- 1.
Takada, Y.; Ye, X.; Simon, S. The integrins. Genome Biol. 2007, 8, 215.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
Baeyens, N.; Bandyopadhyay, C.; Coon, B.G.; et al. Endothelial fluid shear stress sensing in vascular health and disease. J. Clin. Investig. 2016, 126, 821–828, doi:10.1172/jci83083.
- 8.
- 9.
Tzima, E.; del Pozo, M.A.; Shattil, S.J.; et al. Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO J. 2001, 20, 4639–4647,
https://doi.org/10.1093/emboj/20.17.4639.
- 10.
- 11.
Chen, P.Y.; Qin, L.; Baeyens, N.; et al. Endothelial-to-mesenchymal transition drives atherosclerosis progression. J. Clin. Invest. 2015, 125, 4514–4528.
- 12.
Yun, S.; Budatha, M.; Dahlman, J.E.; et al. Interaction between integrin α5 and PDE4D regulates endothelial inflammatory signalling. Nature 2016, 18, 1043–1053,
https://doi.org/10.1038/ncb3405.
- 13.
Yun, S.; Hu, R.; Schwaemmle, M.E.; et al. Integrin α5β1 regulates PP2A complex assembly through PDE4D in atherosclerosis. J. Clin. Invest. 2019, 129, 4863–4874.
- 14.
Piera-Velazquez, S.; Jimenez, S.A. Endothelial to mesenchymal transition: Role in physiology and in the pathogenesis of human diseases. Physiol. Rev. 2019, 99, 1281–1324,
https://doi.org/10.1152/physrev.00021.2018.
- 15.
Allahverdian, S.; Chaabane, C.; Boukais, K.; et al. Smooth muscle cell fate and plasticity in atherosclerosis. Cardiovasc. Res. 2018, 114, 540–550, doi:10.1093/cvr/cvy022.
- 16.
Misra, A.; Feng, Z.; Chandran, R.R.; et al. Integrin beta3 regulates clonality and fate of smooth muscle-derived atherosclerotic plaque cells. Nat. Commun. 2018, 9, 2073,
https://doi.org/10.1038/s41467-018-04447-7.
- 17.
- 18.
Renshall, L.; Arnold, N.; West, L.; et al. Selective improvement of pulmonary arterial hypertension with a dual ET(A)/ET(B) receptors antagonist in the apolipoprotein E-/- model of PAH and atherosclerosis. Pulm. Circ. 2018, 8, 2045893217752328.
- 19.
Reed, D.; Reed, C.; Stemmermann, G.; et al. Are aortic aneurysms caused by atherosclerosis? Circulation 1992, 85, 205–211.
- 20.
Nickel, N.P.; Yuan, K.; Dorfmuller, P.; et al., Beyond the lungs: Systemic manifestations of pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2020, 201, 148–157.
- 21.
Maleki, S.; Poujade, F.-A.; Bergman, O.; et al. Endothelial/epithelial mesenchymal transition in ascending aortas of patients with bicuspid aortic valve. Front. Cardiovasc. Med. 2019, 6, 182,
https://doi.org/10.3389/fcvm.2019.00182.
- 22.
Jia, D.; Zhu, Q.; Liu, H.; et al. Osteoprotegerin disruption attenuates hysu-induced pulmonary hypertension through integrin αvβ3/FAK/AKT pathway suppression. Circ. Cardiovasc Genet. 2017, 10, e001591.
- 23.
Blanchard, N.; Link, P.A.; Farkas, D.; et al., Dichotomous role of integrin-β5 in lung endothelial cells. Pulm. Circ. 2022, 12, e12156.
- 24.
Andre, P.; Joshi, S.R.; Briscoe, S.D.; et al. Therapeutic approaches for treating pulmonary arterial hypertension by correcting imbalanced TGF-β superfamily signaling. Front. Med. 2021, 8, 814222.
- 25.
