- 1.
Wang, S.; Hou, Y.; Li, X.; et al. Practical implementation of artificial intelligence-based deep learning and cloud computing on the application of traditional medicine and western medicine in the diagnosis and treatment of rheumatoid arthritis. Front. Pharm. 2021, 12, 765435.
- 2.
Wang, X.; Wang, Z.Y.; Zheng, J.H.; et al. TCM network pharmacology: A new trend towards combining computational, experimental and clinical approaches. Chin. J. Nat. Med. 2021, 19, 1‒11.
- 3.
Zhai, X.; Wang, Q.; Li, M. Tu Youyou’s Nobel Prize and the academic evaluation system in China. Lancet 2016, 387, 1722.
- 4.
An, X.; Zhang, Y.; Duan, L.; et al. The direct evidence and mechanism of Traditional Chinese medicine treatment of COVID-19. Biomed. Pharmacother. 2021, 137, 111267.
- 5.
Wang, W.Y.; Xie, Y.; Zhou, H.; et al. Contribution of Traditional Chinese medicine to the treatment of COVID-19. Phytomedicine 2021, 85, 153279.
- 6.
Wei, Z.; Chen, J.; Zuo, F.; et al. Traditional Chinese medicine has great potential as candidate drugs for lung cancer: A review. J. Ethnopharmacol. 2023, 300, 115748.
- 7.
Zhang, B.; Wang, X.; Li, S. An integrative platform of tcm network pharmacology and its application on a herbal formula, Qing-Luo-Yin. Evid. Based Complement. Alternat. Med. 2013, 2013, 456747.
- 8.
Li, N.; Yu, J.; Mao, X.; et al. The research and development thinking on the status of artificial intelligence in Traditional Chinese medicine. Evid. Based Complement. Alternat. Med. 2022, 2022, 7644524.
- 9.
Yang, X.; Wang, Y.; Byrne, R.; et al. Concepts of artificial intelligence for computer-assisted drug discovery. Chem. Rev., 2019, 119, 10520‒10594.
- 10.
Zhong, F.; Xing, J.; Li, X.; et al. Artificial intelligence in drug design. Sci. China Life Sci., 2018, 61, 1191‒1204.
- 11.
Tripathi, M.K.; Nath, A.; Singh, T.P.; et al. Evolving scenario of big data and Artificial Intelligence (AI) in drug discovery. Mol. Divers. 2021, 25, 1439‒1460.
- 12.
Jang, S.H.; Sivakumar, D.; Mudedla, S.K.; et al. PCW-A1001, AI-assisted de novo design approach to design a selective inhibitor for FLT-3(D835Y) in acute myeloid leukemia. Front. Mol. Biosci. 2022, 9, 1072028.
- 13.
Zou, Y.; Shi, Y.; Sun, F.; et.al. Extreme gradient boosting model to assess risk of central cervical lymph node metastasis in patients with papillary thyroid carcinoma: Individual prediction using SHapley Additive exPlanations. Comput. Methods Programs Biomed. 2022, 225, 107038.
- 14.
Zhang, H.; Ni, W.; Li, J.; et al. Artificial intelligence-based traditional Chinese medicine Assistive Diagnostic System: Validation Study. JMIR Med. Inform. 2020, 8, e17608.
- 15.
Zhang, B.; Pei, W.; Cai, P.; et al. Recent advances in Chinese patent medicines entering the international market. Drug Discoveries Ther. 2022, 16, 258‒272.
- 16.
Chen, H.; He, Y. Machine learning approaches in Traditional Chinese medicine: A systematic review. Am. J. Chin. Med. 2022, 50, 91‒131.
- 17.
Xue, Q.L.; Miao, K.H.; Yu, Y.; et al. Methodology for adaptive decision--making research on manufacturing process of Traditional Chinese medicine based on deep reinforcement learning. Zhong guo Zhong Yao Za Zhi, 2023, 48, 562‒568.
- 18.
He, X.; Huang, S.; Wu, M.; et al. Simultaneous quantitative analysis of ten bioactive flavonoids in Citri Reticulatae Pericarpium Viride (Qing Pi) by ultrahigh-performance liquid chromatography and high-resolution mass spectrometry combined with chemometric methods. Phytochem. Anal. 2021, 32, 1152‒1161.
