostasis and impaired protein clearance. Mol. Cell. Biol. 2019, 9, e00489‒e00418.
- 81.
Yin, R.; Li, T.; Tian, J.X.; et al. Ursolic acid, a potential anticancer compound for breast cancer therapy. Crit. Rev. Food Sci. Nutr. 2018, 58, 568‒574.
- 82.
Li, S.; Kuo, H.D.; Yin, R.; et al. Epigenetics/epigenomics of triterpenoids in cancer prevention and in health. Biochem. Pharmacol. 2020, 175, 113890.
- 83.
Ahmad, M.F. Ganoderma lucidum:a rational pharmacological approach to surmount cancer. J. Ethnopharmacol. 2020, 260, 113047.
- 84.
Dai, Y.; Desano, J.; Tang, W.; et al. Natural proteasome inhibitor celastrol suppresses androgen-independent prostate cancer progression by modulating apoptotic proteins and NF-kappaB. PLoS One 2010, 5, e14153.
- 85.
Walcott, S.E.; Heikkila, J.J. Celastrol can inhibit proteasome activity and upregulate the expression of heat shock protein genes, hsp30 and hsp70, in Xenopus laevis A6 cells. Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. 2010, 156, 285‒293.
- 86.
Wang, W.B.; Feng, L.X.; Yue, Q.X.; et al. Paraptosis accompanied by autophagy and apoptosis was induced by celastrol, a natural compound with influence on proteasome, ER stress and Hsp90. J. Cell. Physiol. 2012, 227, 2196‒2206.
- 87.
Sethi, G.; Ahn, K.S.; Pandey, M.K.; et al. Celastrol, a novel triterpene, potentiates TNF-induced apoptosis and suppresses invasion of tumor cells by inhibiting NF-κB-regulated gene products and TAK1-mediated NF-κB activation. Blood. 2006, 109, 2727‒2735.
- 88.
Yang, H.; Shi, G.; Dou, Q.P. The tumor proteasome is a primary target for the natural anticancer compound withaferin A isolated from “Indian Winter Cherry”. Mol. Pharmacol. 2007, 71, 426‒437.
- 89.
Vanden Berghe, W.; Sabbe, L.; Kaileh, M.; et al. Molecular insight in the multifunctional activities of withaferin, A. Biochem. Pharmacol. 2012, 84, 1282‒1291.
- 90.
Vanden Berghe, W.; Sabbe, L.; Kaileh, M.; et al. Development of withaferin A analogs as probes of angiogenesis. Bioorg. Med. Chem. Lett. 2006, 16, 2603‒2607.
- 91.
Tsukamoto, S.; Tane, K.; Ohta, T.; et al. Four new bioactive pyrrole-derived alkaloids from the marine sponge axinella brevistyla. J. Nat. Prod. 2001, 64, 1576‒1578.
- 92.
Tsukamoto, S.; Tatsuno, M.; van Soest, R.W.; et al. New polyhydroxy sterols: proteasome inhibitors from a marine sponge acanthodendrilla sp. J. Nat. Prod. 2003, 66, 1181‒1185.
- 93.
Tsukamoto, S.; Yamanokuchi, R.; Yoshitomi, M.; et al. Aaptamine, an alkaloid from the sponge aaptos suberitoides, functions as a proteasome inhibitor. Bioorg. Med. Chem. Lett. 2010, 20, 3341‒3343.
- 94.
da Silva, D.C.; Andrade, P.B.; Valentão, P.; et al. Neurotoxicity of the steroidal alkaloids tomatine and tomatidine is RIP1 kinase- and caspase-independent and involves the eIF2α branch of the endoplasmic reticulum. J. Steroid Biochem. Mol. Biol. 2017, 171, 178‒186.
- 95.
Mohamed, I.E.; Kehraus, S.; Krick, A., et al. Mode of action of epoxyphomalins A and B and characterization of related metabolites from the marine-derived fungus paraconiothyrium sp. J. Nat. Prod. 2010, 73, 2053‒2056.
- 96.
Goel, U.; Usmani. S.; Kumar, S. Current approaches to management of newly diagnosed multiple myeloma. Am. J. Hematol. 2022, 97(S1), S3‒S25.
- 97.
Zhang, L.; Wu, M.; Su, R., et al. The efficacy and mechanism of proteasome inhibitors in solid tumor treatment. Recent Pat. Anticancer Drug Discov. 2022, 17, 268‒283.
- 98.
Roeten, M.S.F.; Cloos, J.; Jansen, G. Positioning of proteasome inhibitors in therapy of solid malignancies. Cancer Chemother. Pharmacol. 2017, 81, 227‒243.
- 99.
Li, K.; Crews, C.M. PROTACs: past, present and future. Chem. Soc. Rev. 2022, 51, 5214‒5236.