Shochet, G.E.; Brook, E.; Bardenstein-Wald, B.; et al. Integrin α-5 silencing leads to myofibroblastic differentiation in IPF-derived human lung fibroblasts. Ther. Adv. Chronic Dis. 2020, 11, 2040622320936023,
https://doi.org/10.1177/2040622320936023.
- 26.
Chen, H.; Qu, J.; Huang, X.; et al. Mechanosensing by the α6-integrin confers an invasive fibroblast phenotype and mediates lung fibrosis. Nat. Commun. 2016, 7, 12564,
https://doi.org/10.1038/ncomms12564.
- 27.
Manso, A.M.; Kang, S.M.; Ross, R.S. Integrins, focal adhesions, and cardiac fibroblasts. J. Investig. Med. 2009, 57, 856–60.
- 28.
Guo, D.C.; Papke, C.L.; He, R.; et al. Pathogenesis of thoracic and abdominal aortic aneurysms. Ann. N.Y. Acad. Sci. 2006, 1085, 339–352.
- 29.
Chen, M.; Cavinato, C.; Hansen, J.; et al. FN (Fibronectin)-Integrin α5 signaling promotes thoracic aortic aneurysm in a mouse model of marfan syndrome. Arter. Thromb. Vasc. Biol. 2023, 43, E132–E150,
https://doi.org/10.1161/atvbaha.123.319120.
- 30.
Nakamura, K.; Dalal, A.R.; Yokoyama, N.; et al. Lineage-Specific induced pluripotent stem cell–derived smooth muscle cell modeling predicts integrin alpha-v antagonism reduces aortic root aneurysm formation in marfan syndrome mice. Arter. Thromb. Vasc. Biol. 2023, 43, 1134–1153,
https://doi.org/10.1161/atvbaha.122.318448.
- 31.
Pan, L.; Bai, P.; Weng, X.; et al., Legumain is an endogenous modulator of integrin αvβ3 triggering vascular degeneration, dissection, and rupture. Circulation 2022, 145, 659–674.
- 32.
Wu, P.H.; Opadele, A.E.; Onodera, Y.; et al., Targeting integrins in cancer nanomedicine: Applications in cancer diagnosis and therapy. Cancers 2019, 11, 1783.
- 33.
- 34.
Sloan, E.K.; Pouliot, N.; Stanley, K.L.; et al., Tumor-specific expression of αvβ3 integrin promotes spontaneous metastasis of breast cancer to bone. Breast Cancer Res. 2006, 8, 1–14.
- 35.
Bergonzini, C.; Kroese, K.; Zweemer, A.J.M.; et al. Targeting integrins for cancer therapy - disappointments and opportunities. Front. Cell. Dev. Biol. 2022, 10, 863850,
https://doi.org/10.3389/fcell.2022.863850.
- 36.
- 37.
- 38.
- 39.
Goligorsky, M.S. Microvascular rarefaction: The decline and fall of blood vessels. Organogenesis 2010, 6, 1–10.
- 40.
Honce, J.M.; Nagae, L.; Nyberg, E. Neuroimaging of natalizumab complications in multiple sclerosis: PML and other associated entities. Mult. Scler. Int. 2015, 2015, 1–14,
https://doi.org/10.1155/2015/809252.
- 41.
- 42.
Cohen, S.A.; Trikha, M.; Mascelli, M.A. Potential future clinical applications for the GPIIb/IIIa antagonist, abciximab in thrombosis, vascular and oncological indications. Pathol. Oncol. Res. 2000, 6, 163–174,
https://doi.org/10.1007/bf03032368.
- 43.
Nishimura, S.L. Integrin-mediated transforming growth factor-beta activation, a potential therapeutic target in fibrogenic disorders. Am. J. Pathol. 2009, 175, 1362–1370.
- 44.
Miller, P.B.; Parnell, B.A.; Bushnell, G.; et al. Endometrial receptivity defects during IVF cycles with and without letrozole. Hum. Reprod. 2012, 27, 881–888.
- 45.