- 19.
Bai, C.; Yang, J.; Cao, B.; et al. Growth years and post-harvest processing methods have critical roles on the contents of medicinal active ingredients of Scutellaria baicalensis. Ind. Crops. Prod. 2020, 158, 112985.
- 20.
Zeng, P.; Li, J.; Chen, Y.; et al. The structures and biological functions of polysaccharides from traditional Chinese herbs. Prog. Mol. Biol. Transl. Sci., 2019, 163, 423‒444.
- 21.
Tan, C.; Wu, C.; Huang, Y.; et al. Identification of different species of Zanthoxyli Pericarpium based on convolution neural network. PLoS One 2020, 15, e0230287.
- 22.
Wang, Y.; Xiong, F.; Zhang, Y.; et al. Application of hyperspectral imaging assisted with integrated deep learning approaches in identifying geographical origins and predicting nutrient contents of Coix seeds. Food Chem. 2023, 404, 134503.
- 23.
Yue, J.; Li, Z.; Zuo, Z.; et al. Study on the identification and evaluation of growth years for Paris polyphylla var. yunnanensis using deep learning combined with 2DCOS. Spectrochim. Acta, Part A 2021, 261, 120033.
- 24.
Zhang, Y.; Wang, C.; Wang, Y.; et al. Determining the stir-frying degree of gardeniae fructus praeparatus based on deep learning and transfer learning. Sensors 2022, 22, 8091.
- 25.
Wang, J.; Mo, W.; Wu, Y.; et al. Combined channel attention and spatial attention module network for chinese herbal slices automated recognition. Front. Neurosci. 2022, 16, 920820.
- 26.
Zhao, J.; Tian, G.; Qiu, Y.; et al. Rapid quantification of active pharmaceutical ingredient for sugar-free Yangwei granules in commercial production using FT-NIR spectroscopy based on machine learning techniques. Spectrochim. Acta, Part A 2021, 245, 118878.
- 27.
Han, Y.; Zhou, M.; Wang, L.; et al. Comparative evaluation of different cultivars of Flos Chrysanthemi by an anti-inflammatory-based NF-kappaB reporter gene assay coupled to UPLC-Q/TOF MS with PCA and ANN. J. Ethnopharmacol. 2015, 174, 387‒395.
- 28.
Guo, J.; Zhang, L.; Shang, Y.; et al. A strategy for intelligent chemical profiling-guided precise quantitation of multi-components in Traditional Chinese medicine formulae-QiangHuoShengShi decoction. J. Chromatogr. A. 2021, 1649, 462178.
- 29.
Zhong, F.; Wu, X.; Yang, R.; et al. Drug target inference by mining transcriptional data using a novel graph convolutional network framework. Protein Cell 2022, 13, 281‒301.
- 30.
Zhu, H. Big data and artificial intelligence modeling for drug discovery. Annu. Rev. Pharmacol. Toxicol. 2020, 60, 573‒589.
- 31.
Beck, B.R.; Shin, B.; Choi, Y.; et al. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Comput. Struct. Biotechnol. J. 2020, 18, 784‒790.
- 32.
Serafim, M.S.M.; Kronenberger, T.; Oliveira, P.R.; et al. The application of machine learning techniques to innovative antibacterial discovery and development. Expert. Opin, Drug Discov. 2020, 15, 1165‒1180.
- 33.
Spiegel, J.O.; Durrant, J.D. AutoGrow4: an open-source genetic algorithm for de novo drug design and lead optimization. J. Cheminform. 2020, 12, 25.
- 34.
Karimi, M.; Wu, D.; Wang, Z.; et al. DeepAffinity: interpretable deep learning of compound-protein affinity through unified recurrent and convolutional neural networks. Bioinformatics 2019, 35, 3329‒3338.
- 35.
Lu, S.H.; Zhang, M.C.; Zhai, H.L.; et al. Rapid determination in the quality control of Chinese patent medicine. J. Pharm. Innov. 2022, 17, 1305‒1313.
- 36.
Keji, C.; Bei, Y. Certain progress of clinical research of Chinese integrative medicine. Chin. Med. J. 1999, 112, 934‒937.