Chen, Y.F.; Yang, Y.N.; Chu, H.R.; et al. Role of Integrin alphavbeta3 in Doxycycline-Induced Anti-Proliferation in Breast Cancer Cells. Front. Cell Dev. Biol. 2022, 10, 829788.
- 46.
Kondo, K.; Umemura, K. Clinical pharmacokinetics of tirofiban, a nonpeptide glycoprotein IIb/IIIa receptor antagonist: Comparison with the monoclonal antibody abciximab. Clin. Pharmacokinet. 2002, 41, 187–195.
- 47.
Tonin, G.; Klen, J. Eptifibatide, an older therapeutic peptide with new indications: From clinical pharmacology to everyday clinical practice. Int. J. Mol. Sci. 2023, 24, 5446,
https://doi.org/10.3390/ijms24065446.
- 48.
Stuve, O.; Bennett, J.L. Pharmacological properties, toxicology and scientific rationale for the use of natalizumab (Tysabri) in inflammatory diseases. CNS Drug Rev. 2007, 13, 79–95.
- 49.
Zaheer, F.; Berger, J.R. Treatment-related progressive multifocal leukoencephalopathy: Current understanding and future steps. Ther. Adv. Drug Saf. 2012, 3, 227–239,
https://doi.org/10.1177/2042098612453849.
- 50.
Monschein, T.; Dekany, S.; Zrzavy, T.; et al. Real-world use of natalizumab in Austria: Data from the Austrian Multiple Sclerosis Treatment Registry (AMSTR). J. Neurol. 2023, 270, 3779–3786.
- 51.
Moser, T.; Zimmermann, G.; Baumgartner, A.; et al., Long-term outcome of natalizumab-associated progressive multifocal leukoencephalopathy in Austria: A nationwide retrospective study. J. Neurol. 2024, 271, 374–385.
- 52.
Kim, J.; Kim, C.; Lee, J.A.; et al. Long-term prognosis and overall mortality in patients with progressive multifocal leukoencephalopathy. Sci. Rep. 2023, 13, 14291.
- 53.
Anton, R.; Haas, M.; Arlett, P.; et al. Drug-induced progressive multifocal leukoencephalopathy in multiple sclerosis: European regulators’ perspective. Clin. Pharmacol. Ther. 2017, 102, 283–289.
- 54.
McClellan, K.J.; Goa, K.L. Tirofiban. A review of its use in acute coronary syndromes. Drugs 1998, 56, 1067–1080.
- 55.
Zhou, X.; Wu, X.; Sun, H.; et al. Efficacy and safety of eptifibatide versus tirofiban in acute coronary syndrome patients: A systematic review and meta-analysis. J. Evid. Based Med. 2017, 10, 136–144.
- 56.
Puri, A.; Bansal, A.; Narain, V.; et al. Comparative assessment of platelet GpIIb/IIIa receptor occupancy ratio with Eptifibatide/Tirofiban in patients presenting with ACS and undergoing PCI. Indian Hear. J. 2012, 65, 152–157,
https://doi.org/10.1016/j.ihj.2012.08.007.
- 57.
Movva, H.; Rabah, R.; Tekle, W.; et al. There is no difference in safety and efficacy with Tirofiban or Eptifibatide for patients undergoing treatment of large vessel occlusion and underlying intracranial atherosclerosis. Interdiscip. Neurosurg. 2020, 23, 100927,
https://doi.org/10.1016/j.inat.2020.100927.
- 58.
Lin, F.Y.; Li, J.; Xie, Y.; et al., A general chemical principle for creating closure-stabilizing integrin inhibitors. Cell. 2022, 185, 3533–3550.
- 59.
Zhu, J.; Zhu, J.; Springer, T.A. Complete integrin headpiece opening in eight steps. J. Cell. Biol. 2013. 201, 1053–1068.
- 60.
Abrams, C.S.; Cines, D.B. Thrombocytopenia after treatment with platelet glycoprotein IIb/IIIa inhibitors. Curr. Hemat. Rep. 2004, 3, 143–147.
- 61.