- 37.
Leong, F.; Hua, X.; Wang, M.; et al. Quality standard of Traditional Chinese medicines: comparison between European Pharmacopoeia and Chinese Pharmacopoeia and recent advances. Chin. Med. 2020, 15, 76.
- 38.
Luo, H.; Zhao, Y.; Hua, H.; et al. Research progress on quality assurance of genuine Chinese medicinal in Sichuan. Chin. Med. 2021, 16, 19.
- 39.
Huang, L.; Xie, D.; Yu, Y.; et al. TCMID 2.0: A comprehensive resource for TCM. Nucleic. Acids. Res. 2018, 46, D1117‒D1120.
- 40.
Li, D.; Hu, J.; Zhang, L.; et al. Deep learning and machine intelligence: New computational modeling techniques for discovery of the combination rules and pharmacodynamic characteristics of Traditional Chinese medicine. Eur. J. Pharmacol. 2022, 933, 175260.
- 41.
Gupta, R.; Srivastava, D.; Sahu, M.; et al. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol. Divers. 2021, 25, 1315‒1360.
- 42.
Li, S.; Zhang, B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin. J. Nat. Med. 2013, 11, 110‒120.
- 43.
Chen, H.; Huang, Y.; Liu, H.; et al. Research progress on the mechanism of reducing toxicity and increasing the efficacy of sini decoction compatibility. Chem. Pharm. Bull. 2022, 70, 827‒838.
- 44.
Zhou, W.; Yang, K.; Zeng, J.; et al. FordNet: Recommending traditional Chinese medicine formula via deep neural network integrating phenotype and molecule. Pharmacol. Res. 2021, 173, 105752.
- 45.
Dong, X.; Zheng, Y.; Shu, Z.; et al. TCMPR: TCM prescription recommendation based on subnetwork term mapping and deep learning. Biomed. Res. Int. 2022, 2022, 4845726.
- 46.
Ren, X.; Guo, Y.; Wang, H.; et al. The intelligent experience inheritance system for Traditional Chinese medicine. J. Evid. Based. Med. 2023, 16, 91‒100.
- 47.
Zhao, W.; Lu, W.; Li, Z.; et. al. TCM herbal prescription recommendation model based on multi-graph convolutional network. J. Ethnopharmacol. 2022, 297, 115109.
- 48.
Liu, Z.; Luo, C.; Fu, D.; et al. A novel transfer learning model for traditional herbal medicine prescription generation from unstructured resources and knowledge. Artif. Intell. Med. 2022, 124, 102232.
- 49.
- 50.
Jin, Y.; Ji, W.; Shi, Y.; et al. Meta-path guided graph attention network for explainable herb recommendation. Health. Inf. Sci. Syst. 2023, 11, 5.
- 51.
Parvez, M.K.; Rishi, V. Herb-Drug Interactions and Hepatotoxicity. Curr. Drug Metab. 2019, 20, 275‒282.
- 52.
Zhuang, T.; Gu, X.; Zhou, N.; et al. Hepatoprotection and hepatotoxicity of Chinese herb Rhubarb (Dahuang): How to properly control the “General (Jiang Jun)” in Chinese medical herb. Biomed. Pharmacother. 2020, 127, 110224.
- 53.
Ni, B.; Liu, Y.; Gao, X.; et al. Isoliquiritigenin attenuates emodin-induced hepatotoxicity in vivo and in vitro through Nrf2 pathway. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 2022, 261, 109430.
- 54.
Wang, Z.; Li, L.; Song, M.; et al. Evaluating the Traditional Chinese medicine (TCM) Officially Recommended in China for COVID-19 Using Ontology-Based Side-Effect Prediction Framework (OSPF) and Deep Learning. J. Ethnopharmacol. 2021, 272, 113957.
- 55.
Chen, Z.; Zhao, M.; You, L.; et al. Developing an artificial intelligence method for screening hepatotoxic compounds in Traditional Chinese medicine and Western medicine combination. Chin. Med. 2022, 17, 58.
- 56.