Blue, R.; Murcia, M.; Karan, C.; et al. Application of high-throughput screening to identify a novel αIIb-specific small- molecule inhibitor of αIIbβ3-mediated platelet interaction with fibrinogen. Blood 2008, 111, 1248–1256.
- 62.
Zhu, J.; Choi, W.S.; McCoy, J.G.; et al. Structure-guided design of a high-affinity platelet integrin αIIbβ3 receptor antagonist that disrupts Mg2+ binding to the MIDAS. Sci. Transl. Med. 2012, 4, 125ra32.
- 63.
Hülskamp, M.D.; Kronenberg, D.; Stange, R. The small-molecule protein ligand interface stabiliser E7820 induces differential cell line specific responses of integrin α2 expression. BMC Cancer 2021, 21, 1–12,
https://doi.org/10.1186/s12885-021-08301-w.
- 64.
Funahashi, Y.; Sugi, N.H.; Semba, T.; et al. Sulfonamide derivative, E7820, is a unique angiogenesis inhibitor suppressing an expression of integrin α2 subunit on endothelium. Cancer Res. 2002, 62, 6116–6123.
- 65.
Mita, M.; Kelly, K.R.; Mita, A.; et al. Phase I study of E7820, an oral inhibitor of integrin α-2 expression with antiangiogenic properties, in patients with advanced malignancies. Clin. Cancer Res. 2011, 17, 193–200.
- 66.
McCarty, J.H. αvβ8 integrin adhesion and signaling pathways in development, physiology and disease. J. Cell. Sci. 2020, 133, jcs239434.
- 67.
- 68.
Lokugamage, N.; Chowdhury, I.H.; Biediger, R.J.; et al. Use of a small molecule integrin activator as a systemically administered vaccine adjuvant in controlling Chagas disease. npj Vaccines 2021, 6, 1–14,
https://doi.org/10.1038/s41541-021-00378-5.
- 69.
Bondarev, A.D.; Attwood, M.M.; Jonsson, J.; et al. Recent developments of phosphodiesterase inhibitors: Clinical trials, emerging indications and novel molecules. Front. Pharmacol. 2022, 13, 1057083.
- 70.
Shen, B.; Zhao, X.; O’brien, K.A.; et al. A directional switch of integrin signalling and a new anti-thrombotic strategy. Nature 2013, 503, 131–135,
https://doi.org/10.1038/nature12613.
- 71.
Kapp, T.G.; Rechenmacher, F.; Neubauer, S.; et al. A comprehensive evaluation of the activity and selectivity profile of ligands for rgd-binding integrins. Sci. Rep. 2017, 7, 39805.
- 72.
- 73.
Hersey, P.; Sosman, J.; O’Day, S.; et al. A randomized phase 2 study of etaracizumab, a monoclonal antibody against integrin αvβ3, + or - dacarbazine in patients with stage IV metastatic melanoma. Cancer 2010, 116, 1526–1534.
- 74.
Park, C.H.; Yoo, T.H. TGF-beta inhibitors for therapeutic management of kidney fibrosis. Pharmaceuticals 2022, 15, 1485.
- 75.
- 76.
- 77.
- 78.
Usman Khan, M.; Cai, X.; Shen, Z.; et al. Challenges in the development and application of organ-on-chips for intranasal drug delivery studies. Pharmaceutics 2023, 15, 1557.
- 79.
Phan, T.H.; Shi, H.; Denes, C.E.; et al. Advanced pathophysiology mimicking lung models for accelerated drug discovery. Biomater. Res. 2023, 27, 35.
- 80.
Zou, W.; Teitelbaum, S.L. Absence of Dap12 and the αvβ3 integrin causes severe osteopetrosis. J. Cell. Biol. 2015, 208, 1251–36.
- 81.
West, C.; Tobo, C.; Au, J.; et al. Combined application of biosponges and an antifibrotic agent for the treatment of volumetric muscle loss. Am. J. Physiol. Physiol. 2023, 324, C1341–C1352,
https://doi.org/10.1152/ajpcell.00092.2023.
- 82.
Dahlman, J.E.; Barnes, C.; Khan, O.F.; et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat. Nanotechnol. 2014, 9, 648–655,
https://doi.org/10.1038/nnano.2014.84.
- 83.
- 84.
Lenz, T.; Koch, T.; Joner, M.; et al. Ten‐Year clinical outcomes of biodegradable versus durable polymer new‐generation drug‐eluting stent in patients with coronary artery disease with and without diabetes mellitus. J. Am. Hear. Assoc. 2021, 10, e020165,
https://doi.org/10.1161/jaha.120.020165.
- 85.
Pandey, N. AXT107 an inhibitor of neovascularization, vascular leakage, and inflammation, is well-tolerated and could potentially be dosed once a year to treat retinal vascular diseases. Invest. Ophthalmology Visual Sci. 2021, 62, 3304–3304.
- 86.
- 87.
Kim, H.S.; Kang, J.; Hwang, D.; et al. Durable polymer versus biodegradable polymer drug-eluting stents after percutaneous coronary intervention in patients with acute coronary syndrome: The HOST-REDUCE-POLYTECH-ACS trial. Circulation 2021, 143, 1081–1091.
- 88.
Yamaji, K.; Kimura, T.; Morimoto, T.; et al. Very long-term (15 to 20 years) clinical and angiographic outcome after coronary bare metal stent implantation. Circ. Cardiovasc. Interv. 2010, 3, 468–475.
- 89.
Blindt, R.; Vogt, F.; Astafieva, I.; et al. A novel drug-eluting stent coated with an integrin-binding cyclic arg-gly-asp peptide inhibits neointimal hyperplasia by recruiting endothelial progenitor cells. J. Am. Coll. Cardiol. 2006, 47, 1786–1795,
https://doi.org/10.1016/j.jacc.2005.11.081.
- 90.
Wang, W.; Wang, Z.; Tian, D.; et al. Integrin β3 mediates the endothelial-to-mesenchymal transition via the notch pathway. Cell. Physiol. Biochem. 2018, 49, 985.
- 91.
Evrard, S.M.; Lecce, L.; Michelis, K.C.; et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat. Commun. 2016, 7, 11853,
https://doi.org/10.1038/ncomms11853.
- 92.
Kabir, I.; Zhang, X.; Dave, J.M.; et al. The age of bone marrow dictates the clonality of smooth muscle-derived cells in atherosclerotic plaques. Nat. Aging 2023, 3, 64–81,
https://doi.org/10.1038/s43587-022-00342-5.
- 93.
Bricelj, A.; Steinebach, C.; Kuchta, R.; et al. E3 ligase ligands in successful PROTACs: An overview of syntheses and linker attachment points. Front. Chem. 2021, 9, 707317,
https://doi.org/10.3389/fchem.2021.707317.
- 94.
Layman, R.M.; Jerzak, K.J.; Hilton, J.F.; et al. TACTIVE-U: Phase 1b/2 umbrella study of ARV-471, a proteolysis targeting chimera (PROTAC) estrogen receptor (ER) degrader, combined with other anticancer treatments in ER+ advanced or metastatic breast cancer. J. Clin. Oncol. 2023, 41, TPS1121–TPS1121,
https://doi.org/10.1200/jco.2023.41.16_suppl.tps1121.
- 95.
- 96.
Demircioglu, F.; Hodivala-Dilke, K. αvβ3 Integrin and tumour blood vessels-learning from the past to shape the future. Curr. Opin. Cell. Biol. 2016, 42, 121–127.
- 97.
Mahabeleshwar, G.H.; Feng, W.; Phillips, D.R.; et al. Integrin signaling is critical for pathological angiogenesis. J. Exp. Med. 2006, 203, 2495–2507,
https://doi.org/10.1084/jem.20060807.
- 98.
Liao, Z.; Kato, H.; Pandey, M.; et al. Interaction of kindlin-2 with integrin β3 promotes outside-in signaling responses by the αVβ3 vitronectin receptor. Blood 2015, 125, 1995–2004.