Tran, T.T.V.; Surya, Wibowo A.; Tayara, H.; et al. Artificial Intelligence in Drug Toxicity Prediction: Recent Advances, Challenges, and Future Perspectives. J. Chem. Inf. Model. 2023, 63, 2628‒2643.
- 57.
Kha, Q.H.; Le, V.H.; Hung, T.N.K.; et al. Development and Validation of an Explainable Machine Learning-Based Prediction Model for Drug-Food Interactions from Chemical Structures. Sensors 2023, 23, 3962.
- 58.
Xie, Y.; Mai, C.T.; Zheng, D.C.; et al. Wutou decoction ameliorates experimental rheumatoid arthritis via regulating NF-kB and Nrf2: Integrating efficacy-oriented compatibility of Traditional Chinese medicine. Phytomedicine 2021, 85, 153522.
- 59.
Wang, P.; Guo, W.; Huang, G.; et al. Berberine-Based heterogeneous linear supramolecules neutralized the acute nephrotoxicity of aristolochic acid by the self-assembly strategy. ACS Appl. Mater. Interfaces. 2021, 13, 32729‒32742.
- 60.
Kuenzi, B.M.; Park, J.; Fong, S.H.; et al. Predicting drug response and synergy using a deep learning model of human cancer cells. Cancer Cell 2020, 38, 672‒684.e6.
- 61.
Cheng, F.; Kovacs, I.A.; Barabasi, A.L. Network-based prediction of drug combinations. Nat. Commun. 2019, 10, 1197.
- 62.
Wang, Y.; Yang, H.; Chen, L.; et al. Network-based modeling of herb combinations in Traditional Chinese medicine. Brief. Bioinform. 2021, 22, bbab106.
- 63.
Ianevski, A.; Giri, A.K.; Aittokallio, T. SynergyFinder 3.0: an interactive analysis and consensus interpretation of multi-drug synergies across multiple samples. Nucleic. Acids. Res. 2022, 50, W739‒W743.
- 64.
Preuer, K.; Lewis, R.P.I.; Hochreiter, S.; et al. DeepSynergy: predicting anti-cancer drug synergy with deep learning. Bioinformatics 2018, 34, 1538‒1546.
- 65.
Alsherbiny, M.A.; Radwan, I.; Moustafa, N.; et al. Trustworthy deep neural network for inferring anticancer synergistic combinations. IEEE J. Biomed. Health Inform. 2023, 27, 1691‒1700.
- 66.
Liu, H.; Zhang, W.; Zou, B.; et al. DrugCombDB: A comprehensive database of drug combinations toward the discovery of combinatorial therapy. Nucleic. Acids. Res. 2020, 48, D871‒D881.
- 67.
Zhang, T.; Zhang, L.; Payne, P.R.O.; et al. Synergistic drug combination prediction by integrating multiomics data in deep learning models. Methods Mol Biol. 2021, 2194, 223‒238.
- 68.
Nguyen, T.M.; Quinn, T.P.; Nguyen, T.; et al. Explaining black box drug target prediction through model agnostic counterfactual samples. IEEE/ACM Trans. Comput. Biol. Bioinform. 2023, 20, 1020‒1029.
- 69.
Vo, T.H.; Nguyen, N.T.K.; Kha, Q.H.; et al. On the road to explainable AI in drug-drug interactions prediction: A systematic review. Comput. Struct. Biotechnol. J. 2022, 20, 2112‒2123.
- 70.
Nguyen, H.S.; Ho, D.K.N.; Nguyen, N.N.; et al. Predicting EGFR mutation status in non-small cell lung cancer using artificial intelligence: a systematic review and meta-analysis. Acad. Radiol. 2023.
- 71.
Wojtara, M.; Rana, E.; Rahman, T.; et al. Artificial intelligence in rare disease diagnosis and treatment. Clin. Transl. Sci. 2023, 16, 2106‒2111
- 72.
Chen, Z.H.; Lin, L.; Wu, CF.; et al. Artificial intelligence for assisting cancer diagnosis and treatment in the era of precision medicine. Cancer Commun. 2021, 41, 1100‒1115.
- 73.
Blasiak, A.; Khong, J.; Kee, T. CURATE.AI: Optimizing personalized medicine with artificial intelligence. SLAS. Techno. 2020, 25, 95‒105.